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Exact second-order Born approximation with correct boundary conditions
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Symmetric (homonuclear) charge transfer between completely stripped projectiles and hydrogen-
like atoms is studied by means of the second-order Born approximation (CB2) with the correct
boundary conditions. Along the integration path, the transition amplitude T,& exhibits so-called
movable singularities, such as branch points and poles. A powerful method is presented which
demonstrates that these singularities are integrable, not only for the resulting cross sections, but
also for every individual matrix element. The resulting algorithm is very e%cient, since the exact
di6'erential cross sections of the CB2 method are readily obtained through only two-dimensional nu-
merical quadratures. The present theory is applied to symmetric resonant charge exchange in
H++H(1s) ~H(1s)+H+ collisions at several impact energies, and the results are found to be in sa-
tisfactory agreement with the experimental data of Martin et al. [Phys. Rev. A 23, 3357 (1981)]and
Vogt et al. [Phys. Rev. Lett. 57, 2256 (1986)].

I. INTRODUCTION

After a long-standing controversy, it has recently been
shown' " that the first-order perturbation theories of
charge exchange are adequate for the total cross sections
at intermediate and moderately high impact energies.
This important conclusion holds true only if the correct
boundary conditions' ' of the three-body problem are
preserved, and provided that the incident energy is not
favorable for the Thomas double scattering. Except at
very high energies, where the double scattering of the
electron with each of the two Coulomb centers becomes
increasingly significant, the total cross sections are
predominantly determined by an extremely narrow cone
in the forward direction. A single-collision mechanism,
which represents the sole basis of the first-order theories,
proves sufficient for an adequate description of the angu-
lar distributions near the forward direction. Away from
a narrow forward cone, however, the first order (CB1) of
the perturbation Born series with the correct boundary
conditions ceases to yield accurate differential cross sec-
tions. This is due to strong cancellation of the contribu-
tions which come from the two parts of the perturbation
potential with the opposite signs. As a result of this can-
cellation, an unphysical and experimentally unobserved
dip appears at intermediate scattering angles for any im-
pact energy.

Due to the above deficiency of the CB1 approach, it is
necessary to compute the differential cross sections
through at least the second order (CB2) of the perturba-
tion Born series with the correct boundary condi-
tions. ' ' Indeed, as recently shown by Belkic, ' ' in
the case of the reaction H++H(ls) —+H(ls)+H+, the
dip is removed from the angular distributions of projec-
tiles at E ~60 keV, by performing the exact numerical
computations within the CB2 approximation. These
findings have subsequently been confirmed by Decker and

II. THEORY

Charge exchange between completely stripped projec-
tiles and hydrogenlike atoms is customarily symbolized
as follows:

Zp + (ZT e ) .~ (Zp e )I +ZT (2.1)

where Ztc (K =P, T) is the charge of the Eth nucleus and
k (k =i,f ) is the usual triple of the quantum numbers,
i.e., k =nklkmk. In the present paper, we shall restrict
analysis to the symmetric (homonuclear) collisions of re-
action (2.1), in which case Zp =ZT. Let us first introduce
the Fourier transform f(q) by

f(q)=(2') fdrf(r)exp(iq r), (2.2)

and define, for our later purpose, several important quan-
tities, such as the binding energy defect AE, as well as the

Eicher, ' who also extended the CB2 theory to the asym-
metric case. Naturally, the second-order theories become
indispensible for both the differential and total cross sec-
tions at su%ciently high energies for which the Thomas
double scattering dominates the single-collision mecha-
nism. For these reasons, it is of considerable importance
to devise a powerful and expedient method for exhaustive
exact numerical computations by means of the CB2 ap-
proximation. This is particularly demanding, in view of
the troublesome moUable singularities in repeated in-
tegrals. Specifically, the branch-point singularities of the
free-particle Green's function represent the major
difhculty for direct multiple numerical quadratures. '

Therefore, an alternative algorithm is sought, which
would successfully eliminate these singularities before the
transition amplitude of the CB2 approximation is subject-
ed to the numerical quadratures. Such a procedure is
devised and implemented in the present paper. Atomic
units will be used throughout unless otherwise stated.
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(k =i,f, K=T,P)

(2.3a)

reduced momentum transfers a and f3, i.e.,
2

AE=E. —E, ET S K 1
i f& k

n&

with respect to the center of mass of the system (ZT, e);
is denoted by r, . An analogous vector r& is introduced in
the exit channel of reaction (2.1) for relating the nucleus
Zz- to the center of mass of the newly formed hydrogen-
like atom (Zp, e)f. Perturbations V and Vf in the en-
trance and exit channel are defined by

a=g+cx, v, P= —g+P, v; g v=O (2.3b)
V = Vp(rp) Vp(R) Vf VT(rT) —VT(R), (2.5c)

U AE v hEa, = ——+ P, = ———
2 U

' 2 U

(2.3c)

Here v is the incident velocity and g is the transverse
momentum transfer,

g =21(cos1p„,sing„, O) . (2.3d)

In the CB2 approximation, ' ' the transition amplitude
for the symmetric case of reaction (2.1) is given by the
following ei konal expression:

TCB2 TCB1 +f ]f if

=—'(ef
i V,'ie, )+S,f

=(ef i v,'ie, )+(mfa vfG,+, v,'ie, ),

(2.4a)

(2.4b)

(2.4c)

where Go+, is the eikonal Green's function for the three
noninteracting (free) particles,

1G+,=,@~0+ .
E; + ,'V„+(k;+—iV„)v+ie"T t

(2.5a)

4, =y;(rz)exp(ik; r;),
4f Itpf ( rp )exp( —i kf rf )

(2.5b)

Quantities 4; and 4f represent the usual unperturbed in-
itial and final channel states, which are given by the prod-
ucts of the plane waves for the relative motion of the
heavy particles and the discrete hydrogenlike wave func-
tions:

where Vz(r)= —Zz lr, with R being the internuclear
distance.

%e presently adopt the "prior" version of the transi-
tion amplitudes in Eqs. (2.4a)—(2.4c). The same results,
however, would be obtained by using the "post" formula-
tion, since the CB2 approximation does not exhibit the
so-called "post-prior" discrepancy. The term T,&

' in

Eqs. (2.4a)—(2.4c) represents the contribution from the
first Born (CB1) method with the correct boundary condi-
tions

TcB1 (2 )6 P2+1 ZT
f n;

2

q f( —a)y, (P)

+ f dpyf*(p —a) Wp( —p)g;(p+p) ',

(2.6)

where y;(q) and yf(q) are, respectively, the initial- and
final-state hydrogenlike wave functions in momentum
space and Wz(q) is the Fourier transform of the poten-
tial:

ZK
Wx (R ) = —Vx. ( R ) =

R
(2.7)

The remaining part S,f of the transition amplitude Tf
is seen from Eqs. (2 4b) and (2.4c) to contain four matrix
elements, i.e.,

Sf=If( VT Vp)+tIfi, VT Wp)+If( WT Vp)

where rK is the relative vector of the electron with
respect to the Kth nucleus, k; and k& are the initial and
final wave vectors. The relative vector of nucleus Z&

I

+I,f( WT, Wp)],

with Vx ——Vx(rx), Wx = Wx. (R ),

(2.8)

with Vx. —= Vx ( rx ), Wx ——Wx (R ),

Vr, Vp)=(2~)'f fdPdqyf(P —a)E~qVT( —q)vp(P)g;(q+0),

If( Vy' Wp ) =(2m) f f dP dq f&f (P —a)Ep q VT( —q) Wp( —P)y, (q+P+P)

WT, Vp)=(2~)'f fdpdqg f(p —a+q)E~ qWT( —q)vp(p)q;(q+p),

Ifi, WT, Wp)=(2ir) f f dpdqyf*(p —a+q)E 'Wz( —q)Wp( —p)g, (q+P+p),
where

2(~p —a+q~ +eq), eq=Zp 2q v i—e—
—2(~q+P+p~ +e~), e~=Zr~+2p v ie. —

(2.9a)

(2.9b)

(2.9c)

(2.9d)

(2.10a)

(2.10b)

and a +(Zpln&) =P +(ZTIn;) .
In the following, for the purpose of illustration, we shall outline the method of calculation of the resonant transition,

involving only the initial and final ground states, i.e., i =f= ls. In such a case, integrals (2.6) and (2.9a) and (2.9b) sim-

plify as follows:
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Zp
TI '=64~(ZpZz-) —

—,'(a +Zp) (P +Zr) ' — f dpp (Ip —al +Zp) ( p+PI +Zr) (2.11)

