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Quantum theory of a noninversion laser with injected atomic coherence
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A quantum theory of a A-type three-level single-mode quantum-beat laser with injected atomic
coherences and with an external microwave field, which coherently drives the lower two nearly de-

generate levels, is studied. A master equation for the field-density operator and the photon statistics
is derived. The laser operation is analyzed in terms of the coefficients of the Fokker-Planck equa-
tion of the laser field. Noninversion lasing is found in both cases: without and with injected atomic
coherences. At the same time, in the latter case large quantum-noise reduction is found, and for
particular initial parameter choices the laser field is very near to a coherent state with exactly Pois-
sonian photon-number distribution and near-Poissonian phase distribution.

I. INTRODUCTION

The semiclassical and quantum theories of the laser
were developed more than 20 years ago and subsequently
reached a very high level of sophistication. ' The un-
derlying physics is now believed to be well understood.
Some of the key concepts of the theoretical description
are population inversion and laser threshold. In the mod-
els considered in all of the above theories it is vital to es-
tablish population inversion since the gain is proportional
to the population difference between the upper and lower
levels of the lasing transition. The interpretation is obvi-
ous: emission is proportional to the upper-level popula-
tion, whereas absorption is proportional to the lower-
level population. The net effect of these two elementary
processes is the gain. On the other hand, the cavity
losses determine the laser threshold: obviously, in order
to establish steady-state oscillation, the gain has to bal-
ance the loss.

Recent studies, however, on the possibility of
amplification in a noninverted medium with very closely
spaced upper (lower) levels and a single lower (upper) lev-
el pointed to the crucial role of the atomic coherence in
the lasing process, especially when compared to conven-
tional laser theory which involves incoherent pumping.
Kocharovskaya and Khanin predicted amplification of
ultrashort pulses in an active medium consisting of
three-level atoms with two nearly degenerate lower levels.
Arkhipkin and Heller showed the possibility of
amplification in the case in which a single upper level is
submerged in a continuum of field-induced autoionizing
states (which act as a second degenerate upper level). In
closely related works, Harris considered cw amplification
with nearly degenerate upper autoionizing levels decay-
ing to the same continuum, "and also investigated the
effect of transient response on the dynamics. ' ' A more
quantitative study was presented by Lyras et al. Other
related works have recently appeared concerning

different systems, transient effects, and novel methods to
produce nonabsorbing resonances, "as well as a novel
interpretation based on dressed atomic states. ' ' Scully,
Zhu, and Ciavrielides pointed to the crucial role played
by atomic coherence between the degenerate levels. The
source of noninversion lasing is that in the case of upper-
level degeneracy the emissions from the two levels add
coherently (constructive interference), whereas with de-
generate lower levels the absorption amplitudes from the
two levels subtract coherently (destructive interference).
That is, nonreciprocity between absorption and emission
takes place in such a way that emission dominates over
absorption. In this context, it should be noted that a
similar effect due to recoil splitting of Doppler-broadened
emission and absorption spectra was suggested' some
time ago. Scully, Zhu, and Czavrieldes suggested mi-
crowave coupling of the nearly degenerate levels in order
to introduce the necessary coherence into the system. In
closely related works nonin ver sion laser with atomic
coherences has recently been studied" even in the col-
lision dominated regime. ' In fact, such coherences have
long since been investigated in Raman-type process-
es, ' ' and experimentally demonstrated' in connection
with studies on optical pumping. It should also be men-
tioned at this point that the noninversion lasing effect
may have far reaching practical consequences. It is in-
creasingly dificult to establish inversion on transitions in
the high-frequency part of the spectrum (e.g. , vuv, x ray,
etc.). A similar difficulty is encountered in two-photon
lasers. Instead of trying to pump the system harder to
reach inversion it may be more practical to create ap-
propriate coherence between nearly degenerate levels.

We have already mentioned that the concept of inver-
sion plays a central role in incoherently pumped lasers.
It is, however, not the inversion that drives the laser but
the atomic dipole moment, associated with the lasing
transition, which is the source of radiation. In in-
coherently pumped lasers the laser field itself induces a
dipole moment and it turns out to be proportional to the
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population difference between the levels. In coherently
pumped devices, however, the active atoms are prepared
in a coherent superposition of the lasing levels and have a
finite dipole moment even without the field (injected
coherence versus the induced coherence of incoherently
pumped lasers). The gain expression of such devices is
very different from that of incoherently pumped lasers.
Indeed, in closely related studies on correlated-emission
laser schemes (coherently pumped lasers or lasers with in-
jected coherence)' ' aimed at the reduction of quantum
noise it was found, as a by-product, that noninversion las-
ing was possible, e.g., in the two-photon correlated-
emission laser' and even in a single-photon laser with in-
jected atomic coherence. ' In these cases, however, it is
not the coherence between closely spaced upper or lower
levels that leads to noninversion gain but rather the
atomic coherence between upper and lower levels of the
lasing transition. It should be noted that the main
feature of these correlated-emission laser schemes is the
significant amount of quantum-noise quenching and even
squeezing under appropriate conditions.

