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Atomic response to optical fluctuating fields: Temporal resolution
on a scale less than pulse correlation time
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Excitation of a three-level atom irradiated by a sequence of two fluctuating pulses is discussed.
The pulses have bandwidth 7, relative delay time tq2, and can be correlated with one another.
It is shown that, for strong excitation pulses, the level populations and atomic coherence as
functions of tzz can vary on a time scale much smaller than 7;. This eKect may lead to a means
for obtaining high temporal and spatial resolution.

I. INTRODUCTION

It is well known in relaxation studies that optical
coherent transients induced by time-delayed, correlated

fluctuating pulses may result in high time resolution.
For a gas of two-level atoms, it has been shown that this
time resolution is given by the cross-correlation time 7; of
the applied fields rather than by the pulse duration tz, as
in the case of Fourier-transform-limited pulses. In exper-
iments, the condition 7; « tz is usually satisfied, and
subpicosecond relaxation times can be measured with
nanosecond or longer pulses. Although most experiments
are performed under weak-field conditions, observations
are also carried out when at least one of two excitation
pulses is strong, that is, when

min(ni, n2)tp » 1 (1.2)

is satisfied, t;he strongest signals exhibit a peak of width
of order 7;, and this peak can have a very narrow dip
near its maximum of order

1
btiP r~ (( 7c

9
where

1/2

rl =
(ni+ n~)

max(ni, n2)tp )) 1,

where ni q
—

(~fi 2~ )r, . The Rabi frequencies, fi and

f2, associated with the first and the second excitation
pulses, respectively, are averaged over all possible real-
izations of the Quctuating fields. It; has been demon-
strated experimentallyi3, i5 and shown theoreticallyi6 —is

that optical transient signals, as a function of relative
delay time ti~, may vary on a time scale of order of 7;.
Moreover, it has been found that, for two correlated
saturating pulses, this time scale can be even smaller
than 7;. If the inequality

and, according to Eq.(1.2), rl » 1. This result im-

plies that a time resolution much better than 7; may be
achieved under appropriate conditions. Unfortunately,
for two-level atoms the narrow dip is also shallow, hav-

ing a relative depth of order of rl
i « 1, and this would

make its experimental observation rather diKcult.
The results discussed above are obtained for "two-

level" atoms. It is well known, however, that many inter-
esting phenomena that cannot exist for two-level atoms
may occur in quantum systems having a number of levels
n 0 3. Among such effects are population trapping,
pressure-induced resonances, atomic cooling below the
Doppler limit, lasers without inversion.

In this paper I consider an ensemble of three-level
atoms of A or V configuration (see Fig. 1). An atom
interacts with two laser pulses having wave vectors ki
and k2, respectively. The pulses are of duration t& and
are time-delayed relative to each other by tiq (tiq « t„).
These pulses may be derived from a single laser and, thus,
can be correlated. These classical incident fields have am-
plitudes Zi(t) and Eq(t —tiq) and central frequencies ui
and u2, respectively. The first field drives the ~0) ~ ~l)
transition having frequency ~io, while the second field
drives the (0) ~ (2) transition having frequency ~2p. It
is assumed that ~(amp —id

~
(( (dm, where m = 1, 2, is sat-

isfied. The model can describe transitions between levels
having quantum numbers J=O and 1 which are linked by
laser fields with orthogonal polarization.

The effect under consideration is related to the well-

known phenomenon of population trapping. As popula-
tion trapping, it is directly linked to the existence of a
coherent superposition of stationary states in three-level
systems of A and V types which, under some specific con-
ditions, is decoupled from the excitation fields. However,
in contrast to population trapping, spontaneous decay
does not play an important role in the effect discussed in
this paper.

Let us assume that bio ——u20, and that the excita-
tion pulses are fully correlated, have equal central fre-
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quencies, and propagate in the same direction; that is

Fi(t)/S2(t)=const, ui —uq, and ki ——kz. Following
a method which was exploited in studies of population
trapping in A system, one can introduce two superpo-
sitions of levels Il) and I2) given by

Ib) = cos Po I 1) + sin Po I2),

Ic) = sin POI1) —cos POI2),

where

Is 02~z(t) Itan ps ——
I

—const,

(1.5)
(1.6)

k;v

and po (m = 1,2) is the dipole moment matrix element
associated with a IO) ~ Im) transition. In the absence of
spontaneous decay and for zero delay time, t~~ ——0, the
superposition state Ic) (a one-level subsystem) is corn-

pletely decoupled from the two-level subsystem consist-
ing of the states IO) and Ib). Consequently, the population
in each of the subsystems is conserved during the exci-
tation pulses. For instance, if level I0) is the only one
initially populated, and the first pulse is much stronger
than the second one I'fi(t) )) f2(t); Po « 1], according to

Eq. (1.6) the population of level I2) is very small for any
duration, intensity, and time variation of the excitation
fields.