I,/( Vr, Vp)= —32(ZpZz )
i (ZrZp)I(Vr, Vp),

I I( Vr, Wt ) =+32(Zt, Zz. ) (ZrZt' )I( Vr, Wt ),
Ip Wz. , Vp) = +32( ZpZ r) (Zr Zp )I ( Wr, Vp ),
Ig Wz, Wp ) = —32( Zt Zz. ) ( Zr Zt )I( Wr, Wp ),

with Z&=Zz and

I,I(vr, vp)= ff, ,q [(lp —~l'+zp)(lq+pl'+zr)] '&p, q,

VT Wp ) = ff, , [( lp —~l'+Z~ )( lq+J(i +pl'+Zr)]

IPWz, Vp)= f j [(Ip a+qI —+Zt, )( q+Pl +Zz )] A

ILAW&-,

Wp)= f f [(Ip —a+ql +Zp)(lq+P+p +Zz-)] A

(2.12a)

(2.12b)

(2.12c)

(2. 12d)

(2.13a)

(2.13b)

(2.13c)

(2.13d)

where 3 =~ E
The equality Z~=Zz- is understood throughout, since

we are considering the symmetric version of reaction
(2.1). In other words Eqs. (2.11), (2.12a)—(2.12d), and
(2.13a)—(2.13d) do not apply to heteronuclear collisions
(Zp&Zz ) ioithin the C82 approximation The . only
reason for treating the labels Z~ and Zz- as if they were
different from each other is that the above formulas also
supply the transition amplitudes T,&' and T,& of the
first ' - and second '-order Jackson-Schiff approxima-
tion. This is done by merely setting Zp =Z~=Z~Zz-, for
both the symmetric and asymmetric case of process (2.1).
Unlike the present theory, however, the Jackson-Schiff
approximation in any order of the perturbation expansion
exhibits the incorrect boundary conditions for Zz =Zz- or
Z~AZ7, with the only exception concerning the H+-H
charge exchange. It is only in this latter case
(Z~=Zz. =l) that the CBn and JSn (n=1,2, 3, . . . )

methods are coincidently identical to each other. It is
now well estalished' " that the JS1 approximation is
inadequate, because of the incorrect boundary conditions
for every case but Z~ =Z&=1. Hence, pursuit using the
Jackson-Schiff-Born series is not justified. In particular,
we do not expect that the JS2 theory would yield quanti-
tatively acceptable results for any collision but H+-H
charge transfer. Nevertheless, it would be interesting to
see whether the difference between the JS2 and CB2 ap-
proximations is smaller than in the comparison of the JS1
with the CB1 model. The symmetric case (Z&=Zz.%1)
of reaction (2.1) is particularly convenient for comparison
between the JS2 and CB2 methods, since the same pro-
gram can be used by appropriately specifying the param-
eter Z& as being equal to ZPZz. or to Zz(IC =P, T).

III, CALCULATION OF THE INTEGRAL I( Vy Vp )

We shall first change variables in the integral I( Vz. , Vz )

according to p'=p+q —tx and q'= —q —P, and subse-

I

quently rewrite Eq. (2.13a) as follows:

I(V„V,)=,jfdpdq[lq+Pl'(q'+b')'

X(p +y )Dpq]

where a =Zp, b =Zr(a =b ), and

D, ,=(Ip+P+ql +a')'Ip+q —vl',

y =a +2(q+P) v —ie (Rey )0, e~O+ ) .

(3.1)

(3.2a)

(3.2b)

+m+ )' d m(g+I1 )
—n —m —2

n!m! 0
(3.3)

which can readily be obtained from the integral form of
the Gauss hypergeometric function zF, (see ref. 24):

I (c)
zFi(a, b, c;1—x) =

I a I c —a

X f dt t' '(1+t)~ '(1+xt)

(3.4)

Hence,

D '=2f dt to(Ip+QI +b )

where to=1/(1+t) and

q=q+(P vt)to, b. =to[a—t+a (1+t)] .

(3.5)

(3.6)

Inserting (3.5) into Eq. (3.1) and carrying out the integra-
tion over p, we obtain

I(Vr, V~)= f dt to3V(t), (3.7)
0

with

For a convenient representation of the quantity 1/D~ q,
we shall employ the following identity:

g —n —lg —m —1
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V(t)= —fdqlq+Pl 'f(q)—:—fdqg(q), (3.8)

f(q)=(q'+b') '[—,'b, 'Q '+(y+b, )b, '0 '], (3.9a)

where

Q=Q~+(y+h)~ . (3.9b)

=(4y A) '+(x+y)(2y W ) ', (3.10)

where %= Q (x +y) .
Before we proceed to further integrations in (3.8), it is

very important to study the analytic properties of the
function g(q) in the q space. In particular, g(q) exhibits
branch-point singularities at those values of the variable

q for which the following equality is satisfied:

y2 —0 (3.11)

Choosing v=(0, 0, u) and taking the limit e—+0+, it fol-
lows from Eq. (3.11) that the branch-point singularity
occurs at

Here we made use of the following result for the two-
denominator Dalitz-Lewis integral:

1 f dp(p +x ) '(lp+Ql +y )

QWO, 0'rE[ —oo, + oo], Vt &[0,+ oo] . (3.16)

In order to prove (3.16), we shall separately consider two
cases, where ~ 0 and ~ ~ 0. The correct branch of the
square root of the complex number y is uniquely deter-
mined from the condition Rey) 0, in the limit @~0+.
Writing y =+&rlrl i e an—d subsequently developing the
square root in the power-series expansion in the limit
e—+0+, we shall have

the two resulting integrals over ~ cover the regions ~~0
and ~~0. Restating Eq. (3.14) as ~l~l =2u(q, —Q&), we
shall provisionally assume that Qt3

~ 0, which corre-
sponds to u ~Zz. . Thus, we shall have v&0 for q, &Q&
and w ~ 0 for q, ~ Qtj. Therefore, the interval

q, H [
—oo, + oo ] should be split according to

q, E [
—oo, Q&]+q, E [Q&, + oo ]. In the former range

q, E [ —oo, Q&], we have r&0, i.e., ~= )/—2u(Q& —q, ),
so that q, E [ —oo, Q&]~a& [ —oo, O]. Similarly, the
second region q, H[Q&, + oo] corresponds to v ~0, i.e.,
r=+'()/ 2u(q, —

Q&) and, therefore, q, H [Q&, + oo ]
~v&[0, + oo]. Finally, it remains to be demonstrated
that this analysis eliminates the branch-point singularity
(3.11) from g(q). This is accomplished provided that

q, =—a +2I3, u
(3.12) y =r&sgn(r), sgn(r) =

7
(3.17)

It can be easily shown that

U2 j 2

2U
(3.13)

For convenience, the triple integral in Eq. (3.8) will be
carried out in the cylindrical coordinates, i.e. , q=(q, q, ),
where q = (q, P). Hence, we obtain

This singularity can be removed from g(q) by introduc-
ing a change of variable proposed by Wadehra, Shake-
shaft, and Macek within the BK2 (BK denotes
Brinkman-Kramers) model:

X+iY,
r

2
T2+

2U

2

tti +(r+6—), r ~0

(3.18a)

(3.18b)

q, = +Qp,

which implies

0+ .

(3.14)

(3.15)

where

4
X= +(t —v)—+T +6 +t, I'=2rb, , (3.19a)

4 2 ~
U

Care should be exercised with respect to change of the in-
tegration variable given by Eq. (3.14). Namely, consider-
ing an arbitrary definite integral J=j dx u(x ), it is con-
venient to perform the transformation y =y(x ). Then,
writing dy =p'(x)dx, we shall have J "dx u(x )

= f „dy u(P(y ))/y'(P(y )), provided that g'(x ) is con

tinuous for each x& [a,b]. Here the primes denote the
first derivatives, the function P is the inverse of y, i.e.,
x =P(y ), and A =g(a ), 8 =g(b ). In the present case
q, =rlrl/(2u)+Q& y(r), so that y'(——r)=r/v for ~~0
and y'(~)= —r/v for v&0. Hence, y'(r) is continuous
everywhere on the ~ axis, including ~=0 and, therefore,
equating the integrals over the variables q, and ~ is
justified. However, before writing the integral over q, in
Eq. (3.8) in terms of the new variable r, it is necessary to
appropriately split the interval q, H [ —oo, + oo ], so that

a +(b +u )tT=q —gto, t&= to
2U

(3.19b)

It is easily verified that T + [r /(2u) —t&] +(w+b. ) &0
(&~0), even when r and b, are simultaneously equal to
zero. Further, one can readily show that the quantities X
and Y from Eq. (3.19a) are never simultaneously equal to
zero. Therefore, it follows from Eqs. (3.18a) and (3.18b)
that QWO b'r P [

—oo, + oo ], V t H [0, + oo ]. Hence, we
proved condition (3.16). Here we recall that the term
1/0 stems from the action of the free-particle propagator
Go+, onto the set of plane waves for the relative motion of
heavy particles in an intermediate stage of collision. The
branch-point singularities of the quantity 1/Q are typical
for the continuum-intermediate states, which become
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9'"(t) 2 "(t)
2b, b,