Motivated by the above arguments that point to the
crucial role of atomic coherence in achieving noninver-
sion lasing and quantum-noise quenching, in this paper
we suggest a new type of single-mode laser where the ac-
tive medium consists of three-level atoms in A
configuration with atomic coherence between all levels.
In the special case when there is coherence only between
the two nearly degenerate lower levels, our system
reduces to previously suggested noninversion laser
schemes and the present theory proves that noninversion
lasing persists in an all order treatment. Previous studies
were limited to linear treatment only. In the other spe-
cial case when there is coherence between the upper and
one lower lasing level this system reproduces the noise-
quenching features of the single-photon laser with inject-
ed coherence in the highly nonlinear regime. ' The intro-
duction of split lower levels into this latter system, with
coherence between them, gives the flexibility of simul-
taneously optimizing the gain that arises from the coher-
ences between the upper and lower lasing level (long
coherences) and suppressing the loss due to absorption by
the lower levels via the coherence between split lower lev-
els (short coherence). This optimization requires a fine
balance between the coherences but the payoffs are two-
fold. Firstly, it turns out that under optimum conditions,
the gain of the present system is so high that it immedi-
ately enters the nonlinear regime or, in other words, the
effective threshold for laser operation is zero and the sys-
tem does not even have a linear regime. Secondly, the
conditions for maximum gain coincide with those of
minimum noise and the generated field is very near to an
ideal pure coherent state. The effect, in fact, is a striking
manifestation for an active system of the Pano-type in-
terferences.

The paper is organized as follows. In Sec. II we
present the Hamiltonian model of the A-type system, in
Sec. III the solution of the corresponding Schrodinger
equation is provided. In Sec. IV we derive the master
equation of the previously described model. In Sec. V by
converting the master equation into a Fokker-Planck

II. MODEL

In this section we derive the interaction Hamiltonian
of the coupled atom-field system after two transforma-
tions in a second interaction picture. Introducing partic-
ular assumptions concerning the cavity modes and the
detunings between the frequencies of the modes and tran-
sitions, the obtained interaction matrix will be used in
Sec. III for the investigation of the time evolution of the
physical problem under consideration.

We consider a system of A-type three-level atoms as
shown in Fig. l, having one upper level ~a ) with energy
fico„and two lower ones ~b) and ~c) with energies fico&

and A'co„respectively. The ~a )= ~b), and ~a) =-~c)
transitions are assumed to be dipole allowed. The two
lower levels ~b ) and ~c ), are strongly coupled by a (clas-
sical) external microwave field, characterized by a Rabi
frequency V and phase P. Also, the upper level ~a ) and
lower levels ~b ) and ~c ) are assumed to be in a coherent
superposition due to injected coherence, so that the p, b

and p„elements of the atomic density matrix are
different from zero.

The Hamiltonian for the field and one active atom is
given in the Schrodinger picture as

H =Ho+ V,
where

Ho= g iiico, ~i)(i~+ iiQr, ( aati, + —,')+iiiQ, (a,a, + —,')
i =a., b, c

V =Ag, a, ~
a ) ( b

~
+ rg,iai,

~
a ) ( c

~

——' fiVe' ' ib ) (c i+H. c.

C
3

0).
FIG. l. Scheme of a A-type three-level quantum-beat laser

having one upper level a and two closely spaced lower levels b
and c, with energies %co„h~b, and Ace„respectively. The al-
lowed atomic transitions and the external microwave field cou-
pling the lower two levels are denoted by arrows.

equation we obtain the diffusion and drift coefficients for
the photon number and phase, and study the steady-state
operation. ' We show here that noninversion lasing is ac-
companied with reduced photon number and phase noise
due to the coherent superposition of atomic states and
the laser field is very near to an ideal coherent state at the
threshold. Section VI is concerned with the discussion of
the results.
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Here Q„Qz are the cavity-mode frequencies, a, (a, ), a2
(a2) are the annihilation (creation) operators in these
modes, respectively, g&, g2 are the coupling constants for
the transitions a ) -. ~b ), and ~a ):.~c ). Q3 and P are
the frequency and phase of the external microwave field,
driving the ~b ) - ~c ) transition, which is treated semi-
classically. It is convenient to work in the interaction
picture, defined as

