
PHYSICAL REVIEW A VOLUME 43, NUMBER 1 1 JANUARY 1991

Quantum optics of dielectric media

Roy J. Glauber and M. Lewenstein*
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

(Received 20 February 1990)

We discuss the quantum fluctuations of the fields associated with a broad class of optical scatter-

ing and transmission problems by developing the quantum electrodynamics of an idealized linear,
but nonuniform, dielectric medium. We present and compare two quantization schemes for this

purpose. The first is based on the expansion of the field in terms of a set of single-frequency solu-

tions of the Maxwell equations. The second invo'ives expanding the field in the set of plane-wave

solutions of the Maxwell equations in the vacuum. The relation between the two quantization
schemes is discussed in the framework of the scattering theory that connects them. The methods

presented are used to show that various field components within a dielectric medium may be either

superAuctuant or subAuctuant relative to their fundamental uncertainties in the vacuum. These al-

terations of the fluctuation properties of the fields are shown to lead to changes in the spontaneous
emission rates for both electric and magnetic dipole transitions of excited atoms within or near
dielectric media. We also analyze the quantum properties of the transition radiation emitted by a
fast charged particle in passing from one dielectric rnediurn to another.

I. INTRODUCTION

Some of the most familiar problems of electromagnetic
theory concern the determination of radiation fields in
the presence of polarizable matter. These problems may
be as simple as those of light transmission in uniform
media, or as complex as light scattering by bodies of arbi-
trary size and shape. The appropriate calculations have
been addressed in general by the well-established methods
of classical electromagnetic theory. '* Although these
calculations have long been known to give correct predic-
tions of average field intensities in the quantum theory as
well, there are a number of quantum statistical problems
of interest that cannot be approached by those classical
means. The presence of polarizable media alters consid-
erably the quantum Auctuation properties of the fields,
and certain of these properties may be subjected directly
to measurement.

In order to deal explicitly with the quantum properties
of fields in the presence of polarizable media, we have
developed a generalization of the familiar technique of
canonical field quantization. It is a generalization that
admits treatment of a broad range of inhomogeneous
media with linear susceptibilities. We should emphasize
that these inhomogeneities include boundary discontinui-
ties for media of finite extent, so that the formally soluble
field theory we construct is applicable to many familiar
photon transmission and scattering problems. To illus-
trate the quantization technique we have applied it in de-
tail to the case of an inhomogeneous dielectric medium
with a scalar dielectric constant e(r) that depends explic-
itly on position. The procedure permits directly the in-
troduction of more general tensor electric and magnetic
susceptibilities.

The vacuum state of the electromagnetic field and
indeed all coherent states have the property that the
variances of the fluctuating electric and magnetic fields

are equal. The same equality of variances holds for any
pair of linear combinations of those fields that oscillate
90' out of phase with each other. Considerable attention
has been devoted recently to the possibility of altering
this balance. It is possible to reduce the value of one of
these variances at the expense of increasing the other,
and the quantum states in which this occurs have been
referred to as "squeezed. " Nonlinear interactions often
leave the field in such "squeezed states. " All of the
schemes proposed for the generation of such states have,
for this reason, been based on the techniques of nonlinear
optics. ' It is worth emphasizing, therefore, that linear
interactions of the sort associated with simple polarizable
media can likewise break the vacuum symmetry of the
electric and magnetic fields, and in this way can lead
much more simply to certain of the effects of squeezing.

The quantum fluctuation problems we shall study are
those characteristic of quantum field theories in three di-
mensions. That is to say, they deal with the propagation
of fields that have an infinite number of degrees of free-
dom. It may be helpful, however, to begin by discussing
the properties of a single field degree of freedom, let us
say, for example, the amplitude of one particular mode of
oscillation of the field at the frequency co within a closed
box that has perfectly conducting walls. The familiar
quadratic field Hamiltonian then reduces to that for a
single harmonic oscillator of unit mass. If we introduce
the annihilation and creation operators a and a, which
fulfill the commutation relation

[a,at]=1,
we can write the Hamiltonian for the mode as

H =A'co(a a + —,
'

) .