However, for nonzero delay time, ti2 g 0, if
Ei q(t) /const, the two subsystems are no longer decou-
pled from each other. Moreover, if the excitation fields
are stochastic, the evolution of the three-level system
changes dramatically compared to the case of zero de-

lay time. For time t +oo all level populations become
equal, that is, tend to 3, and this equilibrium distribution
does not depend on initial conditions (see more detailed
discussion in Sec. V). Thus, in the example considered
above, the population of level I2) as a function of de-

lay time may undergo significant variation from a value
close to zero for tq~ —0 to a value close to 3 which can
be reached for ti2 g 0. It is shown below that the time
scale of this variation decreases with increasing pulse en-

ergy. For two strong pulses satisfying Eq. (1.2) the time
scale is given by btiz r, /rl « r, and coincides with
that for a two-level atom given by Eq. (1.3). However, in
contrast to the two-level case, for three-level atoms this
variation of the populations is a dominant efFect. The
significant variation of the level populations on a time
scale 6ti2 r, /g « 7; is the main result of this paper.

In Sec. II I derive equations for averaged level popula-
tions and atomic coherence of a three-level atom. Vfeak-
field and strong-field regimes are discussed in Secs. III
and IV, respectively. In Sec. V, a physical interpreta-
tion of the phenomenon is given. The implication of the
results for obtaining high spatial resolution is also dis-
cussed.

WWWRR

l2)
II. AVERAGED EQUATIONS

FOR A THREE-LEVEL ATOM

From this point, the general case of nonequal level de-
tunings from resonance, arbitrary degree of mutual corre-
lation of the fields, and arbitrary propagation directions
of the laser beams is considered. For ki g k2, the ef-
fective delay time of the pulses depends on the position
r of a particular atom relative to the center of an active
region in the atomic sample. For an atom characterized
by a velocity v and a position r this delay time, tiq(r),
is given by

n2 —nq - r
ti2(r) = ti2 +

C
(2.1)

k,.v

FIG. 1. Three-level configurations considered in this pa-
per, (a) A system, (b) V system.

where ni q ——ki 2/Iki qI, and c is the speed of light. In
this paper we assume the eAective delay time (2.1) to
be constant for a particular atom during the excitation
process. Since the atom moves during the excitation, and
r(t) = r(0) + vt, this assumption imposes a restriction
(to be discussed in Sec. V) on the atomic velocity in the
direction n2 —n~ across the laser beams. Further, if it is
not otherwise stated, ti2(r) is referred to simply as ti2.

The role of spontaneous decay will be considered else-
where. In this paper, we assume that the atomic relax-
ation produced by sources other than the incident fields
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00(t) &1 2(t)&s{mq qt+kq, & r) (2.2)

Then, in the rotating-wave approximation, one obtains
the following set of equations:

are negligible on the time scale of an experiment. In this
limit one can use population amplitudes rather than a
density matrix to describe the atom-Aeld interaction. In
the case of the A configuration [Fig. 1(a)], we represent
the amplitudes in the form

and according to Eqs. (2.6) and (2.7)

(2.12)

No restriction is imposed on a ratio 7; "/t12.
Using Eqs. (2.3) one can easily derive equations for

the density matrix elements p „(t). Owing to condition
(2.11),one can apply a decorrelation approximations4 to
these equations to arrive at differential equations for the
averaged level populations and the atomic coherence p2l.
For pulses of arbitrary shape, one finds

= —2'fi(t) ni + —,'f2(t —t i2) ~2,

.Gal l= ~1~1+ 2f;(t)~0,
l9t

.BQ2 1= &2~2+ 2 f2(t —t12)~0,

(2 3)

npl — olnpl ~2o2n02+ 4 Qc olo2(3 G)(P21 + p21)

(2.13)

n02 — &2n02 2 ~lnpl + 4 4C +12(3 + )(P21 + P21) i

o —k v. (2.4)

In the case of the V configuration [Fig. 1(b)] the coeK-
cients in Eqs. (2.3) are obtained by substitution

wjth f (t) = pp~g~(t)h (m = 1,2) being the Rabi
frequency associated with a 10) ~ 1m) transition, and

p21 — [4 (col + o'2) + &+]P21

+ -'QC nl+2[(l + G) npl + (1 —G)np2],

(2.14)

(2.15)

fi, 2 ~ f1,2. (2 5)

The A scheme is discussed below, and the V scheme is
considered in the Appendix.

The Rabi frequencies fl and f2 are treated as fully
correlated complex stationary stochastic processes with
zero mean values and correlation functions defined by

(f* (t)f (t —r)) = n g (7), m = 12,

&om —poo prem ) I—~) 2)

POO+ Pl.&+ Par = ~,

L = bg —bg.

