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Quasirelativistic formulation of the quantum-defect-orbital method
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The quantum-defect-orbital method has been reformulated in order to include a major part of the
relativistic e6'ects. The resulting quasirelativistic approach retains the simplicity of the original for-
mulation but leads to more reliable results, particularly for the highly ionized atoms. The theory is
illustrated by a series of calculations of oscillator strengths for the resonance transitions in atoms of
lithium, sodium, and copper isoelectronic sequences.

I. INTRODUCTION

Quantum-defect theories, formulated in the 1950's by
Ham' and Seaton, have been, over the years, general-
ized and applied to describe complex atomic spectra,
electron scattering, photoionization, and electron cap-
ture. A relativistic version of quantum-defect theory,
constructed by Johnson and Cheng, was further general-
ized and applied, mainly to scattering phenomena, by
Chang. ' In all these theories electrons are described by
approximate eigenfunctions of an asymptotically correct
Hamiltonian.

The quantum-defect-orbital (QDO) method has been
proposed by Simons and Martin" to facilitate simple gen-
eration of atomic valence, Rydberg, and continuum orbit-
als from spectral data. The orbitals are referred to as
quantum-defect orbitals (QDO's). Recently, the QDO
method has also been applied under the name exact
quantum-defect theory. ' The QDO's are exact solutions
of an eigenvalue equation of a model Hamiltonian and
may be expressed in terms of the con Quent hyper-
geometric functions. In consequence, expectation values
of operators and transition integrals may be calculated
analytically. The QDO method proved to be both simple
and reliable. Therefore, it is a convenient tool for analyz-
ing a large body of transition probability data' —in par-
ticular, in studying regularities in the behavior of the os-
cillator strengths along isoelectronic sequences, ' includ-
ing two-electron transitions to doubly excited states' and
autoionizing resonances.

There is abundant evidence indicating the importance
of relativistic effects in highly ionized and in heavy
atoms. However, the QDO formalism has originally been
structured within the framework of the nonrelativistic
(Schrodinger) theory and therefore it is inadequate to in-
terpret transition probabilities and other properties of
these systems. On the other hand, properties of highly
ionized species are interesting not only from the formal
point of view but are most important in physics of plasma
and in astrophysics. The aim of this paper is to provide a
relativistic formulation of the QDO method.

Relativistic atomic calculations, based on models rang-

The second-order Dirac equation in a potential field
V(r), after the elimination of the spin and angular vari-
ables, may be written as '
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ing from simple effective potential approaches to the
Dirac-Hartree-Fock ones, have already been performed
for all atoms of the periodic table. A nearly complete list
of references may be found in a recent compilation by
Pyykko. ' Also, the corresponding computer programs
are generally available. ' Nevertheless, it is still of some
interest to develop new and simple atomic models, partic-
ularly if they are straightforward generalizations of the
ones commonly used. In this paper we demonstrate that
the nonrelativistic QDO radial equation is formally
equivalent to the scalar relativistic (quasirelativistic)
equation of Barthelat, Pelissier, and Durand' and is

.closely related to a decoupled second-order Dirac equa-
tion. In consequence, the QDO method, with practical-
ly no effort, may be reformulated in such a way that it
takes into account most of the relativistic effects. This
modification of the theory, on the one hand, does not add
any complication to its formal structure and, on the oth-
er, creates a more solid background for its applications in
interpreting properties of highly ionized atoms. In Sec.
II the basic formalism is outlined. The Sec. III illustrates
reliability of the method, taking as an example ions of the
lithium, sodium, and copper isoelectronic sequences.

II. QUASIRKLATIVISTIC FORMULATION
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j+—,
' =l+1, if j=l+ —,

'

In the case of a Coulomb potential,

Z
V(r) = ——,

r

I is the 2X2 unit matrix, E is the difference between the
total and the rest energy of the electron, and the other
symbols have their usual meaning. For the quantum
number k, we adopt the original convention of Dirac,
i.e.,

decoupled second-order Dirac equations. Their solutions
are two components of the Dirac wave function. In the
second interpretation, Eqs. (8) are two scalar equations
for a scalar (quasirelativistic) wave function %'k. Since
the energy E does not depend upon the sign of k, ' we can
set"