The oscillator coordinates that we would like to mea-
sure are usually Hermitian combinations of a and a that
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we can write in the form [»(0)]'& —,
'

X(0)= (ae ' +a e' ),1

V'2 (1 3) and super/i'uctuant if

[»(0)]' & —,
' . (1.10)

for suitably chosen values of the parameter 0. The opera-
tor X(0), for example, is usually taken to be proportional
to the amplitude of the vector potential for the mode or
its magnetic-field amplitude. Then X(m/2) is propor-
tional to the rate of change of the vector potential of the
mode or the amplitude of its electric field.

An operator canonically conjugate to X(0) can be
defined more generally by the expression

Y(0)= — —(ae ' ate—' )= X( 0+sr /2),v'2 (1.4)

and, because of the phase relation indicated, the two vari-
ables X(0) and Y(0) are said to be in quadrature. Their
variances, in any given quantum state, are defined as

To begin our discussion of polarizable media let us now
assume that our closed and resonant box has been filled
with a uniform substance of dielectric constant e. The
field Lagrangian in that case takes the form

L =-,' eE —B dr. (1.1 1)

If we let the time-dependent amplitude of the vector po-
tential for the mode we are discussing be A(t), then,
since the presence of the dielectric does not change the
wave number of the mode from its vacuum value co/c, the
magnitude of its magnetic field can be taken to be
8(t)=(ai/c)A (t). We can thus take the coordinate of
the corresponding oscillator to be

(»)'= & (X —&X))'),
(~Y)'=

& ( Y —
& Y) )'& .

Since X and Fobey the commutation relation

[X(0),Y(0)]=i,

(1.5a)
q = 2 /c =B/m .

C

(1 6) and the Lagrangian for the field mode becomes

Then q is proportional to the electric-field strength
(1.5b)

(1.12)

(1.13)

their variances must then satisfy the uncertainty inequali-
ty

[»(0)]'[b.Y(0)]' (1.7)

[»(0)] [b, Y(0)] =—' (1.8)

corresponds to the Kennard wave packets. ' For them
the variances [»(0)] and [b, Y(0)] will depend on 0 in
general. One will be smaller than —,

' and the other conse-
quently larger. Although states with this property have
been called "squeezed" in the recent literature, it is
much more meaningful, as we shall indicate later, to
think of a particular variable as squeezed in a given state
rather than the quantum state as a whole. Since the
eAect of "stretching, " opposite to "squeezing, " is an
equally important one, and neither term is an accurately
descriptive one, we would prefer to alter the terminology
by referring to a variable X(0) as subjguctuant in a given
state if

for all values of the parameter 0.
It is clear from the definitions (1.3) and (1.4) that in all

stationary states of the oscillator we have
[»(0)] =[6,Y(0)], but it is only for the ground state
that this value corresponds to the lowest uncertainty
bound in Eq. (1.7). A much broader class of states that
satisfy the lowest uncertainty bound is the nonstationary
set of coherent states. These can be regarded as ground
states that have been given an arbitrary displacement in
coordinate and momentum. Since adding complex conju-
gate constants to a and a does not aAect their variances,
it is clear that in these states [»(0)] =[9Y(0)] =

—,',
just as in the ground state.

The most general class of minimum uncertainty states,
satisfying

I. =
—,'(eq —co q ) . (1.14)

We note that the dielectric constant in this expression
plays the ro1e of a mass for a mechanical oscillator. The
canonical momentum

BLp= =ej= —D
c3q

(1.15)

is proportional to the electric displacement vector, and
the corresponding Hamiltonian for the mode is

2

H —— +6)
2 (1.16)

By carrying out the canonical scale transformation

q'=qv'e,
(1.17a)

(1.17b)

we can write the Hamiltonian as

H= —,'[(p') +Q (q') ),
where the new frequency is

0—co/i e

(1.18)

1, , 1
a = (Aq'+ip') =- (coq +ip/v'e) .