(2.16)
(2.17)

(2 18)

In Eqs. (2.13)—(2.15), the only dependence on the time
delay of the pulses is contained in the parameter

(f (t)f„(t—r)) =0, m, n =1,2,

(2 6)
G(t12) = g12(r)dr, G(+oo) = +l. (2»)

(fl (t)f2(t r)) —(@olo2) gl2(r) ~ (2.7)

where g~„(r) is the normalized correlation function, i.e.,

The atom is assumed to be in its ground state(s) before
the excitation pulses are applied at t = 0. For the A

conAguration the initial condition is

g„'(0) = r," g„(r)dr = 1, (2 8)
npl(0) = -pll(0), n02(0) = —p22(0) = p»(0) —1,

(2.20)

and the parameter 4 is a measure of the relative coher-
ence of the pulses, which satisfies

0& C &1. (2 9)

P (t) = (~ (t) (t)) (2.10)

assuming that the correlation and delay times are sufIi-
ciently small to satisfy

t12 « t„,o',
,
2', &D', 1~1,2 ~01,21 (2.11)

where LD is a Doppler width of the atomic ensemble,

For fully correlated pulses 4 = 1, while for noncorrelated
pulses C = 0.

In this paper, I consider the averaged atomic density
matrix

p»(0) = o

where the initial populations pll(0) and p22(0) are not
necessarily equal.

If the excitation pulses are derived from two different
lasers, they are mutually noncorrelated, and 4 = 0 in
Eqs. (2.13)—(2.15). As a result, all the t12-dependent pa-
rameters in Eqs. (2.13)—(2.15) vanish, and the averaged
density matrix elements do not depend on delay time.
For the atomic coherence, one has p21(t) = 0 for any type
of three-level configuration. The behavior of a three-level
system driven by noncorrelated pulses was discussed in
detail in Ref. 26. In this paper we are interested mostly in
analyzing the dependence of the averaged density matrix
elements on delay time. I will show below how this de-
pendence emerges for correlated pulses characterized by
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C g 0. In the next sections the laser pulses are assumed
to have rectangular envelopes

III. VVEAK-FIELD REGIME

This regime is defined by

ni 2(t) = const g 0 for 0 ( t ( tp. (2.21) O;1, O. 2 (( t„ (3 1)

Then the coefficients in Eqs. (2.13)—(2.15) do not vary
with time, and analytical solution can be obtained in

some important limiting cases.

For the A system taking into account initial conditions
(2.20) and solving Eqs. (2.13)—(2.15) one gets the level
populations and coherence in the form

pro(tp) =
2 [~ipii(0) + ~2p22(o)]t„, (3 2)

(3.3)

t '~ 1 2[' p( —' p) —1][1+(pii(o) —p22(0))G(ti2)]
p»(tp) = (3.4)

A.s one can see from Eqs. (3.2) and (3.3), in a weak-field

regime the excited state is populated only slightly, and
each of the pulses aA'ects only the corresponding transi-
tion. The populations do not depend on the delay ti.n~e

f12. However, if the initial populations of levels 1 and 2

are not equal, one can see from Eq. (3.4) that there is

an asymmetric dependence of the atomic coherence p21
on the delay time. The variation of p21 occurs on a time
scale of order v;12, is given by

P21(tpi t12 » &g ) P21(tpi t12 (( rg )
p21 (tp I t12 —0)

= 2[p»(0) —p22(0)1 (3 5)

and can be significant for Ipii(0) —p22(0) I
l.

O'1 ~ O'2) P11 ~ $22)
(4.3)

p21 ~ p12& G(t12) ~ G(t12)
The solutions for npi(t), no2(t), and p21{t) are given

by a sum of four exponentials exp( —A t), m = 1, . . . , 4,
where A~ are the roots of the equation

IV. STRONC-FIELD REGIME
In this section, I consider a strong-field regime which

is defined by

(n, + n2)tp » l.
To analyze this case, and for the remainder of the paper,
it is assumed that

0!1 0 0!2. (4.2)

The results for o.2 & n1 can be obtained from that for
n1 ) n2 by substituting

2 (col + 2)~ + ( is (~1 + o2) + 4 ~lo'2[C'G + 3(1 C')] + + )~

is(o'1 + ~2)[(o'1 + o'2) + ~12@G + 16+ ]~ + gqo:1&2[(o 1 + ci'2) (@G + 1 4) + 10+ ] —0 (4 4)

If the condition

sin (2p)(4G + 1 —4 + Ao) ) 4(1 + &0), (4 5)

is satisfied, where p (tp)=sr, m=123. (4 8)

time 4& all three atomic levels are equally populated, that
is

P = arctan /n2/n„0 & P & n./4,
(4 6)

However, if

sin (2p)(@G + 1 —C + 40) «4(1+ Ao), (4 0)

4A0— )
0!1+ O.'2

for all four roots A~ it follows that

A t„)y 1, m = 1, 2, 3, 4. (4.7)

Consequently, no2(tp) = nor(tp) = P21(tp) = 0, and at

one of the roots of Eq. (4.4) can satisfy the condition
At& ( 1, and some nontrivial final distribution of the
population over the levels may become possible. For
pulses with very diA'erent intensities, that is for o.1 )) a2
(P (( 1), condition (4.9) is satisfied for any mutual cor-
relation of the pulses C (0 & 4 & 1), and any t12 and
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4, provided the inequality (2.11) is also satisfied. For
pulses with nearly equal intensities [o;i n2 (P 1)],
restrictions

and ~2) cannot be very large.
Under condition (4.9) the roots of Eq. (4.4) are given

by

(1 —(I ), (4.10)

must be imposed to satisfy Eq. (4.9), implying that tile
pulses have to be strongly correlated, only slightly de-

layed, and the diff'erence in the detunings of levels ~1)