@'k =&+++k
with

kn +sN
2kn

where Z is the nuclear charge, a nonunitary transforma-
tion described by the matrix

aZ
k+s

aZ
k+s

where a is a constant and

chosen so that

Denoting

Z'=Z(1+a E)

e =E(1+—,'a E),
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1/2
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(7) we transform Eq. (8) into

decouples the equations. ' ' ' The decoupled system of
equations reads

d s(s —1) 2Z'
k k (20)

d s(s+ 1)
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k
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Equation (20) closely resembles the radial hydrogenic
Schrodinger equation and passes into it in a trivial way in
the nonrelativistic limit of a —+0. For the bound electron
states

Its solution are related to the large and the small com-
ponents of the Dirac wave functions as

Z2
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(21)
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and Eqs. (18) and (19) may be rewritten, respectively, as

The constant a is determined from the normalization
conditions

(G„iG, )+ (F„iF„ ) = (e„-ie „- )+ (e„+e„+) =I
Let us note that, according to Eqs. (7) and (13),
n =n —6, where

S'= 1k l

—Is &0 (24)

and is equal to

n

where

k(k+s)
1/2

(12)

is the noninteger part of s ~, since ~k is the smallest in-
teger that is larger than s~. In the nonrelativistic case
6'=O.

The quantum-defect orbitals are solutions of the
Schrodinger equation"

n =n —[k)+ [sf (13)
d + A(A+I)
dr2 r2

=2E
r

(25)

and

N=( + Z )' (14)
where Z„„ is the nuclear charge seen by the electron at
large r and

with n being the principal quantum number of the nonre-
lativistic theory.

Equations (8) may be given two different interpreta-
tions. In the first, already discussed, this is a pair of

X=l —5+c,
where 5 is the quantum defect and c is an integer chosen
to ensure the correct number of nodes and normalizabili-
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ty to tIto . The eigenvalue Eo in Eq. (25) depends only
upon the noninteger part of A, and, hence, it is indepen-
dent of c. The quantum defect is obtained empirically
from the following equation:

n —6' =1+—'a E +O(a )
n —5 4

or, considering again Eqs. (27) and (13),

2
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where E is the experimental energy. A comparison of
Eqs. (25) and (20) as well as (27) and (23) demonstrates
that the formal mathematical structures of the QDO
theory and of the scalar relativistic theory are the same.
This formal similarity allows us to reinterpret the QDO
theory so that it accounts for a major part of relativistic
e6'ects.

The relativistic quantum-defect-orbital (RQDO) equa-
tion may be written as

Z2a Z
1

3 net IkI +0( 4)
2IkI 4 Z2 n —5

(37)

Now, using Eqs. (29), (26), and (4), we get

In the case of relativistic hydrogenic wave functions, s
determines their behavior near the origin. Therefore, we
assume that s is determined by the unscreened value of Z
rather than by Zn«. Hence,

d A(A+1)
dr 2 r 2

where
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'

—s —6'+c lf j=l ——' (29)

and

Z„'„=Z„„(1+aE ) . (30)

Similarly to the nonrelativistic case, the relativistic quan-
tum defect 5' is determined empirically. We have

For the S-type orbitals, l=0 and A, = —6+c. If c =0, i.e.,
if the QDO's possess the same number of nodes as their
hydrogenic counterparts, then both k(0 and A (0, i.e.,
both nonrelativistic and relativistic wave functions, are
singular at the origin, the relativistic singularity being
stronger. The wave functions are quadratically integrable
providing that A& —

—,'. This means that for j=
—,
' states

the nonrelativistic condition 6 (—, is replaced by

RDeRD
2(n —5')

(31) 6'( —' ——'(x Z
2 2

(39)

and, taking into account Eqs. (19), (30), and (31), the
value of 6' is obtained from

the last relation being a straightforward consequence of
Eq. (29). For r~ ~,
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Comparing Eqs. (27) and (32), we see that

(34)

Let us compare QDO's obtained as solutions of the
nonrelativistic Eq. (25) and the relativistic Eq. (28). Both
the equations are formally the same and the correspond-
ing orbitals may be, in both cases, expressed in terms of
generalized Laguerre polynomials. Their functional form
and properties were already discussed in detail by several
authors. "' Also, expressions for the transition integrals
and expectation values of various operators were pub-
lished. "' ' The wave functions in the nonrel-
ativistic/relativistic case are determined by two parame-
ters: I,/A and EO /e . The first of these parameters is
responsible for behavior of the wave function if r ~0 and
the second one if r —+ Oo. At the origin,

tIIRD( ) [ r( 2eRD)1/2] (41)

These asymptotic behaviors are exactly the same as the
ones of the exact solutions (corresponding to the eigen-
value E ) of the Schrodinger and Dirac equations, re-
spectively.

