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Stopping power for hydrogenlike and heliumlike particles: Bethe theory
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An analytical formula for the electronic stopping power S of atoms with atomic number Z2 and
mean excitation energy I can be obtained, on the basis of Bethe theory, for fast hydrogenlike

(Z~ =Z&, N, =1) and heliumlike (Z~ =Z& —
—,'6, N, =2) projectiles with atomic number Z& and ve-

locity v. The resultant expression is S=(4m.e /mv )NZ2L (Z&, Z2, v), where

L(Zl Z2v)(Z]N) ln(2Plv /I)+(2Z]NN)ln(v /Zpvo)+Z&N12

Recently, it became possible to measure the energy loss
of fast hydrogenlike ions in a preequilibrium charge state
passing through very thin foils in the field of atomic col-
lisions in solids. Especially, one is much concerned with
focusing on a projectile with atomic number Z, in the ve-
locity region where two charge components, i.e., fully
stripped and hydrogenlike ions, are allowed to be dom-
inant inside materials. On the other hand, in the field of
plasma-wall interaction, hydrogen penetration through a
first wall became a problem. These circumstances seem
to need a basic expression for the energy-loss formula of
hydrogenlike (H-like) ions.

So far, the electronic stopping power of atoms for fast
and fully ionized projectiles with velocities v has been in-
vestigated by means of the Bethe-Bloch theory ' includ-
ing the correction terms. The standard formula for the
electronic stopping power S = —dE/dx is described by

heliumlike projectiles, and that the formula derived later
should be employed instead of Eq. (2) especially for light
H-like and He-like projectiles.

Let us begin with a general expression of the electronic
stopping power S in the Born approximation as fol-
lows:

S = g (E„Eo)f —(dq /q )8sr(e /Av )
n qm]n

X IFoo ( q) lF'o(q) I

In the above, E„and Eo denote the eigenenergies of the
target states n and 0, respectively, and A denotes the
Planck constant divided by 2~. The momentum
transferred to the target electrons ranges from
A'q;„=(E„Eo)/v to —A'q, „=2mv. The form factor of
the projectile F~~o( —q) and inelastic-scattering amplitude
of the target atom F„'o(q) are given by
F~~o( —q) =Z, —(Olexp( —iq r)lo), and

L (Z&, Z2, v) =Z &Lo(Zz, v)+Z, L
& (Zz, v)

+Z,L2(Z2, v) . (2)

F'r(q)= (n X exp(iq r, ) 0) .

J

In the above, m, e, and N are the electron rest mass, the
elementary charge, and the number density of the target
with atomic number Z2, respectively. Lo(Z2, v) is known
to have the form Lo(Zz, v)=ln(2mv /I), where I is the
mean excitation energy of a material Z2. As for partially
stripped ions, a basic treatment was given by Kim and
Cheng. However, an analytical formula has not been
given yet.

The aim of this paper is to present an explicit analyti-
cal formula for the electronic energy loss for fast H-like
and He-like projectiles in a frozen charge state during the
passage. The case is considered where v is larger than
both the average orbital velocity of the target electrons,
i.e., v )Zz vo (vo=2. 18X10 cm/s), and the ls orbital
velocity, i.e., v )Z&vo. Our procedure is based on the
first-order perturbation treatment so that the formula de-
rived later is corresponding to the first term of the RHS
of Eq. (2). Other correction terms are all neglected. In
addition the projectile excitation process is also ignored.
In the final expression one will find that the power ex-
pression like Eq. (2) is not valid for hydrogenlike and

It is convenient to divide the integration section

[q;„,q,„] by two sections, i.e., A = [q;„,qo] and
= [qo q,„], where qo is a parameter appropriate

enough to apply the dipole approximation to F„'o(q). Us-

ing the dipole approximation, we have
exp(iq r, ) =1—iq r, and the contribution S„ from the
section A is then reduced to

S~ = g (E„Eo)8sr(e /Av) ld„ol—

x f (dq/q)lF~z&( —q)l (4)
qmin

where d„o is the dipole matrix element. On the other
hand, the contribution S~ from the section B is expressed
as