V, = Vi+ V2,

where

0
V, = —

—,'AV 0
0
0

0 exp( i b,3—t +i P)

It can be shown that

0
exp(ib3t —i$)

0

l l
V =exp —H t Vexp ——H tI g 0 0 (4)

0 g, a, exp(ib, , t) g2azexp(ib2t)

V2=6' g, a, exp( —ib. ,t)

g2a z2exp( i 62t)—
0

0

0

0

Here

6 )
—

COgb 0 )
—Q)~ COb

~2 ~ac +2 ~a ~c +2 &

~3 ~bc +3 ~b ~c +3

are the detunings. We assume that the driving field is resonant,

h, 3
=0, and futhermore, b, , = —b z

=
—,
' V,

and

a, =a2=:a, gi =g2=:g . (9)

Using a second interaction picture defined as

l l
V» =exp —V, t V2exp ——

V& t (10)

and applying a rotating-wave approximation, where we neglect the rapidly varying terms, exp[i(h&+ ,V)t] and-
exp[i(bz —

—,'V)t], and retain the slowly varying ones, exp[i(b& —
—,'V)t] and exp[i(b2+ —,'V)t], the interaction matrix

has the following form:

i exp i+ —sin+a exp —i+ costa
2 2 2 2

V =kg i exp —i sin a» 0 0

exp i+ cos +a
2 2

0

III. SOLUTION OF THE MODEL

Based on the obtained Hamiltonian (11) we proceed
further with the investigation of the time evolution of the
A system coupled to a single cavity mode under the par-
ticular set of conditions (8) and (9). From the wave func-
tions obtained from the time-dependent Schrodinger
equation we will derive a master equation for the field-
density matrix and an equation for the steady-state pho-

ton distribution in Sec. IV.
The Schrodinger equation in the second interaction

picture (10) can be written as

ifig= V„Q,

where g is a column vector with components P, , f&, P, .
Equation (12) written in components reads
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ig, = i—g exp i sin aPb

+g exp —i costa/ i—

the components of the new wave function g' satisfy the
following equations:

ig,' = —ig sin+agb+g cos ag,',

i jib=ig exp i+— sin+a g, i— (13)

ig'b=ig sin a g,
'

ig,'=g costa itj,
'

(15)

ig, =g exp i cos a P, i—

Here y is a decay constant for the levels a, b, c (for simpli-
city, the same for all levels). With the substitutions

i)'j, =exp — (t to)—

Introducing

g', =cos f'b i si—n

Pz =cos+g,
' i s—in

Eq. (15) can be written as

if', =0,

(16)

gz =exp i+ exp —— (t to)—

g, =exp i exp ——(t —to)

(14)
i02=ga 4.',
ig,'=gap& .

Since the relation between p and p' is written in Eq. (14)
from the solution of Eq. (17) for p', the solution of Eqs.
(12) and (13) is the following:

i', (t)=exp —~ (t —to) cos[g(aaf)'~2(t t )0] ti(tt )0—e—xp i+ sin sin[g(aa )' (t —to)](aa )
' a/i, (to)

i exp i+ c—os—+sin[g(aa )'~ (t to)](aa ) —' aP, (to)

exp —i+ sin+a (aa )
'~ sin[g(aa )' (t —to)]g, (to)

+ sin +cos[g(a a)' (t —to)]+cos fb(to)

+i exp( —iP)sin cos+Icos[g(a a)' (t to)] —1}—f, (to) (18)

g, ( t) =exp — ( t —
to)—y i exp i cos———a (aa") ' sin[g(aa )' (t —to)]g, (to)

i exp(iP)sin c—os+tcos[g(a a)' (t to)] —1}fb(to)—
+ cos +cos[g(a a)' (t —to)]+sin + sf', (to)

We shall use these solutions in Sec. IV to obtain a master
equation for the Geld-density operator and the steady-
state photon distribution.

IV. MASTER EQUATION AND PHOTON STATISTICS

satisfies the following equation of motion in the second
interaction picture determined by Eq. (10):

P= [VII P] .

The density matrix of the three-level A atom and the
one-mode field described by the Hamiltonian (1)—(3)

Although, formally, this equation is identical to the
one neglecting atomic decay, the spirit in which we em-
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PF TlatomP ~ (20)

where Tr„, stands for tracing of p over the atom. Con-
sequently, the equation of motion of the field-density
operator pF can be obtained from Eq. (19) in the form

ploy it is very diFerent, as will be clear from the con-
siderations below. When we take the trace of this equa-
tion over the atomic variables (in order to obtain an equa-
tion for the reduced density operator of the field only [see
Eq. (20) below], then in the right-hand side in the matrix
elements appearing in Eq. (22) we effectively replace the
atomic variables by their steady-state values (adiabatic el-
imination of atomic variables), which is justified by the
much faster relaxation rate of the atomic variables than
that of the field (y ))y, ). In doing so, we make use of
Eqs. (13). That is, in the resulting master equation for
the density operator of the field only, Eq. (28), the atomic
relaxation process is fully accounted for.