In the present formulation, the relativistic QDO's are
one-component functions. Therefore, this theory is
quasirelativistic and any comparison with the multicom-
ponent relativistic Dirac-Fock formulation should be per-
formed using electron densities rather than wave func-
tions. A detailed comparison between the quasirelativis-
tic and relativistic theories may be found in the litera-
ture. ' ' The conclusion is that the quasirelativistic for-
mulation allows for obtaining about 90% of the relativis-
tic corrections to energies, transition probabilities, and
expectation values of powers of r. From the present
analysis we can see that the relativistic density distribu-
tion approximates very well the exact one for large values
of r [Eq. (41)]. At small distances the quality of the densi-
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z Ion
Upper
level QDO RQDO DHF Expt.

36 Kr"+ 2P &/2

2P3/2
42 Mo 2PI/z

2P3/p
2P]/2
2P 3/p

54 Xe '+ 2P
2P 3/2

59 Pr +
2PI/2
2P3/2

48 Cd

Lithium
21
42
23
45
25
50
29
57
32
65

sequence
13
50
11
57
10
66

9
77

9
89

13'
50'
11'
56'
10'
64'
ga

75'
ga

86'

Fe15+ 3P I/2
3P

36 Kris+ 3P

42 Mo +
3P&/2

3P3/2
3P1 /2

3P3/2
74 W + 3P

3P3/2

54 Xe

Sodium
134
268
102
204
94

188
91

182
113
226

sequence
127
275

87
218

74
207

56
217
42

297

125
272b

87b

216
73'

206
56b

215
41

289b

42 Mo' +

53 I

74 W

79 AU

82 Pb"+

4P ] /2

4P3/2
4P &/2

4P3/2
4P

& /2

4P3/2
4P1/2
4P3/2
4P 1/2

4P 3/2

Copper
243
486
209
419
204
408
210
421
215
431

sequence
223
506
172
455
119
489
111
515
107
534

232
531'
177'
476'
122'
515'
114'
544'
109'
564'

230+20
530+40
190+8'
439+19

'Cheng, Kim, and Desclaux, Ref. 26.
Cheng and Kim, Ref. 27.

'Cheng and Kim, Ref. 28.
Beam-foil experiment results taken from Ref. 29.

'Interpolated from results of Ref. 28.
'Beam-foil experiment results taken from Ref. 30.

TABLE I. Oscillator strengths (multiplied by 10 ) for the res-
onance transition (ns) S~(np) P in Li, and Cu isoelectronic
sequences calculated using the nonrelativistic quantum-defect-
orbital method (QDO) and its relativistic modification (RQDO),
compared with the Dirac-Hartree-Fock (DHF) and experimen-
tal values.

ty deteriorates [Eqs. (34) and (38}].This behavior is very
similar to that of the nonrelativistic QDO densities when
they are compared to the exact nonrelativistic ones. "

The most important difference between the RQDO and
QDO equations is the explicit dependence of the former
one on the total angular momentum quantum number k.
In consequence, in the relativistic formulation, values of
5' are determined by the fine-structure splitted energies
rather than by their centers of gravity. The correspond-
ing relativistic QDO's are different for each component of
the multiplet and, if c =0, they retain the nodal structure
of large components of the hydrogenic Dirac wave func-
tions.

III. NUMERICAL ILLUSTRATION

Solutions of Eqs. (25) and (28) have the same functional
form. As a consequence, all radial integrals may be cal-
culated using the same algorithms and the same comput-
er programs as in the case of the nonrelativistic QDO
method. Therefore, we do not reproduce here the corre-
sponding equations and refer the reader to earlier pa-
pers. " In order to perform a RQDO calculation, it is
sufhcient to replace in the input data k by A and Z„„by
Z„„(1+aE }. A comparison of the oscillator strengths
for the resonance transitions (ns) S~(np) P in the lithi-
um (n =2), sodium (n =3), and copper (n =4) isoelect-
ronic sequences calculated through the QDO and RQDO
methods with theoretical and/or experimental data is
given in Table I. We can see two advantages of the rela-
tivistic formulation. First, we can interpret correctly the
fine-structure splittings. Second, in the cases where rela-
tivistic effects are noticeable, the agreement between the
calculated and observed (or reliable theoretical) values of
the oscillator strengths is considerably better in this for-
mulation.
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