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Nonclassical properties of states generated by the excitations on a coherent state
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We introduce states defined by ~a, m ) =a™~a)up to a normalization constant, where ~a) is a
coherent state and m an integer. We study the mathematical and physical properties of such states.
We demonstrate phase squeezing and the sub-Poissonian character of the fields in such states. We
study in detail the quasiprobability distributions and the distribution of the field quadrature. We
also show how such states can be produced in nonlinear processes in cavities.

I. INTRODUCTION

It is well known that the radiation field in a coherent
state ~a) has properties like the classical field. ' The
number fiuctuations (B'AV/N) are of the order I/V'X.
On the other hand, the field in a Fock state

~
m ) is strict-

ly a quantum-mechanical field with no classical analog.
In this paper we study properties of a state that is inter-
mediate between the Pock state and the coherent state.
We consider the state obtained by repeated application of
the photon creation operator on the coherent state. Such
a state has a nonzero-field amplitude and is shown to ex-
hibit nonclassical properties like the squeezing in one of
the quadratures of the field, and sub-Poissonian photon
statistics. We calculate different quasiprobability func-
tions for fields in such states. We show that the
Glauber-Sudarshan P function' is singular. We also cal-
culate the distribution function for one of the field quad-
ratures. We study in detail the Wigner function for such
states. Finally, we discuss how such states can be gen-
erated in nonlinear processes in cavities.

(a a a™~a)= g ', ~a~"
Pt (m ))2

,=0 [(m —p)']'p!

=I. ( —Ial')m', (2.3)

(
—1)"x"m!

o (n!) (m n)!—
Thus, the state ~a, m ) becomes

tm~ )
~a, m)=

[m!L ( —[a)')]'"

(2.4)

(2.5)

The state ~a, m ) in terms of Fock states can be written as

~a, m &= exp( —(a~ /2)
[L ( —(a( )m!]'

a"&(n +m)!
~

+
n=0 nt

(2.6)

where L (x) is the I.aguerre polynomial of order m
defined by

II. THE STATE ~a, m )
AND ITS NONCLASSICAL PROPERTIES

We introduce the state
~
a, m ) defined by

at ~a)
~a, m &=

(( ~

m tm~ ))1/2
(2.1)

Thus, the states
~
a, m ) amount to a truncation of

coherent states, i.e., all the Fock states
~
0 ), ~

1 ),
~2), . . . , ~m —1) are removed in a particular fashion.
The expansion also leads to the following results for the
scalar products:

where ~a) is a coherent state and m is an integer. In the
limit a —+0 (m ~0) the state ~a, m ) reduces the Fock
state (coherent state). Thus, it is a state intermediate be-
tween the Pock state and the coherent state, and we may
call such states as "photon-added coherent states. " Note
that the state

~
a, m ) is not the same as the state

&a, mla, n)= p —
I I

[m!L.( —
I
al')n!L.( —I

al') ]'"
X g ~a~ ~(m +p)!a

p!(m +p n)!—(2.7)

D(a)~m ) =exp(ata —aa*)~m ) (2.2)

associated with the displaced harmonic oscillator.
This is because the operators D (a) and a™do not com-
mute.

The normalization constant for the state
~ a, m ) can be

obtained by using normal ordering of the operator
a a™.This leads to

L ( —/3*a)
, m a, m&=

[L.( —If31')L. ( —I
I')]'" (2.8)

Finally, we note that the state ~a, m ) can be written as a
superposition of the displaced harmonic-oscillator
coherent states as follows:
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at ~a)=a™D(a)~0)
=D(a)D '(a)a™D(a)~0)

=D(a)(a +a*) ~0)

The mean value of x in the state
~
a, m ) is

(x ) = ~a~cos(0+/)
2 (2.11)

m
(a*) "&p!D(a) ~p ) .

P
(2.9)

where L ' "'(x ) is the associated Laguerre polynomial
defined by

We next examine fluctuation characteristics of the radia-
tion field which is in the state (2.1).

(m +k)!
o (m —n)!n!(0+n)!