We introduce the reduced density operator pF for the
field only as

ig—cos—exp i— [a,p„]

—exp i —[a t,p„] +X,PF, (22)

where X,pz describes the effect of field loss due to cavity
damping. Its explicit form is given in Eq. (27).

To obtain an expression for p,b, p„, and their Hermi-
tian conjugates we first calculate the contribution of one
atom injected at time to with arbitrary initial condition
into the cavity and then sum the contribution of all atoms
injected at random times between t —1/y and t (i.e. ,
t —1/y ( to ( t ) at rate r. This means that the atom-field
interaction is considered on a time scale shorter than the
atomic lifetime 1/y. In this way,

P b d 04 (t t)ot'ib( to) (23)
t —1/y

lpF=Tr o p= hTr o [I it p] .

Using the expression (11) for V„

(21) (24)p., r f dto——g, (t, to)it, (t, t, ) .
t —1/y

Substituting the expressions for g„gb, g, from Eq. (19)
into Eqs. (23) and (24),

p, b
=r f dtoexp[ y(t to)]- —

t —1/y

X exp i+ sin+cos[g(aalu)'~ (t to)]p„(to)pz(t—o)sin[g(aat)'~ (t —t 0])(aa )
t'~ a

—exp i+ sin+sin[g(aat)'~ (t —t )](aat) '~ a

Xpbb(to)pF(to) sin +cos[g(a a )' (t to)]+cos—

—exp i+ sin+cos +sin[g(aat)'~ (t to)](aalu) '~ a p„—(to)PF(to)Icos[g(ata)'~ (t —to)] —1I

+cos[g(aat)'~ (t —to)]p,b(to)pF(to) sin +cos[g(a a)'~ (t —to)]+cos +

—exp(iP)sin +sin[g(aa )' (t to)](aa )
' a—

Xpb, (to)pz(to)si [g(naat)'~ (t —to)](aa )
' a i e px(ip)sin+c soc—os[g(aalu)'~ (t —to)]

Xp„(t )p o(t F)[cos[go(a a )' '(t to)] —1I—
i sin cos —sin[g(aa )' (t —to)](aa )

' ap«(to)p~(to)sin[g(aa )'~ (t —to)](aat) '~2a

+i exp 3i sin cos+sin[g(aa )'~ (t —to)](aat) '~ a pb(t 0) pz( t) Ic os[g(a ta)'~~( t—to)] —1]

i exp i—+ cos+sin[g (aa ) '~2(t—t ) ](aalu) '~2a—

Xp,b(to)PF(to) sin —cos[g(ata )' (t to)]+cos ——
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In the same way

p, =r f '
dtoexp[ y(—t —to)]

t —1/y

X i exp —i —cos—cos[g(aa")' (t —to)]p„(to)pF(to)sin[g (aa )'~ (t t—o)](aa") ' a

i—exp i ——sin —cos —sin[g(aa )'~ (t to)—](aa )
' ap»(to)pF(to)[cos[g(a a)'~ (t to)] ——1}

—i cos+exp —i+ sin[g(aa~)'~ (t —t )](aa )
'~ a

Xp„(to)pF(to) cos +cos[g(a~a)' (t to)]+—sin +

+i exp( —iP)sin+cos+cos[g(aa~)'~ (t to)]p,—&(to)pF(to){cos[g(a~a)'~ (t to)] —1]—

—i sin+cos+sin[g(aa )'~ (t —to)](aa )
'~

ap&, (to)pF(to)sin[g(aa )' (t —t o)]( aa~) '~ a

+cos[g(aa~)'~ (t to)]p„—(to)pF(to) cos +cos[g(a a)'~ (t —to)]+sin

+exp( iP)co—s +sin[g(aa )'~ (t to)](aa —
)

'~ ap„(to)pz(to)sin[g(aa )' (t —to)](aa~) '~ a

—exp i+ sin —[g(aa )' (t —to)](aa )
'

ap&, (to)pF(to) cos +cos[g(a a)' (t —to)]+sin +

+exp —3i sin——cos —sin[g(aa )'~ (t —t )o](a a)
'~ a

2 2 2

Xp, t, (t )p0(tF)Ioc[ogs(a a)' (t —to)] —1] (26)

(27)X,pF= — (a apF+pFa a —2apFa ) .