Ai —4(Ct'i + Ct'2)Ci,

Ag —(ni + n2)(l —e2),

%34 —-„'(ni + n2)(1+ es 4),

where

(4.11)
(4.12)

(4.13)

3 sin (2P) (C G2 + 1 —4 + Ap2)

4(1+ 4')

3 sin (2P) [C G + 9(1 —4) + Ap2]

16(9+a,')
2 1/2

E3 4 — + + Ei + 3E'2 —sill (2p) [C G + 3(1 —C )] —Ap
E2— 2 2

(4.14)

(4.15)

(4.16)

Ppp(i'i) = 3[1+Ci exp( —Ail&)],

I 6 Cq (aq —2nq) exp( —Aqt p)

)P»(t~) =
3

1+
O.'y + O.'2

1 (' Ci(n2 —2ni) exp( —Alt~)
P22(t, ) = —

l
1+

3 Ct'y + O.'2

(4.18)

(4.19)

2Ci+4 nio2[(l + G)ng + (1 —G)ni]
(ni + n2+ 4iA)(ni + n2)

x exp( —Ail„),
with Ci given by

p»(tp) =

(4.20)

The root Ay is much smaller than the real parts of the
other three. Consequently, in a strong-field regime (4.1)
only the term having index Aq can provide a contribu-
tion to the solutions of Eqs. (2.13)—(2.15) which is not
exponentially small. The solution in this limit is of the
form

(2ug —o!i)npi(0) + (2a'i —o'3)Ape(0)
2(ni + n2)

For the A system, taking into account Eqs. (2.20) one has

+

where p (0) = p22(0) —pii(0). Below I present the results
for the most important cases.

(4.21)

A. Dne strung and one wreak pulse

According to conditions (4.1) and (4.2) this case is
characterized by

ny p) t„p) 0,2. (4.23)
For the A configuration, taking into account Eqs. (4.23),
substituting Ci in the form (4.22) into Eqs. (4.17)—(4.20),
and expanding these equations to first order of n2t&, one
has

Pii(0) n2 ngtp(CGA+ 1 —C + A~p) [1+3P (0)]
Ppp &i (4.24)

P»(0) ~3
)

~2tp(~G'+ 1 —I'+ &0)[1+3I -(o)]pii tp (4.25)

n2 n2/p(l)G + 1 —4+ E())[l+ 3P (0)]P22 p = P22 —
4

+ P- 8(1~ a', )
(4.26)

[1+3p-(o)](G —1)
P2i P = (l2 oi

4(1
.~ )

(4.27)
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One can see from Eqs. (4.24)—(4.26) that level popula-
tions in a A system may significantly depend on delay
time if an atom is prepared initially in one of the lower
sublevels, ~1) or ~2).

For pii(0)=1, the level populations are shown in Figs.
2(a)—2(c), (curve 1). Levels ~0) and t1) linked by a strong
field constitute a two-level system. As shown in Figs. 2(a)
and 2(b), their populations are equal at time tp and are
close to 0.5. Level ~2) is linked to the excited level, (0),
by a weak pulse. Although the population of level ~2)

is small, in contrast to a weak-Geld regime, this popula-
tion, as a function of delay time, consists of a background
signal having value nzfz/4 and a dip of width

A]2 ~ 7~
12 (4.28)

and relative depth C'/(1 + Ao) centered at zero delay
time ti2 ——0 [see Fig. 2(c), curve 1]. The dip vanishes
for noncorrelated pulses (4=0) or for a large difference
in the detuning of excited states (A » oi). Averaged
atomic coherence is given by Eq. (4.2?). As shown in
Fig. 2(d) (curve 1), it is strongly asymmetrical function
of delay time. Owing to the condition p (0) = —1, this
asymmetry is negative, and is characterized by a time
scale 7~

If an atom is initially pumped into level ~2), that is,
if pqq(0) = p (0) = 1, the populations of the states ~0)
and ~l) strongly depend on ti2 representing similar dips
of width v~2 and relative depth 4/(1 + Ao), as shown
in Figs. 3(a) and 3(b) (curve 1). The atomic coherence
given by Eq. (4.2?) is an asymmetric function of delay
time. As one can see from Fig. 3(d) (curve 1), in con-

B. Beth pulses are streng,

It is shown below that the most dramatic dependence
of the averaged density matrix elements on delay time
occurs in a regime described by the condition

o, ~ & o.2 p& t& (4.29)

One can see from Eqs. (4.11) and (4.14) that the parame-
ter

blitz

can now be large enough to satisfy exp( —A, t,', ) «
1. Specifically, if condition (4.5)

3nin2S„[C G (fr~) + 1 —4 + 6t')]

4(ni + n2)(1+ Ao)
' ))1 (4.30)

is satisfied, the atomic coherence p2q vanishes, and all
three atomic levels are equally populated [see Eq. (4.8)],
that is,

p2i(tp) = 0, p (t„) = si, m = 1, 2, 3. (4.31)

For noncorrelated pulses (4 = 0) this result holds for
any delay time. However, even for fully correlated pulses
(C=l) this situation occurs for a delay time

(4.32)

trast to the case considered above [pii(0) = 1], the sign
of the atomic coherence is changed. This change occurs
when p2z(0) = s and can be already seen in Fig. 4, where
an intermediate case corresponding to equal initial pop-
ulations of lower levels is shown.