&2Afl i/2Afl
(1.20)

The stationary states of the field mode are evidently
changed both in their frequency and in the fluctuations of
their field strengths by the presence of the dielectric. The
annihilation operator appropriate to the Hamiltonian
(1.18), and therefore the one that removes one quantum
from the dielectric, can be written as
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This is not the same annihilation operator as we had pre-
viously for photons in the empty cavity. If we write that
operator as

b = (coq+ip),
2 fico

(1.21)

then we find that the transformation from the operators
for the empty cavity to those for the dielectric-filled cavi-
ty is

co+0
~

co —Q ~g
2+coQ 2v coQ

u+Q by co —Q
b

2v coQ 2+coQ

(1.22a)

(1.22b)

(Ap') =0 (hq') =
—,'fiQ . (1.24)

The amplitudes of the magnetic field and the electric dis-
placement are given by Eqs. (1.12) and (1.15). If we intro-
duce the operators

The ground state of the field mode in the presence of
the dielectric is determined by the condition

aio)„„=0 . (1.23)

Because that state is the ground state of an oscillator of
frequency Q, the variances of p' and q' are given by the
familiar values

cording to Eqs. (1.26), that the variances of Xb(0) and
Yb(0) are given in the ground state of the dielectric by

[b,Xb(0)] =
2 E

[b, Yb(0)]i= —,'Vp .

(1.30a)

(1.30b)

(bB)d;„
(b,B)„„
(ED)d;,i

(dD)„,

(1.3 la)

(1.31b)

Here we have a concrete sense in which the magnetic-
field amplitude B must be regarded as subAuctuant in the
dielectric ground state (for e) 1), while the displacement
amplitude D is superfluctuant. The electric-field ampli-
tude E =D/e, on the other hand, has the variance ratio

In this sense it follows then that the ground state of the
dielectric-filled cavity is what has been called a squeezed
state. We have used the operators Xb and Fb to demon-
strate this in order to exploit the medium independence
of the expressions in the Eqs. (1.26). A somewhat more
physical way of stating the same results is to compare the
field Auctuations in the dielectric ground state with those
in the vacuum ground state (obtained by setting e = 1).
We then find the ratios of the variances

Xb(0) = —(b +bt),v'2 (1.25a) (~&)d d

( g~)2 3/2

Yi, (0)=— —(b b), —
2

(1.25b)

analogous to those of Eqs. (1.3) and (1.4), we can write
the field amplitudes as

B =coq =&ficoXb(0),

D = —p = &fico Yb(0—) .

(1.26a)

(1.26b)

(EB)d;,(=co (bq) =co (hq') F.= ,'fiQ= ,'fico/&a, (1.—27a)—

(&D)d;,)
= (&p)'= e(b,p')'= —,'eke =

—,
' &efico . (1.27b)

It is worth noting that the product of the variances of D
and B

(b.D)d;„(b,B)d;„=—,'(A'co) (1.28)

is independent of the dielectric constant. That is true be-
cause D and 8 have a medium-independent commutator

[D,B]=[—p, coq]=ihco . (1.29)

That property of the fields D and B holds much more
generally ' 'and will later be of considerable use to us.

The variances we have found for B and D show, ac-

An advantage of writing the field amplitudes in this way
is that these expressions are medium independent; they
take the same form in the dielectric as in the vacuum.