Now taking the n, n matrix element of the equation of motion of pF it is easy to carry out the time integration, and
we obtain the following master equation for the matrix elements of the field-density operator:

Since the dynamics of the field is governed by the cavity lifetime 1/y„which is much longer then the atomic lifetime
1/y, pF does not change appreciably during the integration time interval, and thus pF(to) in Eqs. (25) and (26) can be
approximated by pF(t).

When t to ) 1/y —(i.e., t —1/y ) to ) the contribution to the integral is negligible due to the exponential damping fac-
tor. This means that the lower limit of the integration can be extended to —&x .

After performing these steps we can substitute p,b, p„, and their Hermitian conjugates into the equation of motion
(22). We still need the loss term for Eq. (22), which can be specified in the usual manner, " ' '

(pF)„„= ——p„„,p„n +1+n'+1+ (n —n') +c7p„+& „,+&M (n +1)(n'+1)
4o.

—gp„, ~~R&n'+1 1 — (n n') —gp„+, „,R—v'n+1 1+ (n n')—
CX 4a

+ ap„&, ~p„&nn' ——p„,,M n +n'+ (n —n')
CX

+ tjp„, „.R&n 1+ (n —n') +gp„„. &R~v'n' 1 — (n —n') cy„'& „,

[p„„(n+n') —p„~, „.~,2&(n +1)(n'+1)], (28)
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a and p are the linear-gain coefficient and saturation parameter, respectively,

M= —,'[(1 c—os(b)pbb+( I —cosP)p„i s—in/(pb, e'~ p—,i, e '~)],

(30)

X„„.= 1+ (n +1+n'+1)+
4e

2

(n n')— (31)

It can be seen that Eq. (28) reduces to the well-known field master equation' of a one-mode two-level laser, if R =0
(i.e., no atomic coherence between the upper and the lower levels), and the "efFective population" of the lower two levels
M is equal to pbb.

Photon statistics

The equation of motion of the diagonal elements of the field-density matrix is obtained from Eq. (28) by setting
n =n ' =:n. We have an equation for the steady-state photon distribution if the time derivative p„„ is equal to zero,

p„„=—[a(p„„p„p„+,„—+,M)(n +1)+rt(p„„+,R +p„+, „R )&n +1]%„„'

+[a(p„ i „ ip„p„„M—)n +rI(p„ i „R +p„„ iR ) n ]X„ i „ i
—y, [p„„n—p„+i „+i(n +1)]=0 . (32)

The differences between Eq. (32) and the equation of motion of p„„ofa usual two-level laser are in the variable M, and
the terms connected with the off-diagonal elements of the field-density matrix and the initial atomic coherences again.

V. FOKKER-PLANCK EQUATION

In this section we employ the Glauber-Sudarshan P representation for the field-density matrix and transform its equa-
tion of motion (22) into a Fokker-Planck equation. Calculating the steady-state drift and diffusion coefficients of the
Fokker-Planck equation the characteristics of the lasing system considered in this paper can be studied. Substituting
the Glauber representation form of the field-density matrix

pF(t)= J d'aP(a, a*,t)~a)(a~ (33)

into Eqs. (25) and (26) for p, b and p„calculating the equation of motion (22) (assuming that the mean photon number is
large and 1 can be neglected compared to aa*), we obtain the following equation of motion for P (a, a*,t ):

aP a a a, a' P a a(p„M) —a+— a* +ap„—(p„+M )
—a — a*

8 Be*

2

1V 'P

gR + 2 e — e ea p a a
Be 4e Be

e — e
Be Be

—1P+, , + ~
2

a ae+ e' P,Be Be+

(34)

P =P(a, a*,t)
BP
at

B
I dg+ D» + DggaI ae ar' ae'

and

E = 1+ 2aa* — a — a*
2a aa aa where

B2
+2 Dig P,arae (36)

p
4e

2 2

Introducing I and e, the intensity and the phase of the
field instead of a, where a=v'Ie', and expanding the
equation of motion of (34) P(I, H, t) up to second order in
the derivatives, we arrive at a Fokker-Planck equation
expressed in terms of I and e,

P =P(I, H, t) .

d g and d, , Dgg and D», and D&g are the phase and inten-
sity drift, the phase and intensity diffusion, and the
crossdiffusion coefficients, respectively.