(3.20)

progressively important as the incident energy increases,
due to the dominant role of the ioniz'ation channel. Thus,
especially at high energies, these singularities become
very unwieldy for computation. The transformation
(3.14) is successful in removing the branch-point singular-
ities from the integral I(VT, V~). After this regulariza-
tion, the function 9'(t) from Eq. (3.8) takes the following
form:

where

2 "(t)=—[2'"(t)++"(t)]

and

(3.21)

0
9'&"(t)= —f dr ~&I"(t,r)[5I, +(5+i~)5& z], (3.22a)

Pq"(t)=+ f dry&~"(t, ~)[51(+(b,+r)5)z], (3.22b)

with 5& I being the Kronecker 5 symbol, i.e., 5I I
= 1 if

l = l' and 5& I.=0 for l &i'. Further, we have

&'"(t,r)= f dq q (q +b ) —f dP(q 2riq c—os/'+C)p ) '(q 2tori—q cosg'+C~p ) (3.23)

with P' =P —P„and

C,p =g +Hp,

C2P —t oq + tP+ 6
2v

5'=i6, +6 2,

a +5jr

'2

+(b, +r5;)

(3.24a)

(3.24b)

where 5=tto, and

t =C2P, —toCiP

=t, t,7(t)+t

+ 2D5, 5
2v +(v —b )t

2U 2

(3.26a)

~2
b =2+b, r =Qp —5, , 5 =5, , —5 ~,

V
(3.24c)

p,
a i +Picosp

f3~

a~+P~cosp'
(3.24d)

we shall encounter a linear combination of the following
integrals (see Sec. V}:

1

2m. o A Bri cos( P —
Pz

—)

Hence, we can write

1

&A' —B'q' '

A &B ri . (3.24e)

where j= 1 for ~ & 0 and j=2 for ~ ~ 0 in the case of the
integrals (3.22a) and (3.22b), respectively. After employ-
ing the usual fractal decomposition of the two denomina-
tors in Eq. (3.23), i.e.,

&diaz
—&zai

(a, +l3,cosg')(az+Pzcosg')

T(t)= 6 +V
2U

2 26 +V
2U

(3.26b)

t+a &0,

Ret ' & 0, Vr E [—oo, + oo ], V t E [0, oo ],
D = 1// a + T t

(3.26c)

(3.26d)

(3.26e)

5

5q +t.
1 1 1

(q +b )(5q +t~ )Dp~ . . q+bj.

T =a +a, Tp=P +b (T =Tp), (3.26f)

S,p'(q )=(q +C,p~) 4' qp, — (3.26g)

Sz»(q )=(q~+Czp ) 4tog q—(3.26h)

The remaining one-dimensional integrals over q in Eqs.
(3.25a) and (3.25b) can also be analytically calculated by
using appropriate changes of variables. We shall first
make a fractal decomposition of the type

&~"(t,7.) =2f dq q
0

&,' '(t, r)=2f dq q

Z I /~2( q ) t +1/~2( q )

(qp+ bj ) (5q + t )

(q +b, )(5q +t}.
(q~+Czpj)/~p/ (q )

(q +b ) (5q +t )

(3.25a)

(3.25b)

where

D =t —5b2
pJ

oD p,
.

=to( —25)+2~5'D+a ),
ReDp &0, V~K[ —oo, +oo], Vt&[0, oo] .

Higher order term-s (q~+b/ ) (5qz+tj )

(3.27a)

(3.27b)

(3.27c)

(3.27d)

(3.27e)
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(q +bj ) (5q +tj. ) are generated by repeating trans-
formation (3.27). In this way, several integrals are ob-
tained whose inegrands differ from the corresponding
functions in (3.25a) and (3.25b) only in that the product
(q +b ) (5q + t ) . is replaced by an appropriate

linear combination of terms (q + b ) and
III P

(5q +bj ) ', where l, 1', l", and l"' are integers. It is
in these integrals with the single binomial term (q +b, )

or (5q +b ) in the denominator that we set q =u or
5q =u, respectively. Hence, we can write

(ry'r) — L/P'. ](b. ) X]P ](bj ) X]PJ ](bj ) J 2PJ ](bj ) XPPJ ](~J )

$2 t 5
(3.28a)

and
2

&j"'(t,r)=, &",p, I(b,')—,&IIII(b)')—,&2'pj', I(bj')+, &z'p)', I(b)')+, &Pj,",s(,)+, Pj)",s( J)

2t 5 t 5

3 3 It05 „, t05 C2P
z ~2PJ, s 2 ~2P'J, s('J»

D pj pj

(3.28b)

where Ckp- =Ckp- 6 and

=f duR p" ' (u), n~l (=123, . . . ),
(3.29a) (3.31c)

X'k"p™„'(y)=f du(u +y)™Rkp"„'~ (u),

n~O, m~1, (3.29b)
+kpj, (y ) Rkpj, ( y )[Gkp +kpj, '

+Fkpj, A'k p, ,«1 (3.31d)

Rkpj. (u) =Gkp „+Fkpj u+u

Gkpj, .=(«kp, )'

Fkpj =x[—4rj (5k, +to5k ~)+2Ckp ] .

(3.30a)

(3.30b)

&'k'p,' ,
'. (y) =Rkp,',.(-—y ) Gkp,',

" 3Fk—p, .&'k'p,"—
,.(y )

(3.31e)

The basic integral X'kp"„(y) is calculated in the Ap-
pendix, with the result

&'k'p,",.(y ) =Rkp,",.'( —y )

2

QGkpj «(2+Gkpj „+Fkpj „)
(3.32)

where Fkp „=(Fkp —2y )/2 and. (see Prudnikov,
Brickov, and Maricev, No. 1.2.52/15)

Xln (3.31a)

The integral (3.3lc) will be required in Secs. 4—6. This
completes the reduction of the integral I( VT, Vt, ) to the
two-dimensional numerical quadratures, i.e.,

Higher-order terms from Eq. (3.29b) with n )0 and
m ~ 2 can be obtained recursively, so that (see Prudnikov,
Brickov, and Maricev, Nos. 1.2.53/1 and 1.2.53.10)

I( V„V,) =I'-'( V„V,)+I'+'( V„V,),
I' '(VT, Vt )= ——f der&, (r),

U —oo

(3.33a)

(3.33b)

1/2X'kpj'«(y)=Rkpj «( —y) —
Gkp „—1

I'+'( v„v, )=+-(+)

t3
& (r)= f dt

f +"drama, (r),
0

(3.33c)

m,'"(t,r)+(a+ r5;)a,'"(r, r)

(0, 1)Fkpj,.&k'pj .(y )—(3.31b) (3.33d)
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where &'"(t,r) and A' '(.t, r) are, respectively given by
Eqs. (3.28a) and (3.28b).

There is yet another singularity in the function g(q),
namely, a pole at

(3.34)

for which the Fourier transform Vz-( —q —p)= —Zrlq+Pl /(2~ ) is divergent. More precisely, this
singularity occurs only in the integral I'+'( Vr, Vp ), if the
equations q =g and ~=a are simultaneously satisfied:

f„ f q) —f( —P)
lq+Pl' Iq+ pl'

+f (
—p) fdq, (3.36)

Iq+Pl' '

where the new integrand [f(q)—f( —p)]lq+pl 2 is a
well-behaved function as q~ —p. Inspection of the in-
tegral I'+'( Vz-, Vp) will reveal that the function &2(r)
given by Eq. (3.43d) originates from the following expres-
sion:

&z(r)= —f dq q f dP f q, P, Q&+ Iq+Pl

Iq+Pl'= .

lq, —vyl'+r»',

Iq, —pl'

a 7
2 2

Iq, —el'
—a +~

2U

)0

&0

(3.35a)

(j=l, r&0) (3.35b)

(j=2, r & 0) . (3.35c)

q»'= q, P, Q»+ (3.38)

Thus,

&( )=—f dqq f dP
o ~~ o

I

»~+PI'

(3.37)

where f(q) is written as f(q, p, q, ) with q, =
Qt3

+r /(2U ). We shall hereafter use the notation q»' to ab-
breviate the vector q having the quantity Qts+r /(2v ) as
the q, component:

It is obvious from Eq. (3.35a) that, for any finite velocity,
the integral I' '(Vz-, Vt, ) is regular at q= —p, and the
computation can safely be carried out directly from Eq.
(3.33b). As to the integral I' '( Vr, Vp), however, regu-
larization will be accomplished by means of the Cauchy
"subtraction technique" (see, e.g. , Sloan ):

where

+f ( —P)&r(P, r), (3.39)