05—

0
—4 0

ti2/&.
I

f

I

0.5

0
t„/v„

I

Oe

CI

(a)

0
—4

(

0
tie/~.

0—4

The averaged populations and atomic coherence of a A system as functions of delay time tt2 for p»(0) = 1. The
popui«io» poo(t„), pi&(ti, ), and p22(t„) are shown in (a), (b), and (c), respectively. The atomic coherence p2i is presented in
(d). The first of two fully correlated pulses (4 = 1) is strong (oi t„= 10 ), while an intensity of the second pulse varies: n2f
0 5 (curve 1), 2 (curve 2), 10 (curve 3), 10 (curve 4), 10 (curve 5). The calculations are carried out for El~=10.
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0

0.5—

0
t12/~.

(
I

0.5—

0
t1~/7'.

I

(b)

0
—4

0
—4

FIG. 3. Thehe same as Fig. 3 b) ut pgg (0)=1.

where g is given by Eq. (1.4, and for s

dt 'ul
coherence.

ua p opulationsua an" vanishin atomic

If the pulses are stro
of

are strongly correlated

that is, if
o

'
o eves )1) any 'g '

sma) is relatively small

(1 —C), 420& g « 1. (4 33)

G (t») & g « 1. (4.34)

onsequently, in the limit (4.33 si nifig
n a omic coherence on d lon e ay time may

the condition A t 1 can be sati
pulses are delay d 1e on y slightly

a isfied, provided th

(c)

0
—4 0

t„/~.
I

I

0
t12/TQ

I

0.5— 0.5—

(a) (b}

0—4
0
—44 0

FIG. e. T
t1a/~.

The same as Fig. 3, butig. 1 ut Pii(0) = P2g(0) = —'
2
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occur. According to Eq. (4.34) the time scale of this
dependence is given by

bt» - r,"/rI « r,", (4.35)

Q 20.'2 (4.36)

Pll(o) —P22(o) &
3

(4.37)

The width of this peak decreases with increasing intensity
of the second pulse and is given by Eq. (4.35). As one
can see from Fig. 2(a) (curve 5), and Figs. 3(a) and 4(a),
if any of conditions (4.36) and (4.37) is not satisfied, the
peak inverts into a dip having width (4.35). The relative
depth of this dip is given by

implying that level populations and atomic coherence of
a three-level atom as functions of delay time may vary on
a time scale which is much smaller than cross-correlation
time of the excitation pulses. The eA'ect resembles that
for a two-level atomir [see Eq. (1.3)]. However, for a
three-level atom the effect can be much more significant.

The case of a A configuration is illustrated in Figs.
2—4, curves 3—5. The population of excited level, poo, as
a function of tl2, exhibits a peak [see Fig. 2(a)] if

where

(4.39)

The depth (4.38) reaches its maximum value ( for

p2 (0) = 1 and rri &) n2, (4.40)

and can be close to unity for fully correlated pulses [see
Fig. 3(a)].

Behavior of the level population p22(tp), as a function
of delay time, is just the opposite of poo(tp). . As shown in
Figs. 2—4(c), if poo(tp) exhibits a peak& p22(tp) exhibits a
dip, and vice versa.

Population of level ~1), as a function of tl2, exhibits a
dip only if condition (4.36) is satisfied, while (4.37) is vi-
olated [Figs. 2—4(b)]. As one can see from Fig. 3(b), the
dip acquires its maximum relative depth ( under condi-
tions (4.40).

Averaged atomic coherence given by Eqs. (4.20) and
(4.22), as a function of delay time, exhibits a narrow peak
with a zero background [see Figs. 2—4(d)]. If conditions
(4.36) and (4.37) are violated, the peak changes its sign
[for Re(p2l) it changes from positive to negative]. The
peak acquires its maximum amplitude

0.56'~+
(4.41)

Poo(tp;ti2 )& r,' rI ') —Poo(tp, ti2 = o)
Poo(tpitl2 » r, rl )—

= —
I 1+ 3[p22(o) —

pl 1 (0)](rr1 rr2) )I(,
0,'y + 0!2

(4.38)

for. p22(0) = 1 and for the pulse intensities n2 —0.228cri.
The most important feature of the results presented

above is a very rapid variation of the averaged density
matrix elements with delay time. The temporal width
of peaks and dips is of order of 7; g which is much
smaller than the cross-correlation time of the pulses. It

0.5—

0
—4

0—4

0.5—

Cl
CI

(b)

0
—4 0

0
0

tea &o

FIG. 5. The averaged populations and atomic coherence of a V system as functions of delay time ti2 for pop(0) = 1. The
populations poo(tp}, pii(t„), and p22(t„) are shown in (a), (b), and (c), respectively. The atomic coherence p2i is presented in

(d). The parameters of the pulse are the same as in Fig. 2.
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is also important that for fully correlated pulses with
very different intensities, the relative depth of dips can
be close to unity, and the peak for atomic coherence has
zero background.