To find the variances of B and D in the ground state of
the dielectric we make use of the scaled variables defined
by Eq. (1.17) and their variances given by Eq. (1.24) to
write

so that it is subAuctuant in the dielectric.
It may be helpful at this point to contrast the variances

indicated by Eqs. (1.12)—(1.32) with the variances shown
by some other states. For a coherent state in free space,
as we have noted earlier, the variances are equal and are
constant in time. They are schematically represented in
Fig. 1, for example, by the small circles that represent the
uncertainty of the locus of the field vector at three
different times. In Fig. 2, which corresponds to what has
usually been called a "squeezed state" in free space, the
domains of uncertainty are elliptical in shape. Those el-
lipses, furthermore, rotate with the field vector itself.
They correspond, in the example shown, to suppressed
amplitude modulation. For a coherent state in a dielec-
tric medium, on the other hand, the field vector, as
shown in Fig. 3, rotates on an elliptical trajectory. The
domains of uncertainty are likewise elliptical, but the el-
lipses do not rotate with time. The uncertainties in
modulus and phase of the field vector therefore vary
periodically with time.

The results we have presented indicate that there is, in
fact, a substantial ambiguity involved in speaking of the
quantum states rather than particular observables as be-
ing "squeezed. " The ground state of the dielectric-filled
cavity, as we have seen, is a "squeezed state" when ana-
lyzed in terms of the Auctuations of the variable pair p
and q or the vacuum operator b. On the other hand, it is
not a "squeezed state" when analyzed in terms of the
scaled variables p' and q', or the annihilation operator a.
This is simply to say that in a given quantum state we can
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FICx. 1. Schematic representation of the time dependence of
the field amplitude and its variance for a coherent state in free
space. The expectation value of the field vector rotates clock-
wise about the larger circle. Its instantaneous value is uncer-
tain, however, and tends to lie within the smaller circles that in-
dicate its uncertainty or variance. The mean field and its vari-
ance, which is constant, are shown at three dift'erent times.

define the variables in alternative ways some of which ex-
hibit "squeezing" and others of which do not.

Some further indications of the ambiguity implicit in
speaking of the quantum states as "squeezed" may be
seen, if any more is needed, by considering a simple hy-
pothetical example. Let us suppose that the empty cavity
can be quite suddenly filled with a uniform dielectric; that
is, its dielectric constant can be changed instantaneous-
ly" from 1 to e. The quantum state of the field under-
goes no change during the sudden change of the dielectric
constant. The vacuum ground state, which it continues
to be immediately after the discontinuity of the dielectric
constant, may be shown, however, to be a squeezed state
when analyzed in terms of the annihilation operator a of

FIG. 2. Time dependence of the field amplitude and its vari-
ance for a "squeezed state" in the vacuum. The domains of un-
certainty of the field amplitude are ellipses which rotate rigidly
with the amplitude. In the example shown they represent the
suppression of intensity fluctuation.

FIG. 3. Time dependence of the field amplitude and its vari-
ance for a coherent state in a dielectric. The expectation value
of the field amplitude rotates about the large ellipse, and the
domains of uncertainty of the field amplitudes are likewise ellip-
tical. The latter ellipses do not rotate, however, and the
electric- and magnetic-field variances remain constant in time.

Eq. (1.20) appropriate to the dielectric. If one insists on
regarding quantum states as squeezed rather than a par-
ticular choice of observables, then one is confronted by
an example of a state that suddenly becomes squeezed
while remaining unchanged.

The photons counted in ideal laser beams characteristi-
cally exhibit Poisson statistics. Certain laser-generated
fie1ds, however, for which the field variances exhibit
squeezing, have been shown to have photon statistics that
deviate appreciably from the Poissonian form. ' Since
squeezed fields are indeed present in dielectric media, it is
interesting to discuss the problem of counting photons
within them. We might imagine, for example, that a
beam of photons is directed from the vacuum into a
dielectric medium and ask whether any change in the
photon statistics would be observed within the medium.
Our single-mode model of the field omits many of the
features of the problem that are necessary, we shall
presently show, for a more realistic treatment. It does,
however, pose an interesting puzzle that is indeed a part
of the problem.