(3.40)(P, r)=.—f dq q f dy
o o Iq»~+pl2

Using the result (3.24e) as well as formula 2.261 of Ref.
30 to perform the integrations in Eq. (3.40), we obtain

2
I' '(Vr, Vp)= —f drr &2(r)+2f( —P)ln

where &z(r) is given by Eq. (3.33d) and

2 2

f( —P)f d—rrln
U 0 U

(3.41)

(3.42)
Ti3+ 2a

The integrand &2(r)—f ( —p)in[(r —a )/U ] in (3.41) is regular for each rE [0, + ~ ]. However, a serious loss of ac-
curacy at r= a in the numerical computation of the first integral over r in Eq. (3.41) will occur if one proceeds by keep-
ing the original asymmetric interval rE [0, + oo ]. This difficulty can easily be circumvented by splitting the interval
rE [0, + ~ ] into two parts according to r & [0,+ 00 ]=rK [0,2a ]+rE [2a, + ~ ]. Then, employing formula 2.723/1 of
Ref. 30, we finally can write

aI'+'( Vr, Vz) = —f dr r &2(r)+2f ( —P)ln + Xz-(P)+ —f d r r&2(r)
U 2a

(3.43)

with

2 2Q w —a
&z.(P) = — —f ( P)f d r—r ln

U 0 U

4 2 33/4g 2f( —P)ln

(3.44a)

(3.44b)

I

where e is the base of the natural logarithm
(e =2.718 281 8. . . ). Both integrals over r in Eq. (3.43)
can now readily be carried out by using the standard nu-
merical quadratures. In particular, the first integration
over r in Eq. (3.43) covering the symmetric interval
rH [0,2a ] around point r= a, and possessing the function
&2(r) f( —p)in[(v —a )/—U] as the integrand must
be performed by an even-order symmetric quadrature
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rule (e.g., Gauss-Legendre, see Ref. 29).
Thus, we have shown that the integral I( VT, V~) can

be computed through two-dimensional numerical quadra-
tures. The result is given in Eq. (3.33a) as the sum of two
parts II '(VT, Vz) and I' '(Vz, Vz). The two singulari-
ties (3.11) and (3.34) are successfully removed from
both contributions provided that I' '( Vz, V~ ) and
I'+ '( VT, Vp ) are, respectively, computed from Eqs.
(3.33b) and (3.43).

IV CALCULATIONS OF THE INTEGRAL I( Vz' 8 p )

q. =
2, +Q.

where

This yields

b +2av v2 —a
2U 2U

so that

—r1~ le, 6~0+

(4.9)

(4.10)

(4.11)

where

D =(ip+q —vi +b ) (ip+q —vi +y ),

(4.1)

(4.2a)

y =b +2(q+a) v ie (R—ey)0, e~O+) . (4.2b)

Using integral representation (3.3) for the term 1/D
which is a part of the integrand in Eq. (4.1), we obtain

I(VT, WP)= f dt tt03V(t),
0

(4.3)

where to = 1/(1+ t ) and

Considering the integral (2.9b), let us make the follow-
ing change of variables: p'=a —p —+ —q, q'= —q~+p.
Thus, we can write

I(VT, W~)= f fdpdq[~q+a~ (q +a ) p D~q]
=1

'2
1

q + Q
2U

+a +(b +r )5 ie, —r~0
(4.12a)

7-2q+ Q+
2U

2

—
U +(b t+r )to ie, —r)0,

(4.12b)

where 6 = tt0. Analogous to the preceding section, we
shall be considering the cylindrical coordinates of the
vector q. Further, the incident velocity vector v will
remain in the Z direction throughout the calculation of
each matrix element in both the CB1 and CB2 approxi-
mation. In the case of Eq. (4.12a), where r(0, we see
that 0)0 in the limit @~0+,since a =Zz )0. Similar-
ly, it is immediately evident from Eq. (4.12b) that A) 0,
for ~ ~ 0 and t )0, as e —+0+. In the particular case with
~=0= t, we employ the following relation:
Q —

U = —(a +U )/(2U), which reduces Eq. (4.12b) to
Q=q +(a +v )/(2U)) 0. Hence, we can conclude
that, in the limit @~0+

9'(t)= —f dq q+a~ 'f(q)—=—fdqg(q),=1 -2 1
(4 4) A)0, 'tire[ —~, + ~], b'tE[0, + ~] . (4.13)

f(q)=, (q'+a') 'f d plp'( ip+Qi'+6')'] ' (4.5a)=2 The rest of the calculation proceeds along the lines de-
scribed in Sec. III, with the final result

=(q +a ) ( —,'b, 0 '+b, '0 ) (4.5b) I( VT, WP ) =I' '( VT, Wp ) +I'+ '( VT, WP ), (4.14a)

Q=Q +b, , Q=q —v, 6 =(y +b t)to . (4.6)

I' '(VT, Wp)= ——f dry&, (r),1

I'+'( Vr, Wp) =+—f dr r&2(r),

(4.14b)

(4.14c)

The result (4.5b) for the function f(q) is obtained by
means of Eq. (3.10). The function g(q) defined in Eq.
(4.4) possesses a branch-point singularity at (4.14d)

y2 —0

as well as a pole for

q= —a.

(4.7)

(4.8)

3

u'"-'(r)= "d« ' u'"'(t, r)J 0
J

(4.14e)

The singularity (4.7) is removed by the following change
of variable:

dt tt m~ (b t —$.r —je)0 J

XWI"'(t, r), (4.14f)
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W("(t, r) =— ~(0,2)( 2) ~(0, 1)( 2)
D aJ J D2 aJ J

J J

D2 aJ (4.14g)

larities are also integrable. To this end we first rewrite
the integral (4.14d) as follows:

(4.16)

&' '(t, r)= X' ' '(a )+ X' "(a )
1 2

j
J J

~(0, 1)(( 2)+ ~(0,2)(( 2)
aJ

J J
(4.14h)

with

~(km)( )
— dt tt3 —j'/2(t g t

.
)
— /2

J~J pm
0 J' 0

0

Xm(")(t,r), (4.17)

where b =ZT(ZT=Z2, ) and

X'"j™(y)=j du(u+y)™

(u), n 0, m) 1

R, (u)=G +F u+u

G =C, F = —4q +2C

b +6~JC =21+r .aj aj~ aj

C, =r)+a +(b +r )5,
C22=(r2 —v) +(b t+r )t0,

a, =r, +a, r, =g —5), 6 =13 (
—5 2,

D, =aj2 —C, , 4, =(b t —5, r2)t0 ie . —

(4.15a)

(4.15b)

(4.15c)

(4.15d)

(4.15e)

(4.15f)

(4.15g)

(4.15h)

~(k, 3)( 2 ~(k, 1)( )J~J J b2 gt& J J
0

(4.18)

Requiring that Re(t —5, t0 —iE)' )0, we shall have, as

g~O+,

lim (t t() i e—)—'
@~0+

' —i(t0' —t )'",
+(t t0)' —', t t() .

(4.19a)

(4.19b)

This implies

where t0=r /b . Further, we calculate only the integral
gf'"", )(r ), since

The integral (4.15a) is of the form (3.29b), i.e.,
X'"j™(y)—:X'("', ('(y), so that we can also use the result
(3.3 la)—(3.31e) for this section with the appropriate
specification of the parameters.

The auxiliary integral &j(r) given by Eq. (4.14d) is
more complicated than its counterpart (3.33d). This is
because of the acquired branch-point singularities of
(4.14d) coming from term b, in the denominator of the
integrand in Eq. (4.14e) or (4.14f). However, these singu-

(4.20)

The first and the second terms in Eq. (4.20) belong to a
class of so-called improper integrals. They can easily be
regularized by making a change of variable t' = to —t in
the first and t' =t —to in the second integral of Eq.
(4.20). Hence, the regularized form of &I"~"' reads as fol-
lows:

b~(k 1 )( ) 2
~ dt(t t2)(1+t t2) —3+j'/2~(k)(t t2 )

v' .'