The coefficients of the Fokker-Planck equation written
in terms of intensity I and phase 0 are the following (from
now we use simply a and y instead of a and y, ):
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adg= —Z —I
2l CX

—1/2

—1/2

(37) D II

1+—Ia

p„+M—I—S —I
1/2

(40)

nI
I p, —M+S —I 1+—Iy P

tX e

(38)

where

8 1+—I
. Z —I

CK

1/2

(41)

4 1+—I —I
p„+—,

' (p„+M ) I—
1/2

(39)

p J Ip J Ie~p("p J) p

that is,

Ip;, I

= Ip, ; I

0 ab +0 bc 0 ac

M =
—,
' [(1—cosp)p»+(1+cosp)p„+2lp&, l»np»n(p+q b )]

S =—2 Re(Re '
) = lp, b I [ —(1—cosp)sin(0 —y, b )+sing cos(0 —y, b )]

+ lp„ I [
—

( 1+cosP )sin(0 —p„)+ sing cos(0 —rp„)],
Z =2i Im(Re ' )= —i [lp, z [(1—c os/)c o(s 0 y, b)+sin—/sin(0 &p,&)]—

+ lp„ I
[(1+cosg)cos(0—y„)+sing sin(0 —y„)]] .

„(I&=(d,&,

„&0&=(d,&,

(42)

(43)

which means, that in steady state di =0 and d =0. We
obtain the steady-state intensity (I & from the solution of
the equation di=0, and the steady-state phase (0& from
d=0; that is, there is phase-locking in the system. The
actual values of the difFusion coefficients in steady state
are determined by the steady-state intensity (I & and
phase ( 0 &.

In the P representation the photon number variance
1s21

((~")'&= &:(&fi')':&+( & =&(5I)'&+(I&, (44)

and the phase variance is

&(&0)'& =
& (&0)' &+ —&(50)'&+ (45)

1 1

4&;& 4&I&

where &=ata and 5I =I—(I &, 50=0—(0&. From Eq.
(36) we find the equation of motion for the normally or-
dered photon-number variance and phase variance '

Note that all the Fokker-Planck coefficients are phase
(0)-sensitive via S or Z.

It can be seen from Eq. (36),

I

Expanding di and Di& in terms of 6I around the steady
state (I &

= n 0, we find that the total steady-state
photon-number variance is given by

((ae)'& =n, +
i=(i),e=(e)Bd !dI (48)

In the same way, after expanding d& and Dz in terms of
50 around ( 0 &

=Oo we find the phase variance to be

Doe+
4n IBd IBOI, (, )

(49)

In the following we study the cases of incoherent and
coherent pumping to see the efFect of the injected coher-
ence.

~ a(p„—M) —y
n.o

=
0 p

(50)

A. Incoherent pumping

There is no injected atomic coherence in this case; that
is, S =0 and Z =0. It can be seen from Eqs. (37)—(41)
that none of the Fokker-Planck coefficients depends on
the phase 0, i.e., there is no phase locking in this system.
We obtain the mean photon number (I &

= n 0 from
d, (no)=0,

„&(5I)'&=2(d 5I &+2(D„&,
dt

„&(50)'&=2(da50&+2(Ds, & .
dt

(46)

(47)

which is not zero (there is laser operation) if
p„—M )y /a, i.e., the population is inverted. The
steady-state diffusion coefficients from Eqs. (39) and (40)
are
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a(p„+M )+y
Dee(no) =

8no

~ (y+aM)no
D„(no)= a p„—M

(52)

d, (8,)=
1+—Ia

2P„Mp„—M+

(59)
Calculating the photon-number variance from Eq. (48),

(53)

It can be seen that depending on the effective population
M of the lower levels we can find different kinds of laser
operations of the system under consideration. If the
phase of the microwave field P =+ or / =0, we have the
operation of an ordinary two-level laser because M =pbb
or M =p„, respectively. Choosing the initial population
of one of the lower levels zero at an appropriate phase P,
we can obtain the noninversion laser operation: if P=n
and pi, b

=0 or / =0 and p„=O, then M =0. In this case

Dee(8o) =

Dii(8o) =

p„+ ,'(p„—+M) I—
4 1+—I —I/3 /3

O,'0!
1/2

(60)p„M—I

1/2 2

(61)'2 aa

1+—I
0,'

a ~paa 'Yno=-
y /3

~paa+ 'Y

Dog =
8no

~ y"o
II 7

Paa

&paa no.
&paa 'V

(54)

(56)

L)ie(8o) =0

It can be seen from Eq. (61), that

Dii(8o) —o

and since

1
Dgg= DII 1+—I +up, I

8I Q

[see Eqs. (39) and (40)], thus

B. Coherent pumping

There is injected atomic coherence, thus SAO and
ZAO. It can be shown, that

S —Z =4p„M .

At a steady-state phase Oo, when d & =0, that is Z =0,

S =4p„M .