There is a substantial physical di8'erence between the
photons defined in the vacuum, i.e., the empty cavity in
the single-mode model, and those defined in the
dielectric-filled cavity. Because the transformation (1.22)
mixes the operators 6 and b it does not maintain any
one-to-one correspondence between the numbers of "vac-
uum" and "dielectric" photons. The ground state of the
dielectric, for example, can easily be shown to represent a
distribution of n =0,2, 4, 6, . . . , i.e., any even number of
vacuum photons. Those vacuum photons might seem to
be of precisely the same sort as the ones detected in most
photon-counting experiments. But could we insert a pho-
ton counter into the dielectric and count them~ Obvious-
ly not, because we cannot draw energy from the dielectric
if it is already in its ground state. Those pairs of vacuum
quanta are not really present; they are only virtual.

We shall show in the later sections of this paper that
although transformations like Eq. (1.22) fail to conserve
photon number, they do not lead to any qualitative
changes in the nature of the photon-counting distribu-
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XE,',+, '(r„+„t„+,) . E~,+, '(r2„, t2„), (1.33)

in which E&,+, ' and E&,, ' are the positive- and negative-
frequency components of the local field, respectively.
The particular ordering required in these products,
positive-frequency operators to the right of negative-
frequency operators, responds to an elementary property
of the photoabsorption process: when a photon is record-
ed, the energy in the field must decrease.

In vacuum quantum electrodynamics the photon an-
nihilation operators all have positive frequencies and the
creation operators negative frequencies. The ordering in-
dicated by Eq. (1.33) is then what has usually been re-
ferred to as "normal ordering, "one that places all annihi-
lation operators to the right of the creation operators.
That definition of normal ordering indeed suffices for a
discussion of all photon-counting experiments carried out
in vacuum. The more fundamental definition, however,
for the present purposes is the ordering according to the
sign of the frequency indicated by Eq. (1.33).

To underscore the importance of this distinction we
should note that it is often more convenient to evaluate
field operators E&,+, ' in terms of the annihilation and
creation operators such as b and b for vacuum photons,
rather than those defined in the presence of the dielectric.
The operators b and b are given by the relations inverse
to Eq. (1.22)

co+A co 0b= a a
2+coII 2+coQ

(1.34a)

(1.34b)
2+coQ 2+cg)A

Since the operators a and a are defined to oscillate with
positive and negative frequencies, respectively, it is clear
that the operators b and b oscillate in general with both
signs of the frequency. They do not generate energy
eigenstates; absorption of a physical photon may be ac-
complished either by absorbing or emitting a "vacuum
photon. " The expectation values of products like that of
Eq. (1.33) can nonetheless be evaluated in terms of the
vacuum operators b and b . It is only necessary, for that
purpose, to observe that the ordering called for is defined
according to the sign of the frequency, and is no longer
normal ordering as it is usually construed.

All of the points we have noted in discussing a single
mode of the field in a dielectric are, of course, equally

tions that we can actually observe. In order to demon-
strate that, however, we shall have to pay a certain
amount of attention to the theory underlying such
photon-counting experiments.

A photodetector consists of atoms free to undergo pho-
toabsorption processes that can somehow be counted in
number. The photosensitive atoms can be regarded as
present within a small cavity in the dielectric medium, in-
side which they are subject to an oscillating local field

Eh, (r, r). The photocount distribution, it has been
shown, can be constructed from a knowledge of the ex-
pectation values of the correlation products

E,',, '(r„t, ) E,',, '(r„,t„)

characteristic of the multimode field theory more gen-
eraHy. We shall devote the remainder of this paper to
discussing them and illustrating them in the much
broader context of electromagnetic scat tering and
transmission problems in three dimensions. In Sec. II we
present a detailed description of a quantization procedure
that can be used in the presence of nonuniform dielectric
media. It is based on a global expansion of the field in
terms of single-frequency solutions of the Maxwell equa-
tions. In Sec. III we discuss a quantization procedure
based on an expansion of the fields in terms of the plane-
wave solutions of the Maxwell equations in the vacuum.
The relation between the two expansion schemes is then
discussed in Sec. IV. We show there that the creation
and annihilation operators associated with the plane-
wave expansion are related to those of physical photons
by means of a linear transformation. This linear transfor-
mation, we show, is generated by the Mdller operators of
the corresponding classical scattering problem.