+2j dt(t,'+t')(1+t,'+t') '+'/2&(, k)(t,'+t2, r) . (4.21)

Using Eqs. (4.18) and (4.21), together with the following relation (Ref. 28, No. 2.1.2/11),

Sj dy f(x,y)=f(x, S) f(x, s) +j dy f—(x,y),BS Bs (4.22)

we can readily calculate the quantity &()" )(r). The final result is

tob'&'""(r)=i dt[2(2 —t,'+t')(1+t,' t') ' '1k'("(t0 t', r—)+4(t0 t')(—1+t,' —t') '"—&I"'(t0 t',~)]—7 —I

+j dt[2(2 —t,' —t')(1+t,'+t') '"&,"'(t0+t', r)+4(t0+t')(1+t0+t') '"%((")(t0+t',r)],
0

where (4.23)

(4.24a)
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~(0, 1)(( 2)+ ~(0,2)(( 2) ~(0,3)(( 2)
D3 J J g)2 J J D J J

J J J
(4.24b)

with

T (b2+$ &2)t2 (4.25)

and

t,+=5—, (t0+t2) . (4.28)

Thus, inserting the results (4.20) and (4.23) into Eq.
(4.16), we obtain the following expression for &)(r),
which is free from branch-point singularities:

b&)(r) =2i f dt &, (t, r)+2 f dt%'+(t, r),
0 0

(4.26)
where

The case with j=2 (r ~0) is investigated in an analogous
manner, but without splitting the original integration
limit tH[0, oo] in Eq. (4.17). Hence, changing the in-
tegration variable in Eq. (4.17) according to t' =t+t0
and using Eqs. (4.18), (4.22), and (4.27), we obtain the
quantity &2(r) in the following form of the regular in-

tegral, i.e., without the branch-point singularities, as
e—+0+:

(1+t,+)'"— b&2(r) =2f dt &2 (t, r) . (4.29)

+, +,~2&, (t, , r)
2b (1+t )

t
+ '

z
&"'(t , r) (j =1,2)—, (427)b'(1+t;)'"

Substituting the regularized integrals (4.26) and (4.29)
into Fqs. (4.14b) and (4.14c), respectively, we are in a po-
sition to consider the only remaining singularity (4.8),
which is due to divergence of Fourier transform
W't (

—q
—a). Since we have

Iq+t 12= q, +ql2+r2.

lq, +~l'+
—b 2 2 )0 (j=l, r~0)

(4.30)

(4.31a)

lq, +vyl + b2+ 2

2U
~0 (j=2, r~0), (4.31b)

it follows that only the integral I'+'(VT, R'2, ) is singular at q= —a. Hence, repeating the same "subtraction" pro-
cedure as in Sec. III, we arrive at

2 Q2I'+'( V, W' ) =—f dr r & (r)+2f ( —a)ln
U 0 U

+ Xp(a)+ —f dr r&2(r)
U 2b

(4.32)

where ~2(r) is given by Eq. (4.29) and V. CALCULATION OF THE INTEGRAL I( WT, Vp )

Xp(a) =— 4g 2 33/4b 2f (
—a)ln

U eU
(4.33)

Setting p~ —q and q~ —p in Eq. (2.13c), we shall
have

Tp+2b
4b'T4(

—a)=
p

(4.34) I(W„V,)=f f "", q

p g

2

p —P +b

Subsequent numerical quadratures in Eq. (4.32) should be
carried out in the same manner as in Eq. (3.43). The in-
tegral I' '(VT, Wt, ), however, is obtained directly from
Eqs. (4.14b) and (4.26).

x(lp+a+ql +a )] B
p q,
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1 B = p+a+ql +(a +2p v —iE)
Z1/2

—++V g —B 21 iy
e

Bg
(5.8)

—:Ip+a+ql +E (5.2)

In the case under study, which encompasses the sym-
metric collision (Zp=ZT) and the resonance transition
(i =f= Is ), we have a =b, so that

If A )B g, it follows that lzi I
(1 and lz2I ) 1, in

which case contour C is a closed counterclockwise sem-
icircle of unit radius around the origin in the upper half
of the complex z plane. Applying the Cauchy theorem of
residuum, we shall have

and

E =e =b +2p.v —ie

tz=g —
—,'v, P= —g —

—,'v .

(5.3a)

J(g)= 1

Qg2 B2 2

Carrying out the same procedure to the integral

This implies, for a =b,

I(WT, Vp)=I~' (VT, Wp),

where I '~( VT, Wp ) is given by Eq. (2.13b), i.e.,

(5.4)

J( —ri)= f d
f2~ 1

2' "0 3 +2q. iI

1 1

2~ "o A+Bgcos(i' P„)— (5-":0)

I ~( VT, Wp ) = I ( VT, Wp ) . (5..")

J(q) =
dhoti2~ 0 3 —2q g

1 1

2' "o 3 Bil cos(p ——p„)
(5.6)

where B =2q . Changing the integration variable P ac-
cording to exp(iiti)=z and passing to the complex z-

plane, we can write:

Since g v=O the integral I(Vr, Wp) is invariant to the
transformation a+-+P, if substituting +g by q lea—ves
I(VT, Wp) unaltered. The only place where the signs +
in front of g intervene in the calculation of I( VT, Wp) is
in the integration over P in the cylindrical coordinates
q = (q, iI) ). The integral in question appearing in
I( VT, Wp ) is of the following type:

we obtain the rhs of Eq. (5.9) for J( —g), provided that
)B g, so that

J( —g)=J(g) .

This result implies

I~' ' V W ) =I"'~( V W )

(5.11)

(5.12)

Hence, comparing Eqs. (5.4) and (5.12) with each other,
we conclude that, for i =f = Is,

I(WT, Vp)=I( VT, Wp) . (5.13)

This is expected because of the complete symmetry of the
problem under study.

ipJ(„)=' 'y,
Brtrti (z —z, )(z —z2)

where

(5.7)
VI, CALCULATION OF THE INTEGRAL I( 8 y 8 p )

Changing the integration variable (2.9d) according to
p'=a —p~ —q, q'= —q~+p, we can write

I(wT, wp)= f f dpdql Iq+al (lp+ql +a ) p D j7r'
(6.1)

where

D, ,= ( I p+ q —v I'+ b')'(
I p+ q —v I'+ y'),

y =b +2(q+a) v ie (Re@. )—0, @~0+) .

(6.2a)

(6.2b)

V'"(t)= — Iq+al ( —'b, 0, '+ —'i5, Q
1

+ —,'6, 'II, ), (6.4b)

Using the fractional decomposition of the two constitu-
ents in 1/D, together with the integral representation
(3.3), we obtain

~''(t)= f ',
I

—+ l-(, ~;, 'n-, +~-, n-, ),
7T

(6.4c)

I(WT, Wp)= f dt to3V(t),
0

where to = I /( 1+t ),

9'(t) =652'"(t)—0'"(t )+ &"'(t),

(6.3)

(6.4a)

with 6=tt0 and

A,'=Q +6',
Q=q —v6, y =b y— (6.4d)

(6.4e)
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b, 2. = fu't+[a'+(b'5, ', +y25, . 2)t](1+t)It,' . (6.4f)

Here the integrals over p are carried out by means of Eq.
(3.10), as well as with the help of the following result:

~ (t r) —5 ~(0, 1)(C2 )+ ~(0,2)(C2 )
3 1

J '
4I g5 &J J~ r g3j 1 j 1

1 fd ( 2+ 2) —
1(

~

+@~2+ 2) —4

=(Sy %) '+(3x+2y)(12y A )

+(x+y) (3y % ) (6.5)

~(0,3)(( 2
)

j 1

where % =Q +(x+y) . The function V(t) given by Eq.
(6.4a) possesses branch-point singularities at (6.12e)

y2 —0

which is removed by the substitution

q, = +Q

where

(6.7a)

0( )= X''"(C ),
J

(6.12f)

(6.12g)

b +2a, v U
—a2 2

2U
(6.7b)

3 m

'(r)= f dt
0 gm

J
(6.1211)

In this way, quantity y acquires the form

@2=A(,r( ie, e —0+ .

Letting e—+0+, we arrive at

2

(6.g)
C~~J. =(r —v55, ) +h)5' )+a 5'2&0,

7I =b +5r ie, r =—Q —5
2v

'

(6.12i)

q + Q — —v55, ,

2

+D,', r & 0 (6.9a)
C, =v t+(a 5,r t)(1+t) —ie, —5, =5, ,

—5J 2 .

(6.121')
q + Q + —v55J, +D, r&0

2U

where j'=1,2 and

D, =b, , =v tt()+(a +b t)t() &0,
D2=a2)0

(6.9b)

(6.10a)

(6.10b)

The function X("' '(y) is given by Eq. (4.15a), together
with the accompanying quantities defined in Eqs. (4.15b),
(4.15c), and (4.15d). Since the equality C =0 [see Eq.
(6.12b)] can be satisfied within the integration limits
t, ~r~ E [0, + co ], we encounter the so-called improper in-
tegrals in Eq. (6.12h). Considering first the case j= 1

(i.e., r 0), we write

Hence, the substitution (6.7a) removes branch-point
singularity (6.6), since

C', = r2(t t, )(t—t, )
——ie, — (6.13a)

&,' & 0, j'= 1,2, Vr 6 [
—co, + co ), 'ttt g [0, + co ] .