S~ = (A' /2m )Z28m. (e /fiv )'f (dq /q) lFoop ( —q) l' .
qo

Here one can interchange the order of the summation
over n and the integration over q since q,„and qo are in-
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dependent of the target states. In addition, the sum rule

g (F-„—Ep)~F„'p(q)~ =(A q /2m)Zz

is employed. The 1s-state wave function of hydrogenlike
and heliumlike projectiles is described by
~0) =(~a )

'~ exp( —r/a), with a =ap/Zp
(ap=0. 529X10 cm). Here, one takes Z =Z& for H-
like projectiles and Z =Z, —

—,', for He-like ones. Then
the form factor is found to have the form

FJpp( —q) =Z& —N, /(1+a q /4)

where X, denotes the number of electrons bound on the
projectile. The definite integrals in S~ and Sz are
straightforwardly estimated if one uses the following re-
sult of the indefinite integral:

dq q F~oo q = Z&
—X, nq

+ (Z(N, —
—,'N, ) Y, (q)

+ ,'N, —Yz(q) .

Here the functions Y, (q) and Yz(q) are defined by

Yi(q) =ln(q +C) —(1+q /C)

and

Yz(q)= —,'(1+q /C) + —,'(1+q /C)

with C=4/a . Here we can assume that q;„«C holds
valid in the velocity range considered. Then Sz is ex-
panded in the Taylor series of q;„/C. As a result, the
total stopping power S(=S~+Se) is expressed in the
form of Eq. (1), where

L(Z„Zz, u)=(Z, —N, ) ln(2mu /I)+(Z, Nz —
—,'N, )[ Y, (2mu) —Y, (0)]

+ —,'N, [Yz(2mu) —Yz(0)]+a z(Z up/v) +ca 4(Z vp/u) +O(v ),

where

a 4—

(Z, N, —N, )ap

2(Z e)

(3Z, N, —5N, )ap

32(Z e)

2m

fz Z~

2m

A Z2

G = y(&„—&p) Id.pl' (m =3 5) . (9)

bL (Z&, Zz, u) =ca z(Z& up/u)

+(a 4+P 4)(Z, up/u) +O(u ),
where p ~=Z&N, /2. Note that qp cancels out in the to-
tal stopping power S. The terms including the factors
a 2 and a 4 indicate the shell corrections of incidence of
H-like and He-like ions at high velocities. They are con-
tributed from the distant collision. On the contrary, the
term including the factor p & indicates the efFect of
shielding the nuclear charge of the projectile by the
bound electron on the close collision between the target
electrons and the projectile.

Kim and Cheng have treated a basic theory of the
electronic stopping power for partially stripped ions.
They took into account the projectile excitation, which is

In Eq. (9), 6 denotes the excitation-energy moments of
the dipole transition probability. In the case of the
higher (but nonrelativistic) velocities, i.e., u ))Z, up, one
finds q,„))C holds true. Thus, Eq. (6) reduces to

L (Z), Z , z)u=Lp(Z), Z , z) v+AL( &ZZ , z)v

Lp(Z, , Zz, v)=(Z, —N, ) ln(2mu /I)

+(2Z, N, —N, )ln[u/(Z vp)]

(10)

I

neglected here, as well as the target excitation. It is not-
ed that the leading-order expression Lp(Z„Zz, u) of the
present formula (10) can also be derived if one follows a
general expression of [Ref. 5, Eq. (24)] together with the
use of hydrogenic 1s wave function.