In this case the Fokker-Planck coefFicients have the fol-
lowing forms:

de(8o) =0, (58)

That is, there is no need for population inversion between
the upper and lower levels [like in Eq. (50)], because at an
appropriate phase P of the microwave field the effective
population M can be zero even if the population of one of
the lower levels is not zero; the only requirement to ob-
tain laser operation is p„)y/a [from Eq. (54)]. At the
same time comparing Eqs. (55) and (56) to Eqs. (51) and
(52) we find that the diffusion coefficients of intensity and
phase have decreased (i.e., there is noise quieting) in the
noninversion laser case.

This was the case of an ordinary noninversion laser
without injected atomic coherence, but with an external
microwave field. Now we proceed to a system, where in-
jected coherence is present to reduce the noise further.

Bee(8o))0 .

In steady state (where the phase is locked to (8& =8o
due to the injected atomic coherence) the photon number
(n &=no satisfies the following equation derived from
d, (8o, no)=0 using Eq. (59):

r ' 3/2 1/2

+ 1 ——(p —M)aa
—na

—2—(p M)' =0 .CX

aa (62)

We note that the third term of Eq. (62), which stems from
the nonzero atomic coherence S =2(p„M)'~ %0, acts as
a driving force, and there is no need for population inver-
sion p„—M )y/a for laser operation. At the same time
since this term is determined by the effective population
M, manipulating the value of M, we inevitably change the
value of the third term (i.e., the injected coherence) in Eq.
(62), too. Setting M equal to zero (i.e., P=m or 0 and

pi, i, =0 or p„=O, respectively), we reobtain the in-
coherently pumped noninversion laser case of Sec. VA
because, at the steady-state value of the phase, the disap-
pearance of the injected atomic coherence (i.e., S =0) is a
direct consequence of the zero effective population. This
means that we cannot use the method of setting M equal
to zero to obtain coherently pumped noninversion laser
operation, but retaining MAO (i.e., the nonzero "driving
force" term), due to the coherent pumping we still have
noninversion lasing. Next we investigate the conditions
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for the minimal noise and maximal laser intensity.
I.et us see the case when

Dii(~0) =0 (63)

and consequently

y
Paa 2 0a

(67)

minimal, and consequently
Introducing the following relation between the popula-
tion of the lower levels,

O-paa
Dee(60)= 8I

In this case

(64)
pbb

=m p„, m E- [0, ~ ]

and using Eq. (66),

M =
—,
' [ (1 cosP—)pbb+ (1+ cosP)p„

(68)

p„=M—I . (65) +2~pb, ~sing sin(P+yb, )]= a (69)

Substituting this into Eq. (62) we obtain the intensity and
phase in steady state,

and the fact that

Paa+Pbb +Pcc (70)

(66) where p„satisfies Eq. (67), we obtain for no the following
general formula:

a a[m (1—cosP)+1+cosP+2m ' sing sin(P+pb, )]—2y(m + 1)no=-
P[m (1 —cosP)+ 1+cosP+2m '~ sing sin(P+pb, )]

(71)

We disregard the P=vr, m =0 and the /=0, 1/m =0
pairs because M could not be y/a in these two cases. It
can be seen that for P=ir and m =0 (pbb =0) or /=0
and 1/m =0 (p„=0) we get back the noninversion laser
system of Sec. V A. Taking sing =0, for P =0

(77)

that is, the photon-number distribution is exactly Pois-
sonian. Since

a a —y(m+1)
13

and for P = rr

a am —y(m+1)

(72)

(73)

a6"'
6)0, nO

thus we find the phase variance to be

(78)

(79)

It can be seen that just in the opposite case of the in-
coherent noninversion laser, if we set /=0 and m =0
(1/m&0), or P=ir and 1/m =0 (m&0) [M=p„(or
pbb)=y/a&0, pbb (or p„)=0,p„= 1 —y/a], that is, we
put our laser system into a "two-level operation regime, "
then we obtain the following steady-state photon number:

When a/y-=1, the phase variance is approximately the
same as that of the coherent state,

1

4no

Finally we find

A' CX

0 p
(74) (80)

and we find from Eqs. (63) and (64)

Dii(~0 no)=0 (75)

8no

which are exactly the same as in the two-level laser with
injected atomic coherence. ' Note that there is still no
need for population inversion, because if p, = 1 —y /o,
&M=y/a, the photon number is positive (i.e., the laser
operates) in the 1 &a/y &2 interval. This means that at
complete quenching of the intensity noise and large
reduction of the phase noise we have noninversion lasing
as well. The photon-number variance in steady state is

cx cx 2yno=0 p
(81)

when we still have noninversion lasing, if 2(a/y &3.
The photon-number distribution is still exactly Poisson-
ian: ((b,R') ) =no and the phase variance is

which (at a/y -=1) is approximately equal to —,', the quan-
tum limit of the minimum uncertainty product. That is,
the laser field is in a near-coherent state.