A. Squeezing properties of the state ~a, m ) k ) —1 . (2.12)

Let us consider the field quadrature x defined by

a exp(iP)+a exp( —iP)
2

(2.10)
The fluctuations in x can also be expressed in terms of
Laguerre polynomials. Calculations show that

=(IL' l( —~a )L (
—

~a~ )
—[L"'(—

~a~ )] I2~a~ cos[2(9+/)] —2[L' '( —a )] la —[L (
—a~ )]

+2(m +1)L +i( lal )L ( la ))/4[L (
—lal')] (2.13)

S =2m+1 . (2.14)

We show in Fig. 1 the quantity S =4(b,x ) as a func-
tion of the parameter ~a~ for different values of m. We
choose the phases such that 0+P = rr. For m =0
(coherent state) the value of S„in Eq. (2.13) becomes
equal to one. Also, for m =0 and a=O (vacuum state),
the variance as given by Eq. (2.13) equals one as expected.
For mWO, a =0, Eq. (2.13) reduces to

(ata )2) (ata )2
Q(a, m ) =

a a

The mean number of photons is given by

n = (ata ) = (aat ) —1

(a)a +'a™+1(a)—1
L (

—lal')m!

(2.16)

(2.17a)

For m&0, a&0, Fig. 1 shows values of S less then one
implying that the quadrature x of the field is squeezed.
We get almost 50% squeezing over a wide range of pa-
rameters.

or

(m +1)L +, (
—

~a~ ) —1.

8.0—

(2.17b)

B. Sub-Poissonian-character of the field

Next we study the number distribution of the field in
the state a, m ). From Eq. (2.10) the probability of
finding n photons in the field is given by

p(n)= ~(n ~a, m ) ~'

f(n —mfa) )'

6.0—

$„4.O—

i.e.,
2.0—

p(n)= n! /aj"" 'exp( —/a[')
[(n —m).']'L ( —lal')m' ' (2.15)

which is zero for n (m. This distribution is found to
have variance which is less than that for a Poisson distri-
bution. To see this we calculate the parameter Q defined
by7

m~o
m~5
m~10
m~20
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FIG. l. Uncertainty in field quadrature x, S„asa function of
~a~ for different values of m.
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The second moment ((a a ) ) can be calculated by ex-
pressing (a a ) in the antinormally ordered form

(ala n+matn+m a )
&a, m fa "at"fa,m)=

m!L ( la

((ata) ) =(a a —3aa +1) . (2.18) (n+m)!I.„,( —laf')

m'L (
—lal')

(2.19)

The expectation values in (2.18) are now very simple to
evaluate as

Thus, on combining Eqs. (2.16)—(2.19), we find the pa-
rameter

I[(m+2)L +2( —lal') —L +, (
—a')](m+1)L ( lal') —[(m+1)L +i( —lal')]'I

L ( —lal )[(m+1)L +, (
—a ) L(——lal )]

(2.20)

In Fig. 2 we show the mean number of photons [Eq.
(2.17b)] for different values of laf and m. In Fig. 3 we
display the parameter Q(a, m) as a function of faf for
different values of m. The values of Q(a, m) less than
one signify the sub-Poissonian statistics of the field. We
see that, for m =0 Q (a, O) = 1, corresponding to coherent
state. For a=O, Q(O, m)=0. For a&0, m&0, we see
that the field in the state fa, m ) exhibits a significant
amount of sub-Poissonian statistics.

III. QUASIPROBABILITY DISTRIBUTIONS
FOR THE FIELD IN THE STATE

I a, m )

In this section we calculate different quasiprobability
distributions for the state fa, m). These distributions

A. P distribution

We first calculate the Glauber-Sudarshan P function
associated with the state fa, m ). This function is defined
by

d2Z
I a, m ) ( az,t m

I

= fP (z)
I
z ) & z

I
(3.1)

where fz ) is a coherent state.
The distribution P(z) can be calculated using the in-

version formula:

provide a convenient way of studying the nonclassical
properties of fields.