(6.1 1)

where t, and t2 are the roots of the equation C, =0, i.e.,

1
2 I(u +a r)+[(u —+a r) +4a r ]'~—

I .
272

Thus,

I( w„w, )=I' '( w„w, )+I(+)(w„w-, ),

(6.13b)

Here t, & 0 and t2 & 0 for any r E [
—co, 0]. Therefore,

(6.12a)

I' '(W„Wp)= ' f' —d7—1%)(~), (6.12b)

J', '(r) = —— J' '(w),
~3 at2

J' '(1)=f dt
(t t, )'"(t,—t —ie)'—"

(6.14a)

(6.14b)

I'+'(W„W, ) =+ f "d«—~,(r),
U 0

(6.12c) Splitting the interval from 0 to ~ into two subintervals
[0, t2] and [t2, + co ], we shall have, in the limit @~0+,

~,(~)=f dt t(')& (t, r)+~, (r)gj (r)+g (r)g. ))( )

(6.12d) (6.15)

t~'(r)= dt(t t, )
' '(t, t)— —

+i f "dt(t —t)) 3~2(t —t2)
'2
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1/2
t2 2

+l
Q CO 1

(6.16)

Introducing a change of variable t2 —t=t' in the first
and t —t2=t' in the second integral of Eq. (6.15), we ob-
tain

Both quantities J'I '(r) and 2I"(r), given by Eqs. (6.17b)
and (6.21), respectively, are well-behaved functions for
any rK[ —~ 0]. Finally, we shall perform a similar
analysis for j=2 (r )0) and analytically calculate the in-
tegral 2z' 1(r) for m = 1 and 3. Letting @~0+,it follows
that

where

co, =tv, +4a r, co, =u +a
Hence,

(6.17a)

2,"'(~)=—,f dt(t t, ) —' '(t —t, )
' ',

7-'

where

(6.23)

CO i'(r) =2 2i r+
a

(6.17b)

t1/2= [ —(u +a +r ) Qco2]; t, (0, t2 (0,
27.2

(6.24)

The improper integral 2',"(r) can also be calculated in a
closed form by first setting t'= 1/(1+ t), in which case

(6.18a)

cglp (v +a +7 ) 4a 7

=[v +(a —r) ][u +(a+r) ])0 . (6.25)

where

Setting z =t t2 in—to the integral (6.23) and using for-
mula 2.275/9 of Ref. 28, we shall have

u t'(1 —t')+a t' —r (1—t') —ie,
CI

u (t, t )(t' t—
2
—ie), —

(6.18b)

(6.18c)

g(3)( ) 2
u + a r 2

[ 2+( + )2]
—1

a c02 a
(6.26)

t'»2= [(v +a +~ )+Qco1],
2U

tv', =(u +a +r )
—4u r

=[(u r) +a ][(—u+r) +a ])0

(6.19)

(6.19a)

In the case of the integral J12"(r), we first introduce a
change of variable such as t '= 1/(1+ t), so that

(6.27a)

where

t', ) 1, t,'a[0, 1) . (6.19b)

Using Eq. (6.18c) and taking the limit @~0+, we can
write

C' 22= v't '(1 t ')+a't '+ r'(—1 t '), —

=u'(t ' —"t', )(t,' —t '),
(6.27b)

(6.27c)

I

2I"(r)=—i dt't'(t', t') ' (t2 —t—')
1/2 2 [(a +v & )++tv2] t 1 —0, t 2) 1

2U

+ dt't'(t', —t') ' (t' t2)—1 coz=(a +v ~) +4v—r )0 .

(6.27d)

(6.27e)

(6.20)
Lastly, we set z =t, into Eq. (6.27a) and subsequently
employ formulas 2.271/4 and 1.625/5 of Ref. 30 to ob-
tain

Making a change of variable such as t" =t2 —t' in the
first and t" =t' —t2 in the second integral of Eq. (6.19),
together with the help of formulas 2.271/3 and 2.271/4
of Ref. 30, we obtain

J1 (~)=— cu', (i lnD+arcsinD ')1 1

2

Jz (r) =—arccosD 2,(&)

where

(6.28a)

Q(t', —1)(1 t,'—)—
V

where

co', =u +a +r, D=u

(6.21)

(6.22)

(6.28b)

It is immediately clear from Eqs. (6.26) and (6.28a) that
the quantities J2 '(r) and Jz"(r) are regular, i.e. , well-
behaved functions for any rH [0, + oo ]. This calculation
completes the elimination of all the branch-point singu-
larities from the function &i(r) for any rH [ —~, + ~ ],
where the constituents Jz 1(~) and JI-"(r) are given by
Eqs. (6.17b), (6.21), (6.26), and (6.28a).
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Finally, the only remaining singularity of the integral
I(WT, Wp) is a pole at

I'+'( WT, W'p)

2b=—f dr& &2(r)+2f( —a)ln
U 0

—b 2

q= —a, (6.29)

which originates from divergence of Wp( —q —a). Be-
tween the two constituent parts I' '( WT, Wp ) and
I' '( WT, Wp) of I(WT, Wp), only I + (WT Wp)
possesses a pole at q= —a [ see Eqs. (4.31a}and (4.31b)].
This singularity is removed in the same manner as in the
preceeding sections, with the final result

+ Xp(a)+ —f dr r&p(~)
U 2b

where &z(r) is given by Eq. (6.12d),

4b 3 b
Xp(a ) = — f (

—a )ln
v ev

and

(6.30}

(6.31)

f( —a)= fdp[p (~p —a +a ) ( p+P~ +b ) ]= 1
(6.32a)

f( —a)= 3 b

T 4Up

4b2 U2 U 3 1 v
arctan + a ctan

8v 2b 2Tp v

2b

v(v +4b )

3 20b +U
2bT (v +4b ) 4b T (v +4b )

(6.32b)

1 b
3

v
2

p

2 2
U

arctan
2U

2 1 U+
2 3

a ctan
Tp U

+ 2

bT (v +4b )

2b

v 2( v ~+4b 2
)

(6.33)

where T& is given in (3.26f). Here we emphasize that the
numerical quadratures in Eq. (6.30) should be performed
in the same manner as in Eq. (3.53).

Before ending this section and for reasons of complete-
ness, we shall give the matrix element required in the cal-
culation of the CB1 transition amplitude (2.11). For this
purpose, the necessary three-denominator Dalitz-Lewis
integral is of the type (6.32b), and reads as follows:

fdp[p (ip —ai +a ) (ip+Pf +b ) ]

8 H [2 arctan(C ),Pm. ] . (7.2)

Since the constant C' is allowed to take the value zero, we
see that all the semi-infinite integrals from the previous
sections can be subjected to change of variable (7.1). By
so doing, we shall have only integrals over a finite range
for which the variable-order Gauss-Legendre code will be
employed.

Further, we encounter certain integrals whose lower
and upper limits are finite from the very beginning [see
Eqs. (4.23) and (4.26)]. These integrals will also be com-
puted by using the Gauss-Legendre rule. Finally, we
have the integrals over the symmetric finite intervals,
which are left after the "subtraction technique" [see Eqs.
(3.54), (4.32), and (6.30)]. In this case, we use an even
order Gauss-Legendre quadrature rule which is sym-
metric about the singularity at ~=a or ~=b situated in
the middle of the integration interval.

The results of the computation of the differential cross
sections for the symmetric resonant charge exchange

where Eq. (3.26f) is used. H++H( ls )~H( ls )+H+, (7.3)

VII. NUMERICAL RESULTS

In the numerical computations of integrals whose
range is x H[C, Poo ], where C' is a finite constant and
P = + or —,we find it highly convenient to introduce the
following change of variable:

t =tan (7.1)
2

Such a "tangential grid" transforms the former semi-
infinite integrals into the quadratures over the finite
range, because

are shown in Figs. 1—4. The present technique of obtain-
ing the data of the CB2 theory automatically provides the
corresponding results of the BK2 method, which includes
only the contribution from matrix element I,P VT, Vp).
For completeness, we also quote the cross section of the
first-order CB1 and BK1 approximations.