The case of the V system is illustrated in Fig. 5 and
is discussed in detail in the Appendix. Comparing Figs.
5 and 2, one can see that, for the V configuration, the
dependence of the density matrix elements on delay time
is very similar to that of density matrix elements of A
system initially pumped into level ~1). A significant dif-
ference emerges only for 2o.2 ) n~. In this case, for
populations, peaks obtained for the A system correspond
to dips for the V system, and vice versa, and the peaks
for atomic coherence are of opposite signs.

V. DISCUSSION

Condition (5.6) holds for equal detunings of levels ~1)

and ~2). The second condition, (5.7), is satisfied for any
monochromatic fields fi(t)=const and fq(t)=const and
does not depend on delay time. Specifically, the effect of
decoupling leads to population trapping in A systems for
4=0.

If the excitation fields vary with time, Eq. (5.7) can be
satisfied only for fi(t) jf2(t)=const, that is, if one field
is an exact replica of another. For stochastic fields this
means that they have to be fully correlated (4=1) with
zero delay time, tip ——0. In this particular case the ex-
istence of population trapping was shown by Dalton and
Knight. z Under conditions (5.6) and (5.7) in the absence
of relaxation, the probability amplitudes of states ~l) and

~2) are linked to each other by a relation

To give a qualitative explanation of the strong-field
results, one can define the set of states (1.5) and (1.6)
introduced in Sec. I in a more general way as

(b) = cos P~l) + sin P~2),

(c) = sin P)1) —cos P(2),
(5 1)

The qualitative consideration for the A and V systems is
similar. In this section, for the sake of simplicity, I con-
sider the V configuration [the initial condition for this
scheme is always given by ap(0) = 1]. Using representa-
tion (5.2) and taking into account Eqs. ('2.5) one obtains
the following equations for the population amplitudes of
the "new" states (5.1):

iap —
& ([fi ('t) cos p + f2 (t —'( i2) slil p]Qb

+[fi (&)»n p —f2 (& —&12) cpo]sc)u(5 3)
iay = —(bi cos P + b2 sin P) ag + sin P cos P(bi —b2) a,

+ 2 [fi (t) cos p + f2(t —tiq) sin p]ap, (5 4)
ia, = —(bi sin P + b2 cos P)a, + sin P cos P(bi —bg) at,

+ 2 [fi(t) sin p —f2(t —fig) cos p]ap. (5.5)

One can see from Eq. (5.5) that state ~c) is completely
decoupled from other states of the system if

and

L= bg —bi ——0

fi(4) Slil p = f2(f —ti2) cos p,

(5.6)

or (5.7)

fl (4)QA2 —f2 (t f 12)/&1.

where P is given by Eq. (4.6). The probability ampli-
tudes of levels ~1) and ~2) can be expressed in terms of
probability amplitudes of states ~b) and ~c) as

ai ——a~ cos p + a, sin p,
(5.2)

az —ai, sin p —a, cos p.

[ai(/) —ai(0)] sin P = [a2(t) —a2(0)] cos P, (5.8)

that is, amplitude ai(t) is proportional to aq(t) with an
additional constant shift, although for fiuctuating pulses
both amplitudes are now stochastic functions of time.
For instance, let, us consider the case when the first
pulse is much stronger than the second one, that is,
fi(t) » f2(t), and level ~0) is initially populated. Then,
the parameter p is small (p « 1), and from Eq. (5.8) one
has aq(t) jai(t) = P « 1, that is, level ~2) is populated
much less than level ~1) for any given time.

As soon as condition (5.6) or (5.7) do not hold, s5 state
~c) is coupled to the rest of the system, and the tempo-
ral evolution of a three-level atom driven by stochastic
fields, changes dramatically. For large time t +oo
all the atomic coherences (a" (t)a„(t)), (n g m and
n, m = 0, 1, 2 or n, m = 0, b, c) tend to zero, while all the
populations (a" (t)a~(t)) tend to s. This steady-state
distribution does not depend on initial conditions and is
a manifestation of a more general result concerned with
dynamics of a many-level quantum system under the in-
fluence of a stochastic field characterized by a spectrum
with power wings. One can prove that if spontaneous
decay is neglected, the density matrix of a system with N
nondegenerate levels tends to (a' (t)a„(t)) = N b