Let us focus on the leading-order terms of L (Z&, Zz, u),
which is obtained by omitting the correction
bL (Z„Zz, u) of the negative order of u. The expression
(10) is very instructive. The first term of Lp(Z, , Zz, v),
which seemingly corresponds to the Bethe-like expres-
sion, includes only the net charge of the projectile. This
term might seem to come only from the distant-collision
contribution. However, the truth is that this term is con-
tributed from both the distant and close collisions. The
second term involves the logarithm of the ratio of the ion
velocity U to the 1s orbital velocity Z vo. The residual
terms are composed of Z, and X, but do not include ki-
nematic parameters. It is obviously possible to write
Lp(Z„Zz, v) in the form of (Z,tr) ln(2mu /I, &) when the
effective charge Z,z and the e6'ective mean excitation en-

ergy 1,~ are defined. The author thinks the present ex-
pression Lp(Z„Zz, u) is simpler and more explicit than
the form of (Z,s-) ln(2mu /I, s) in that an original mean-
ing of each term is easily understood. Thus the stopping
power for H-like and He-like particles can be obtained
explicitly. As a central conclusion, Lp(Z„Zz, u) in Eq.
(10) has to replace the Z,Lp(Zz, u) in Eq. (2) in case of
H-like and He-like particles being treated. As a special
case, the stopping power for a hydrogen atom takes

S =(4~e /mu )NZz[ln(v/vp)+ —,', ] .

Here it seems remarkable that Eq. (11) does not depend
on I but depends on only the number density X and the
atomic number Zz of the target. This is because a
frozen-charge state is presumed here. If the projectile ex-
citation is involved, a logarithmic term like ln(2mv /I, s)
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is expected to appear again. Regarding heavy H-like
ions (large Z, ), the first term of Eq. (10) becomes dom-
inant in comparison with other ones so that the net
charge approximation is valid in general. This is, of
course, reasonable because in the case of large Z& ions
the spatial radius of the bound electron is so short that
the screening becomes complete.

Let us consider the possibility of experimentally
confirming the result (10) for incidence of a hydrogenlike
ion. In the derivation of the above formulas, a frozen-
charge state is assumed during the passage. Also, the
case of U )Z j v0 was considered. This condition means
that the H-like projectile can rarely pick up an electron
from the target. That is to say, the electron loss cross
section o.l is much larger than that of the electron cap-
ture cross section O.c. Under this condition, the charge
state of the H-like ions is in a preequilibrium state and its
fraction decreases like exp( NtrL—z) with increasing the
foil thickness z. In this regime of z, the H-like ions are
considered to hold the initial charge state during their
passage. Therefore, the charge exchange events cannot
contribute to the electronic stopping for H-like ions. Fig-
ure 1 shows the stopping power of carbon (I=77.3 eV,
Z2=6) for He+ (Zi =2, a =0.5ao) at U =2—50vo, which
is calculated from Eq. (10) without the correction terms
including the factor a 4, P z, and P 4. According to a
recent experimental result, the energy loss of 32-MeV
He+ ions incident on thin (2 —100 pg/cm ) carbon foils

can be deduced to 83.8+8.1 eV (pg/cm ). This measure-
ment was made under the frozen-charge state so that the
contribution of the projectile-excitation mechanism could
be ignored. The stopping power calculated from the
present formula (10) gives 93.0 eV (pg/cm ), which is in
good agreement with the data. At this energy the Z

&
and

Z
&

corrections are expected to change the stopping
power by only l%%uo at most. Consequently the contribu-
tion of the Lo(Z„Zz, u) is found to be more dominant
again.

He =C-

& 102

I I i

50
I I I I I I I I

10
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FIG. 1. The stopping power of carbon (I=77.3 eV) for a He+
ion as a function of velocity. The theoretical result
S = (4~e /mU )I-0(Z &, Z2, U) is drawn ( ) together with the
data (Ref. 8).

In conclusion, the analytical expression for the elec-
tronic stopping power for hydrogenlike and heliumlike
projectiles in a frozen-charge state were presented on the
basis of the first-order perturbation theory. The correc-
tion term b,L (Z„Z2, U), which includes the shell correc-
tion at high energies, is also estimated. The expression
Lo(Z„Z2, U) of Eq. (10) is to be employed as the leading-
order expression for the stopping number of materials for
hydrogenlike and heliumlike projectiles, instead of the
Z, ln(2mu /I) of Eq. (2).
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