There is a common pattern seen in Figs. 1—4, when
comparing these theories. Irrespective of incident ener-
gies, the CB1 approximation always exhibits an unphysi-
cal dip, which is due to cancellation of the contributions
from potentials Vp(rp) and Wp(R ). Such an experimen-
tally unobserved dip is absent from the angular distribu-
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tions obtained in the CB2 method, at those impact ener-
gies for which second-order term Vf Go+, V; becomes im-
portant. The presence of the dip in the first-order term
T,f ' is, nevertheless, strongly felt in the differential cross
section d o /dQ, through a clear change of the slope of
the corresponding curves at 100 and 125 keV. In the dip
area of the CB1 approximation at 60 keV, however, data

o/dQ exhibit a pronounced minimum. This is ex-

pected, since the role of propagator Vf Go+, V, , which par-
tially allows for continuum intermediate states, becomes
less important with decreasing incident energy. Such an
expectation is based upon the well-known evidence about
the relative significance of charge exchange and ioniza-
tion or excitation channels. Namely, the two latter chan-
nels are dominated by charge exchange at lower energies,
and the pattern is just reversed in the high-energy region.
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FIG. 1. DifFerential cross sections (do. /dQ), for charge exchange H++H(1s)~H(X)+H+, as a function of the scattering an-
gle 8, at 60 keV laboratory energy of the incident proton. Displayed theoretical results for the formation of atomic hydrogen in
any state (X) are obtained through multiplication of the ground-state capture cross section by the Oppenheimer scaling factor (1.202).
Theory (present exact numerical computations): BK1, ——- —,BK2, ———,CB1, .; and CB2, . Experiment: o, Mar-
tin et al. (Ref. 31).
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FIG. 2. DifFerential cross sections (do. /dQ), for charge
exchange (7.3) as a function of the scattering angle 8, at 100
keV laboratory energy of the incident proton. Only the transi-
tion ls~ls is considered without allowance for the excited
states of atomic hydrogen. All the cross sections are the
theoretical results of the present exact numerical computations:
BK1, —.—.—;BK2, ———;CB1, —.-—"—;and CB2,

Hence, at lower energies, any failure of the CB1 method,
e.g., the dip in the angular distributions, should be
corrected by inclusion of discrete intermediate states of
the electron in the Coulomb fields of the projectile and
target nucleus. In this regard, the recently introduced
method of Belkic and Taylor' is promising, since it vari-
ationally unifies the CB2 theory with an 1. -expansion
method in terms of the Sturmian basis-set wave functions
centered at both Coulomb centers. Naturally, a second-
order perturbative approach, such as the CB2 method, is
not expected to be fully adequate for charge exchange at
energies as low as 60 keV. Nevertheless, this energy is in-
cluded in the analysis, with the purpose of empirically as-
sessing a low-energy limit of the validity of the CB2
theory. At still lower energies, such as 25 keV, we have
verified that, in a narrow angular region around the dip,
the CB1 and CB2 approximations yield nearly the same
differential cross sections which, however, cannot be ac-
cepted, due to their unphysically vanishing values.

As for comparisons with the experimental data of Mar-
tin et al., ' it can be seen from Figs. 1 and 3 that the CB2
method is reasonably successful at 60 and 125 keV.
Good agreement between the CB2 theory and the mea-

surement in these cases is appealing, since the latter data
relate to capture into all final bound states (Z~, e)z.
Theoretical results are obtained by explicitly including
only 1s —+1s transition, whereas capture to any state is
only roughly provided through multiplication of the
cross sections by the well-known Oppenheimer nf scal-
ing factor given by the Riemann g function g(3) =1.202.
Limitation of such a procedure is obvious, since applica-
tion of this well-known scaling rule is justified provided
that the incident energy and/or principal quantum num-
ber nf is suSciently high. Furthermore, the Oppenhei-
mer law is originally established in the BK1 approxima-
tion for the total cross sections, which are determined by
integration over all the scattering angles. It seems hardly
possible that differential cross sections, however, which
exhibit structures, would support any linear scaling
throughout the scattering angle region of interest. As re-
cently demonstrated by Belkic, Saini, and Taylor in the
CB1 approximation, many excited states are required by
exp1ici, t computations to fill in the dip, away from which,
however, the cross section 1.202d '/dQ would suKce.
Nevertheless, a smaller number of excited states seems to
be necessary in the CB2 method, since the dip is already
removed by the contribution from second-order term
( 4 f ~ Vf Go V, ~4; ). Despite these limitations concerning
comparisons in Figs. 1 and 3, the CB2 approximation can
be considered as satisfactory at these relatively low im-
pact energies for application of perturbative treatments.
Equally important, however, is the conclusion which
emerges from this analysis, that there is a distinct im-
provement in description of charge exchange, by going
from the first (CB1)- to the second (CB2)-order perturba-
tion theory.

The situation is just the opposite in the case of the oth-
er two models under study, i.e., the first (BK1)- and
second (BK2)-order approximations, which do not obey
the correct boundary conditions. Namely, it is observed
in Figs. 1—3, that the results of the BK2 model largely
overestimate the findings of the BK1 method throughout
the angular interval under consideration. For example,
we have obtained at 100 keV, that d o. /d 0)der '/dQ by a factor ranging from 3.6 (9=0.0 ) to
15.2 (8=2.0'). At 1000 keV (not shown), this factor is
still considerable, reaching values of 1.55 and 11.6 at
8=0.0 and 0. 1, respectively. As documented in Figs. 1

and 3, both the BK1 and BK2 models are in profound
disagreement with the experimental data of Martin et
al. ' Contrary to expectation, the BK2 method is even
worse than the BK1 approach. Namely, from the physi-
cal point of view, the second-order BK2 approximation
should be more adequate than its first-order counterpart
(BK1), due to inclusion of intermediate-state propagator
VT Go Vp. The fact that this is not so indicates a disre-
gard of certain principles, which are more fundamental
than the inclusion of higher-order terms in the perturba-
tion Born series. Specifically, this problem concerns the
correct boundary conditions, which are the essential and
distinct features of any scattering event, in comparison to
purely bound-state problems (e.g. , search of binding ener-
gies of an isolated atom, etc.) These conditions refer to a
proper definition of perturbing potentials at infinitely
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large distances between the scattering particles. Here it
is evidently wrong to introduce purely Coulombic poten-
tials Vp(rp), VT(rT) for the perturbation interactions,
and associate them respectively with unperturbed chan-
nel states N;, @f in which the plane waUes describe the
relative motion of heavy aggregates. This is precisely the
case in the BK2 model, whose Aagrant inadequacy has
previously been attributed merely to the use of the free-
particle Green's function Go+, . The CB2 theory, however,
provides a convincing counterexample, which also em-
ploys Go+, and yields reliable results. Hence, the failure
of the BK2 approximation is not in the adoption of the
free-particle Green s function, but rather in the violation

of the correct boundary conditions.
In first-order theories, the electron scatters only once,

and that single encounter occurs at either of the two
Coulomb centers Z~ or ZT, depending upon the choice of
the "post" or "prior" transition amplitude. However, it
has been recognized for a long time, that in contrast to
excitation, ionization or electron loss, charge exchange
(2.1) represents a genuine three-body problem. Thus,
more refined treatments are required, which would ac-
knowledge the fact that the electron moves in the field of
two Coulomb centers. Assuming that the ratio of the
projectile to the electron velocity is very large, Thomas
developed a purely classical method, in which the three-
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FIG. 3. Same as in Fig. 1, except for incident energy EI,b = 125 keV.
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FIG. 4. Differential cross sections (do. /d Q)„b for charge ex-

change H++H(ls)~H(X)+H+, as a function of the scatter-
ing angle O~,b at 5000 keV laboratory energy of the incident pro-
ton. Displayed theoretical results for the formation of atomic
hydrogen in any state (X) are obtained through multiplication
of the ground-state capture cross section by the Oppenheimer
scaling factor (1.202). Theory (present exact numerical compu-
tations): BK1 ——.—.; BK2, ———;CB1 —"—"—and

CB2, . Experiment: O, Vogt et al. (Ref. 35). Theoretical
data are not folded over the experimental beam profile.

body collision is split into two successive binary en-
counters. First the electron, which is initially at rest,
sufters a close scattering from projectile Zz, and after be-
ing deflected through nearly 60' with respect to the in-
cident direction, moves toward ZT with velocity =U.
Subsequently deflected by another =60', the electron ex-
hibits through elastic scattering on its parent nucleus ZT.
After this sequence of two classical scattering events, pro-
jectile and electron escape the field of the target nucleus
and continue to propagate in nearly parallel directions,
with approximately the same velocity v. Such a cir-
cumstance is favorable to the capture of the electron by
projectile Zz, and action of the attractive potential
Vp( 1 p ) becomes sufficient for formation of the bound
state (Zp, e). Kinematics of this so-called Thomas dou-
ble classical scattering is determined by the conservation
laws of energy and momentum. As a net result, the pro-
jectile itself is deflected through an eikonal, critical Tho-
mas angle 8, =(1/mz)v'3/2, where m~ is the projectile

mass. In the particular case of proton impact, 0, reaches
the value =0.472 mrad in the laboratory frame.