for t +oo. The physical origin of this result can
be traced to the white-noise type of the spectrum of a
stochastic laser field or one of its time derivatives. In this
case the laser field can be considered as a reservoir char-
acterized by an infinite temperature. A quantum system
eventually comes to thermal equilibrium with this reser-
voir, which results in equal populations of all the non-
degenerate levels. However, for a given time t& under
different conditions the system can be at different stages
of a transient process leading to this equilibrium distri-
bution. For instance, for fully correlated pulses (C = 1)
and equal detunings bi ——b2, one can estimate the rate
of this process in a V system [ap(0) = 1] by examin-
ing the population of state ~c). For ti2 ——0, one has
(a, (t)) = 0. To calculate (~a, (tz)~ ) for tip g 0, one can
consider the case, when an excitation process has two
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stages characterized by diferent rates. First, the popu-
lation is quickly redistributed between states ~0) and ~b).

Then, slow "leakage" to state ~c) comes into play and
leads to equal distribution of population among all three

levels. To estimate the rate of this slow process one can
consider times for which state ~c) is still populated only
slightly, that is a, (t) « 1. Then from Eqs. (5.3)—(5.5)
one has

exp[ibi(t —t')][fi(t') sin p —fg(t' —ti2) cos p] [f,*(t")cos p+ f2 (t" —ti-„) sin p]ag(t")dt'alt".

(5 9)

To calculate the population of state ~c), one takes into
account Eqs. (2.6)—(2.8) and condition (2.11). Using Eq.
(5.9), and averaging the resulting equation for ~a, (t)~2
over field fiuctuations, one arrives at

0!y O.'2

1

(at', (t')at, (t"))e' '~' ' &dt'dt"

(5.10)

where G(ti2) is given by Eq. (2.19). The correlation
function of the probability amplitude ab(t) in Eq. (5.10)
can be estimated in the framework of a two-level sys-
tem ~0) ~ ~b). Using Eqs. (5.3) and (5.4), applying
a decorrelation approximation, and taking into account
that, for a two-level system driven by a strong field, for
t )) (ni + n2) the relation (~at, (t')( ) = z is valid, one
arrives at

(ai(t') a~(t")) =
& exp( —[it i(t' —t")+-.'(~i+~s) It'-t" l]),

(5.11)

where t', t" &) (ni + nq) . Substituting Eq. (5.11) into
Eq. (5.10) and taking the integral one arrives at

transition in Sr) one arrives at (Aiq)~;~ = 3.6 x 10 s.
For currently obtainable laser pulses, the achievable time
resolution is not quite so good. For pulses with equal
energies of 2 mJ, tz ——10 ns, r, 2=100 fs, and a laser beam
diameter of 1 mm, one obtains o, ~ ——o,2

——1.7 x 10 s
and itis ——4 x 10 s for the 4 Pi —5 Si transition in
Ca (A configuration). Thus, a time resolution equal to a
few optical periods might be achieved.

Recently, considerable attention has been given to dif-
ferent techniques leading to high spatial resolution of
atomic particles. ~ In particular, methods using opti-
cal Raman transitions in a highly inhomogeneous mag-
netic field or optical standing wave were suggested
to obtain submicrometer accuracy in position measure-
ments.

The results obtained in this paper imply that using
time-delayed, correlated, fluctuating laser pulses one may
achieve high spatial resolution in the absence of any ex-
ternal potentials characterized by large gradients. Ac-
cording to Eq. (2.1), the delay time actually depends on
location of an atom through

n2 —n~ r
ti2(r) = ti2 +

e

4(ni + n2) 3
(5.12)

Hence, a temporal resolution given by Eq. (4.35) leads to
a spatial resolution

2( i2)sq
(~tie)&;

1
(5.13)

The time resolution given by Eq. (5.13) may be extremely
high. For i.i2=1 ps, and Ti ——2.1 x 10 s (5iSO—5 Pi

Equation (5.12) gives a quantitatively correct excitation
rate Ai [see Eqs. (4.11) and (4.14)] of a slow process that
eventually leads to equal populations of all the states,
and strongly depends on delay time.

The temporal resolution that one can obtain using the
dependence of populations on delay time in a strong-
field regime is given by Eq. (4.35). Under conditions
considered in this paper, the theoretical limit for this
resolution can be found by assuming that n] —ct2

, and tz —T~, where Tq is the lifetime of the excited
level(s). Then, one has

Cbtg2bz=
2 sin(0/2)

c~12
C

2' sin(0/2)
' (5.14)

where z is a coordinate in a direction (ni —nq), and
0 & 8 & x is an angle between the wave vectors k~ and
k2. Atoms located in the vicinity bz around the point in
the atomic sample where tis(r) = 0 end up with very dif-
ferent distribution of populations compared to those lo-
cated outside that region. 'Using an estimate made above
for btq2 one can see that a spatial resolution of order of
1 pm can be achieved for counterpropagating pulses.