The quantization schemes discussed in the earlier sec-
tions are used in Sec. V to determine the fluctuation
properties of various field components, or more precisely,
the variances of their averages, taken over arbitrary
volumes. Although the foregoing results demonstrate
that dielectric media introduce no qualitative changes in
the photon-counting distributions that can be measured
by photoabsorption processes, they do indeed introduce
substantial changes that can be observed in spontaneous
emission processes. We show in Sec. VI that a dielectric
medium, by altering the strength of the zero-point Auc-

tuations of the electric field, changes the rate of spontane-
ous electric dipole emission by atoms located within or
close to the medium. More interestingly perhaps, any
such change in the electric-field fluctuations implies
quantum mechanically a complementary change of the
magnetic-field Auctuations. The rate of spontaneous
magnetic dipole emission must therefore also be altered
when an excited atom is in or near a dielectric medium.

As a final illustration of our formalism we present in
Sec. VII a quantum-mechanical treatment of transition
radiation. This is the radiation given o6' when a fast
charged particle passes from a medium of one dielectric
constant into another. The mean number of photons
emitted is shown to follow the classically derived formula
of Frank and Ginsburg. ' The fluctuations in the photon
numbers are shown to be those characteristic of Poisson
distributions.

II. QUANTIZATION IN THE PRESENCE
OF DIELECTRIC MEDIA—

NORMAL-MODE EXPANSION

We shall present in this section a detailed description
of the quantization of the electromagnetic field in the
presence of an idealized linear, but nonuniform, dielectric
medium with frequency-independent polarizability. Al-
though special cases of this problem have received some
discussion, ' ' a number of its more interesting as-
pects have evidently been left untouched. We shall try,
therefore, to formulate the problem in fairly general
terms. Furthermore, we shall pay special attention to the
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quantum-statistical properties of the electromagnetic field
in and near dielectric media.

The source-free Maxwell equations in matter take the
form'

7'.D =0
T.B=0

=VXH,1 BD
c Bt

= —VXE.1 BB
c Bt

(2.1)

In the following we shall limit our consideration to the
case of linear, isotropic dielectric media, for which the
electric displacement vector and magnetic induction are
given simply by

D=«(r)E,
B=H,

(2.2)

where «(r) is a position-dependent dielectric constant.
Generalizations to the anisotropic case or the case of
magnetically susceptible media are straightforward. We
shall quantize the field by generalizing appropriately the
familiar procedure which consists of (a) the introduction
of potentials, (b) fixing the gauge, and (c) replacing Pois-
son bracket expressions by canonical commutation rela-
tions for the vector potential and its canonically conju-
gate momentum.

From Eq. (2.1) it is clear that we can introduce the vec-
tor potential A and the scalar potential N via the famil-
iar relations

B=VX A,
1 BAE= —V+ ——
c Bt

(2.3)

The gauge that is most commonly used in nonrelativistic
QED is the Coulomb or "radiation" gauge. It corre-
sponds, in the absence of charges, to the choice

(2.4)

It is not difficult to find a Lagrangian function for
which Eq. (2.6) is an equation of motion. An elementary
calculation shows that Eq. (2.6) follows from Hamilton's
principle for the Lagrangian

X=—,
' f dr[«(r)E(r) —B(r) ]

,' f-dr A(r) —[VX A(r)] (2.7)

The Hamiltonian description of the motion is obtained by
introducing the canonical momentum

II (r)=
6A (r)

«(r)A (r)
c2 (2.8)

and performing the Legendre transformation to define
the Hamiltonian function

&[A, II]=fdr II(r, t) A(r, t) (2.9)

We may note that the canonical momentum field H is in
fact proportional to the electric displacement vector

II(r, t)= ——D(r, t) .1

c
(2.10)

This fact, first recognized by Born and Infeld, ' ' leads to
medium-independent commutation relations for the fields
D and 8 (rather than E and 8).