Double scattering is also incorporated into the second-
order quantum-mechanical CB2 approximation. In par-
ticular, the term IP VT, V~)= (@f~ VI GO+, Vz~@,. )
scribes the electron capture process in terms of two col-
lisions mediated through the free-particle Green's func-
tion Go+, as well as the Coulomb potentials VT(rT) and
VI ( rp ). In the limit of very high impact velocities
(v ))1), the term I,P VT, V~) also exhibits a peak at a
critical angle 8, . Thomas double scattering, as the most
prominent feature of high-energy charge exchange, has
first been observed in measurements with proton impact
on H2 and He targets (Horsdal-Pedersen, Cocke, and
Stockli ). More recently, Vogt et al. provided the ex-
perimental data on difterential cross sections for electron
capture by protons from atomic hydrogen. These latter
findings exhibit a clear structure around O~,b=0.45 mrad,
which is close to the Thomas critical value 0, =0.472
mrad. This position of the experimentally observed Tho-
mas peak at 5 MeV is seen in Fig. 4 to coincide with the
prediction of the CB2 theory. On the other hand, the
BK2 mode1 displays only a shoulder around 0, . Agree-
ment between the magnitude of the cross sections in the
CB2 method and the measurement is excellent, for
scattering angles 0=0.0—0.3 mrad. Around O„howev-
er, the results d /dA underestimate the experimental
data. Here the situation could eventually improve by ex-
plicitly taking into account excited states and/or higher-
order terms of the Born series. Experimental data exhibit
a minimum around 0=0.28 mrad. The same structure,
at nearly equal angle, is also obtained in the CB2 method,
due to interference of the first- and second-order terms
T,f ' and Sf in Eq. (2.4a). This interference is also re-
sponsible for a considerable reduction of d /d0 in the
forward direction, as compared to the sole contribution
from the CB1 approximation. Comparison in Fig. 4 be-
tween the CB2 and BK2 methods reveals that the addi-
tional second-order terms of the former theory, i.e.,

If( VT Rp) IP WT Vp) and I,P WT, 8'p) are also of
considerable importance even at this high-impact energy
(5 MeV). It should be emphasized that the results of
Vogt et al. relate to capture into any state and this is, as
already discussed, only roughly accounted for by display-
ing the corresponding theoretical results through
1.202do. /dQ. Furthermore, the theoretical data shown
in Fig. 4 are not folded with the experimental angular
resolution.

VIII. CONCLUSION

WVe have studied the symmetric (homonuclear) charge
exchange in fast collisions of completly stripped projec-
tiles with hydrogenlike atoms. The second-order Born
(CB2) approximation, in terms of free-particle Green's
function Go„with the correct boundary conditions is

employed and particular attention is paid to analytic
properties of the quantum-mechanical transition ampli-
tude T,f . Two typical singularities are encountered in
the T matrix. These are the branch-point singularities
coming from the spectrum of the three-particle resolvent
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Go+, and poles due to the Coulomb potential in momen-
tum space. They both render the numerical computation
tremendously difTicult at high incident energies. Because
T~f is initially defined through multidimensional in-
tegrals, the usefulness of the CB2 theory critically de-
pends upon the regularization of the transition ampli-
tude. The singularities are present throughout the com-
putation, since they moue from the innermost to the
outermost integration axis. Nevertheless, by using an ap-
propriate change of variable, together with the Cauchy
"subtraction technique, " it is shown that both of the
singularities are integrable. In other words, these are
only apparent singularities, which do not cause any diver-
gence of the resulting transition amplitudes. The above
twofold regularization, which simultaneously deals with
branch points and poles, is carried out separately for each
of the four matrix elements occurring in T;& . As a re-
sult, we obtain the transition amplitude of the CB2 ap-
proximation in terms of two-dimensional integrals over
completely smooth functions. Certain parts of the matrix
elements can even be reduced to one-dimensional in-
tegrals (see Sec. VI). Such a procedure is encoded into an
algorithm, which is extremely expedient since small size
samples of quadrature points suKce to obtain exact nu-
merical results for the cross sections. The present
analysis is illustrated in the case of the 1s —+ 1s transition;
however, no difFiculties exist in extending the method to
excited states. Such a generalization is particularly im-
portant for reliable comparisons with experimental data
and will be reported shortly.

Nevertheless, as a preliminary test, we have used
differential cross sections for capture into the ground
state, in order to roughly assess the theory's validity for
H+ —H( ls ) collision. In this case, the results of the BK2
model, also employing Go, but with the incorrect bound-
ary conditions, exhibit a vagrant inadequacy below 3
MeV, since they are even worse than the data of the first-
order BK1 approximation, which itself largely overesti-
mates measurements. In previous studies, this failure
has erroneously been attributed merely to the use of the
free-particle Green's functi. on. A counterexample is
given by the CB2 theory also in terms of Go+, in which
case, however, systematic and good agreement is found
with the experimental data at 60, 125, and 5000 keV.
Furthermore, we have obtained an essential improvement
by going 'from the first (CB1) to the second (CB2) order in
the perturbation Born series with the proper boundary
conditions.

which implies

%=2 dz
1

z2+2yz+ I
where

(A4)

I =Fy —G . (A5)

Writing the denominator in (A4) in the form

z +2yz+I =(z —z, )(z —z2), (A6)

where

z&&2= —y+i R( —y),
we obtain

(A7)

1 &R (u)+u +y —&R ( —y)ln +const .V'R (
—y) +R (u)+u +y+i R ( —y)

(A8)

X'kp"„(y)= I du
(u +y)QRkpj „(u)

with

Rkpj «(u)=Gkpj «+Fkpj „u+u

(A9)

(A 10)

where the coef5cients G&& „and Fk& are defined in Eq.
(3.30b). It is now readily verified, from Eq. (A8) that

1
&'k'p,",.(y )

=
Rkp „(—y)

V'Gk@ +y+V'Rkp, „(—y)
Xln

+Gkpj, «+y +Rkpj, «(

(A 1 1)

which is the result quoted in Eq. (3.31a).
In the above calculation of integral (Al), it is assumed

that

R(u))0 (A12)

for all u belonging to a given interval. Consequently, in
the Euler substitution (A3), we must also have

In the main text, we encounter the integral of type (Al),
i.e.,

APPENDIX
z —u)0. (A13)

Here we consider the following integral:

du
1

u+y R u

where

R (u) =G+Fu + u

We shall make the Euler substitution, i.e.,

&R (u)=z —u,

(A 1)

(A2)

(A3)

Clearly, these relations need to be verified in the case of
the integral (A 1 1). We first observe that the calculation
of the integrals (2.9a)—(2.9d) is to be made by provisional-
ly assuming that y) 0. By the argument of analytical
continuation, the obtained results can be shown to be val-
id for y arbitrary (real or complex), provided that
Rey)0. Hence, we are justified to let y —+r~r~ ie at-
the very end of the analysis. In this way, we shall be
operating with real parameters Gk& and Fk&, while
proving the required inequalities of type (A12) and (A13)
in the case of the integral (Al 1). Thus,
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G„p „=(xCkp „) ~0, (A14) z XCkp. ~+rkp x~ tizE[XCkp «p+ ac ] (A20)

since x ~0 and

Ckpj x
—I (~k, i+t05k, 2)+Dkpj x 0 (A15)

where rkpj ~ 0 (here an exPlicit exPression of the
remainder rkp . is not required). It follows from Eq.
(A3) that

where [see Eqs. (3.24a)—(3.24c)]

Dkpj, x ~k, l~pj +~k, 2 tp+~j
2

+(b, +y) ~0 .

2
Gkpj, x9—

Fkp. +2z

so that

(A21)

(A16)

We first consider the equation Rkp, (u)=0, whose roots
are given by

R„p, „(z)
z

Fkpi ~+2z

Analogous to inequality (A19), it can be shown that

(A22)

—Fkpi. +«kp, .
~ 1/2 2

where

(A17)
Rkp „(z)~0, Vz E [xCkp „,+ ~ ] .

Hence, we see that inequality

z —u ~0, VzE[xCkp „,+ m]

(A23)

(A24)

UkP, .=4xnl(&k, i+to&k, z»kP, ]'" (A18)
will be satisfied if

It is well known that, if the roots x&&2 of the equation
ax +bx+c=0 are complex numbers, then the sign of
trinom ax +bx +c is the same as the sign of coeKcient
a. Since this is precisely the case in Eq. (A17), we con-
clude that

Fkp „+2z &0, VzE[xCkp „+ac] . (A25)

At z =xCk p we found from Eq. (A22) that
z —u =xCk pi

~ 0. Explicit calculation shows, using
(A16) that

Rkp „(u ) ~0, Vu E [0, + ao ] ( Q. E.D. ) . (A 19) Fkp „+2z=4xDkp +2rkp 0,
In the case of the integral (A9), transformation (A3)

maps the original interval u E [0, + ao ] into
z E [xCkp „,+ oo ]. Hence, the new integration variable z
is positive, and it will be convenient, for the purpose of
proving inequality (A13), to write

'ii'z E [xCkp „,+ ac ] . (A26)

since rkp 0. This proves inequality (A24). A similar
analysis is valid for the integral X'~j "(y) which is en-
countered in Eq. (4.15a).
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