If we take a typical "three-level operation" case, when
m =1 [that is, for /=0 (or rl) M=p„=p» =y/a&0,
p„= 1 —2(y/a)] in Eqs. (72) and (73), then the steady-
state photon number is
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((4P) ) =(a/y)/8no .This means that the laser field is
in the same near-coherent state as in the previous "two-
level" case. Overall, even if all three levels are populated,
we still have noninversion laser operation in the range of
2 & a/y & 3, at the noise characteristics of a near-
coherent state.

Thus, it is shown that even if we do not set M equal to
zero (because in that case we would get back to the in-
coherent noninversion laser operation: see Sec. VA), we
can reach the noninversion laser operation, where the
laser field can be found very near to an ideal coherent
state, due to the coherent pumping, if M =y /n.
Different values of the parameters of the phase of the mi-
crowave field P and the ratio of the population of the
lower levels m =pe&/p„ for the same M =y/a result in
different operation thresholds.

VI. DISCUSSION AND SUMMARY

We studied the interaction of a three-level atom in the
A configuration interacting with one mode of the quan-
tized radiation field, where a strong classical coupling is
applied between the lower two (closely spaced) levels via
an external microwave field, and these lower levels are
coupled to the upper one via interacting with the field
mode. Starting from the Hamiltonian model of the sys-
tem transformed into a second interaction picture, and
under special detuning conditions and the rotating-wave
approximation, we derived the interaction Hamiltonian
of the system.

Substituting the Hamiltonian into the time-dependent
Schrodinger equation, we solved the model so that the
obtained solution contained all the possible initial condi-
tions. Consequently, we could retain all the elements of
the following density matrix of the system. Thus we had
the possibility to derive a master equation for the reduced
field-density operator and the laser photon statistics. Be-
sides the atomic coherence resulting from the applied
external microwave field, this equation contained all the
atomic coherences between the different atomic levels.
The master equation is the same as that of the two-level
laser with injected atomic coherence, ' if we substitute

pbb (or p„) into M, that is, we reobtain the usual master
equation of an ordinary two-level laser if the injected
coherence is set equal to zero (R =0) and M =p&b(p„).

We presented a Fokker-Planck treatment of the system
and obtained drift and diffusion coefFicients. The laser
operation is studied without and with injected atomic
coherence. In the first case an incoherent noninversion
laser operation is found depending on the phase of the
external microwave field P and the initial populations of
the lower two levels. Diffusion coeflicients are calculated
and small noise reduction is shown compared to the ordi-
nary laser case.

In the second case, when we apply injected atomic
coherence the system is shown to be phase sensitive and

the laser phase is locked to a particular value t9o in the
steady state. Oo is determined by the phase of the injected
atomic coherence y; and the external signal P. The
diffusion coefticients are calculated at the steady state;
they take the value of the locked phase angle Oo. Both
the intensity and the phase-diffusion coefFicients are re-
duced compared to the case of no initial atomic coher-
ence.

The system is studied in the special case, when the
diffusion coefFicients are minimal: the intensity diffusion
vanishes, the phase diffusion has a small, positive value.
A general formula for the steady-state photon number is
derived, which is investigated for different arbitrary pa-
rameter choices of the microwave phase P and the initial
population of the lower levels. It is shown that with the
appropriate choice of parameters the system can behave
as (1) an incoherent noninversion laser: setting M=0
(P=m, /=0 and pbb =0, or p„=O, respectively), we ob-
tained the steady-state photon number, diffusion and
variance of Eqs. (54)—(57), or (2) a coherent noninversion
laser if MAO. In this case we have the minimum
diffusion coefficients if M = y /a,

Dn(8o, no) =0,

Dee(8 on )o= y
8a

and the steady-state photon number (71) depends on the
values of the parameters of the phase of the microwave
field P and the ratio of the population of the lower levels
m =pbb /p„, (72) and (73), at the same M =y/u.

(a) At the "two-level"-like' parameter choice: when
M =y/a [ =p„(or pb& ), pbb (or p„)=0, P =0 (or ~) ],

cz cz yll o

Dee(~o &o) = a y
8no

operating if 1 &a/y &2.
(b) At the three-level case: when M =y/a( =

pbb
=p„,P=O, or m. ),

a cz —2y
no

cx 2y
Dee(~o no) =

8no

if 2&a/y &3.
The photon number and phase variances are also dis-

cussed and it is found that the photon-number distribu-
tion is exactly Poissonian, w'hile the phase distribution is
(at the threshold) near Poissonian, which means that the
laser field approaches a coherent state. This noninversion
laser system becomes a quantum-noise-limited active de-
vice if, besides the external microwave-field-induced
coherence, an injected atomic coherence is also applied.
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