In this paper, all the results are obtained under the as-
sumption that, for a given atom, the delay time, ti2(r),
does not vary during the pulses. Since atoms move in
the z direction, however, only the atom which does not
leave the region bz during the excitation, is driven by
the pulses with a delay time smaller than btq2, and, con-
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sequently, acquires highly nonequal level populations at
time t„. The velocity v of this atom satisfies condition

2 sin(0/2) v tp (5.15)

For all other atoms the results obtained for ~ti2~ & Bi2
can be applied, and all the level populations are equal to
3. This velocity dependence of the populations leads to
a velocity resolution be given by

C6tyg C7c

2tp sin(0/2) 2gtp sin(0/2)
(5.16)

An interesting feature of this velocity resolution is that it
can be obtained simultaneously with a spatial resolution
bz.

In this paper an atomic motion has been considered
classically. This assumption means that the condition

mbv. bx » 2~h, (5.17)

where m is atomic mass, must be satisfied. Substitut-
ing Eqs. (5.14) and (5.16) into Eq. (5.17) one obtains a
restriction on time resolution bt~2 in the form

2sin(8/2) ('2nhtpb '~

c m )

APPENDIX: THE V CONFIGURATION

To consider the case of the V system, one can use Eqs.
(2.13)—(2.15) with initial condition

pop(tp) = 1 —
2 (ni + n2)t„,

P (tp) = 2n tp, m=1, 2,

i/C ni n2[exp( —iAtp) —1]
p»(tp) =

(A2)

As one can see from Eqs. (A2), in a weak-field regime the
excited states are populated only slightly, and the matrix
elements do not depend on the delay time ti2.

In the strong-field regime (4.1), the solutions (4.17)—
(4.20) are still applicable, with Ci given by

1Ci = 2. (A3)

In the case (4.23) of one strong and one weak pulse,
populations and atomic coherence are given by

poo(tp) = p»(tp) = —,
' (A4)

rioi(0) :A02(0) :ppo(0) :1, p2i(0) :0. (AI)

In the weak-field regime (3.1), taking into account ini-
tial conditions (Al) and solving Eqs. (2.13)—(2.15) one
gets the level populations and coherence in the form

= 1.3 x 10 sin(0/2) ~

"
~

(5.18)(A (amu))
where A is atomic mass in atomic mass units. For real-
istic laser parameters condition (5.18) is satisfied. How-
ever, for hypothetically stronger and longer pulses, the
theoretical limit for bti2 given by Eq. (5.13) would violate
the restriction (5.18), and the fully quantum treatment
of the phenomenon might be necessary.

Conventional detection methods such as photoioniza-
tion, absorption, transient, and propagation eA'ects can
be used to probe the final distribution of atomic level
populations. One can consider observational schemes us-

ing cells as well as atomic beams. In the latter case even
cw-laser radiation sources can be used to observe the ef-
fect. Since for zero delay time the resulting level popula-
tions do not depend on Quctuations, the eKect under con-
sideration can be observed on a shot to shot basis which
does not require statistical averaging, in sharp contrast
to most phenomena induced by fluctuating light. Atomic
systems of particular interest include such atoms as Ca
and Sr which have an excited state J=1 characterized by
relatively long lifetime.
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n2 n2tp[CG2+ 1 —4+ 420]

2n, 4(1i a2) (A5)

1—
p2i(tp) = QCn2/ni

jL+ Z Q

p22(tp', ti2 )) Tq'l7 ) p22('tp' , t12: 0) 2nl n2

P22(t„;ti2 » 7," rI ')-2(ni+ n2)

(A7)

Levels i0) and ~1) are linked by a strong field and con-
stitute a two-level system. At time t&, their populations
are close to 2. The population of level ~2) is small. As a

function of delay time, it consists of a background signal
of value n2tp/4 and of a dip having width 7;i2. For large
delay time ~ti2~ )) ~, the population of level ~2) is twice
as small as that given by Eq. (A2) in a weak-field regime.
This result is quite understandable, since the population
of the ground state is now equal to 2. Averaged atomic
coherence is given by Eq. (A6) and, as a function of delay
time, exhibits a significant, dependence on delay time in
the form of strong negative asymmetry.

If both pulses are strong [see Eq. (4.29)], the ground-
state population poo, as a function of delay time, exhibits
a peak centered at ti2 ——0 [see Fig. 5(a), curves 3 and 4].
The temporal width of this peak is given by Eq. (4.35),
and its relative height is equal to 0.5(, where f is given
by Eq. (4.39). The population of level ~2), as a function
of ti2, consists of a background signal (4.31) having a dip
of width (4.35) and relative depth
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which for fully correlated pulses with very different in-
tensities can be close to unity [see Fig. 5(c), curves 3 and
4]. Population of level ~l), as a function of delay time,
for crq ) 202 exhibits a peak which inverts into a dip for
nq ( 2n2 [see Fig. 5(b), curves 3—5, respectively]. The

averaged atomic coherence given by Eqs. (4.'20) and (A3)
exhibits a narrow peak with no background [see Fig. 5(d),
curves 3—5]. The peak acquires its maximum amplitude
given by Eq. (4.41) for the pulses with equal intensities,
Ct'y = Ct'g.
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