2

P(z)=
2 f d P( —Pfa, m ) &a, m IP)exp[I13I (I3z* p*z)]

exp( fz I')
~'L (

—laf')m!
d — * exp —n + z —o.

exp( fzf' —fa f') t)' (, )

m!L ( —laf ) t)z™t)z (3.2)
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Flax. 2. Mean number of photons n as a function of lal for
different values of m. FIG. 3. Q(a, m ) as a function of lal for diff'erent values of m.
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Thus, the quasiprobability distribution I' is highly singu-
lar. This is quite typical of states exhibiting nonclassical
character.

B. Q function

The Q function is the absolute magnitude squared of
the projection of a state of the field onto a coherent
state. " Thus, the Q function for the field in the state
fa, m ) will be defined by

function for the state fa, m ) is distinct from that of the
two-photon coherent state. '

C. %'igner function

The Wigner function W(z) associated with the state
fa, m ) can also be evaluated in terms of the coherent-
state matrix elements by using the formula'

W(z) = exp(21zl') f d'P/ —Pfa, m ) (a, m fp)= 2

Q (z) = ( z
I a, m & ( a, m z & .

The calculation shows that
2m

Q (z)=,exp( —z —a I'),
m!L (

—faf )

which is no longer centered at z =a. Note that

zf' [exp( —fz —af')]

(3.3)

(3.4)

X exp[2(P*z —/3z*)], (3.5)

which, on simplification, reduces to

2 exp(21z I' —
I
a

I
')

~ m!L ( —faf )

X f d /3(
—/3*@) exp[ —

I/3I +/3*(2z —a)
—P(2z —a)*] . (3.6)

is the signature of the number (coherent) state. The Q The integral in Eq. (3.6) can be written as

W(z) = „—f d /3exp( —
I/3I +P*g Pg*) wh—ere $=2z —a2exp(2 zf —a ) 8 1

arm!L (
—faf ) Bg* Bg

exp( —
Igf )

2 exp(2lzl af ) a'-
~m!L ( —faf') ag™ag-

p I
I' —

I f',„(f~f )L (f~f )~m!L (
—faf') (3.7)

and therefore the Wagner function for the state fa, m ) is D. The distribution of the field quadrature x
2( —1) I. (I2z —al')

W(z) = exp( —2 fz —a
I ) . (3.8)

The probability distribution p(x) associated with the
field quadrature x can be obtained from Eq. (3.8). For
simplicity we set /=0. The distribution p(x) is defined
b ]4

It is clear from Eq. (3.8) that the Wigner function can
become negative. This crosses zero whenever p(x)= f W(x+Ey)dy . (3.10)

L (12z —af )=0. (3.9)

On using Eqs. (3.8) and (3.10) and a =ai+ia2, we get

2 exp[ —2(x —a, ) ]( —1)p(x)=
~L (

—faf')
This is in contrast to the Wigner function for a coherent
state. In Figs. 4(a) and 4(b) we show the Wigner function
as a function of z =x +I'y for diferent values of m. We
set /=0, O=ir. This is in the light of our earlier finding
that the phase squeezing was maximum for /+0=m.
For m =0, the expression in Eq. (3.8) reduces to that for
a coherent state. But for m&0, W(z) shows minimum
for some values of y in a fixed range of x. For example,
W(z) for m =1 is minimum at y =0 and for x in the
range given by 0.13 (x & 1.87 for cx] =2, 0',2=0
(a=a, +ia2). This is due to the presence of Laguerre
polynomial in the numerator in Eq. (3.8). Figure 4(b) also
shows regions where the %'igner function is negative.

X dy exp —2 y —O.2

XL ((2x —a, ) + (2y —a2) ) . (3.11)

The integral in Eq. (3.11) can be evaluated numerically.
We have already seen that the quadrature x can show
squeezing and thus the variance of tne distribution p (x)
can be less than that for a coherent state. In Fig. 5 we
show the distribution p(x). Here we have chosen /=0,
0=~. We take cz& =2 and F2=0. We see that, as rn is in-
creased, the width of the distribution becomes narrower
and narrower compared to that for the coherent state.
The coherent state corresponds to m =0. Note that p (x)
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The above discussion also points out the very fundamen-
tal distinction between absorption and emission process-
es. We create nonclassical character in emission' and
not in absorption.

An extension of the above arguments to the multipho-
ton processes would imply that the state ~a, m ) can be
produced in multiphoton emission processes. For exam-
ple, in a two-photon medium, Eq. (4.1) is replaced by a
new Hamiltonian with a~a . Thus, the above pro-
cedure for a two-photon medium' will result in the state
a, 2). Similarly, for an m-photon medium the state
a, m ) is obtained.

In the above we have considered the interaction of
atoms for short times and thus the photon-added
coherent state is produced with small probability. The
state a, m ) may also be produced by other methods such
as those based on special state reduction and feedback
methods. ' For example, consider the process of para-
metric amplification in which the signal (a mode) and

idler (b mode) are generated. These two modes are
strongly correlated. Let us assume that initially the sig-
nal field is in the state ~a). One can show that, if the b
the mode is measured in the Fock state ~m ), then the
state of the a mode is reduced to

~ a, m ) .
In conclusion, we have introduced a new class of states

that are generated by the action of photon creation
operator on a coherent state and shown the important
nonclassical properties such states possess.

ACKNOWLEDGMENTS

G.S.A. would like to thank Department of Science and
Technology, Government of India for partial support.
G.S.A. also thanks H. Walther and W. Schleich for dis-
cussions. The work of K. Tara was supported by the
Council of Scientific and Industrial Research, Govern-
ment of India.

R. J. Glauber, Phys. Rev. 130, 2529 (1963); 131,2766 (1963).
E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).
M. Boiteux and A. Levelut, J. Phys. A 6, 589 (1973).

4S. M. Roy and V. Singh, Phys. Rev D 5, 3413 (1982).
5F. A. M. de Oliveira, M. S. Kim, P. L. Knight, and V. Buzek,

Phys. Rev. A 41, 2645 (1990).
6I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series

and Products (Academic, New York, 1965).
7L. Mandel, Opt. Lett. 4, 205 (1979).
8C. L. Mehta, Phys. Rev. Lett. 18, 752 (1967).
(a) Y. Kano, J. Phys. Soc. Jpn. 19, 1555 (1964); (b) J. Math.

Phys. 6, 1913 (1965).
C. L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, B274
(1965).

ttR. J. Glauber, in Quantum Optics and Electronics, edited by
C. Dewitt, A. Blandin, and C. Cohen Tannoudji (Gorden and
Breach, New York, 1965), p. 65.
H. P. Yuen, Phys. Rev A 13, 2226 (1976).
G. S. Agarwal and E. Wolf, Phys. Rev. D 2, 2161 (1970), Eq.
(3.44).

'4W. H. Louisell, Quantum Statistical Properties of Radiation
(Wiley, New York, 1973), p. 175.

'5J. Krause, M. O. Scully, T. Walther, and H. Walther, Phys.
Rev. A 39, 1915 (1989).
J. Krause, M. O. Scully, and H. Walther, Phys. Rev. A 36,
4547 (1987).

' We are currently examining the micromaser situation under
the condition that the field in the cavity is in a coherent state
before the atoms enter the cavity.

~L. Davidovich, J. M. Raimond, M. Brune, and S. Haroche,
Phys. Rev. A 36, 3771 (1987).

' H. P. Yuen, Phys. Rev. Lett. 56, 2176 (1986); G. Bjork and Y.
Yamamoto, Phys. Rev. A 37, 4229 (1988); K. Watanabe and
Y. Yamamoto, ibid 38, 3556 .(1988); G. S. Agarwal, Quantum
Opt. 2, 1 (1990).
W. Schleich has pointed out to us that the nonclassical prop-
erties of the states

~

a tm ) can be understood in terms of the
interference in phase space [W. Schleich and J. Wheeler, J.
Opt. Soc. Am. B 4, 1715 (19871].