The Hamiltonian (2.9) takes the form

(2.11)

The equation of motion (2.6) can, in principle, be derived
from Eq. (2.11) by means of a suitable commutation rela-
tion (Poisson bracket) between A(r, t) and II(r, t). An
equivalent and more elementary approach is to expand
the fields in an appropriate set of mode functions and to
find equations of motion for the expansion coefficients.
We shall follow the latter method here. By analogy with
the standard free-space quantization procedure, we shall
expand the vector potential A in a set of vector functions
fk(r) that obey the eigenmode equations

With this choice, the transversality condition on D be-
comes

«(r)co„
f1, (r) —VX[VX fz(r)]=0,

C
(2.12a)

V [«(r) A] =0 . (2.5a)
and the transversality condition

We may now fix the gauge by imposing the requirement
V [«(r)f„(r)]=0, (2.12b)

V.[«(r) A] =0, (2.5b)

8 A +VX(VX A)=0,
e Bt

(2.6)

and is obviously compatible with the gauge condition
(2.5b).

which automatically fulfills condition (2.5a). The gauge
'condition (2.5b) is a generalization, appropriate to the
presence of a dielectric, of the Coulomb gauge condition
(V A=O).

The equation of motion for the vector potential A is

together with an appropriate set of boundary or asymp-
totic conditions. The asymptotic conditions, for example,
could correspond to the formulation of a scattering prob-
lem with plane waves in an initial or a final state, or
perhaps to the presence of standing waves. The parame-
ter cok in Eq. (2.12a) is to be regarded as an eigenvalue,
while the subscript k labels the available solutions. It
may run through discrete values, as it does in ideal cavi-
ties, or through a continuum of values, as it does in un-
bounded space. In free space, for example, [«(r) =1], the
index k may be taken to correspond to a pair of indices
(k,p), where k denotes the propagation vector of a plane
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A(r, t)=c y Q„(t)f„(r), (2.13)

wave, while p labels its polarization. In the following we
shall assume, to simplify the notation, that k runs
through a discrete set of values; dealing with continuous
spectra is then a matter of adjusting the notation.

The vector potential A is assumed to have an expan-
sion

In the above expressions the summation convention with
respect to the repeated vector indices (denoted by Greek
letters a, P, . . . ) has been used. The distribution 5
transforms transverse vector fields into themselves
without changing them.

The distribution defined by Eq. (2.14b) is a simple gen-
eralization of the transverse 5 function (2.1S). For any
transverse vector field we have

in which the Qk(t) are regarded as a set of time-
dependent coordinate operators. The full set of the solu-
tions of Eqs. (2.12) can be chosen to fulfill an orthonor-
mality condition. That property follows from the obser-
vation that under the substitution

fdr'e(r)5'&(r, r')X&(r') =X (r),
while for a longitudinal vector field X,

f dr'5'&(r, r')e(r')X&(r') =0 .

(2.16a)

(2.16b)

1fk(r) = gk(r),
e(r)

Eq. (2.12) becomes

1 gk(r)
gk(r) — Vx Vxc2 &e(r) &e(r)

=0,

The vector potential A has to fulfill the reality condi-
tion A= A, which implies

X Qk fk(r) = X Qk&k (r) . (2.17a)
k k

By using the orthonormality condition (2.14a) we may
easily derive from this identity the requirement

so that the functions gk are eigenvectors of a Hermitian
differential operator. By choosing an orthonormal set of
g's, we are led to the orthonorrnality condition

f«~(r)f/, (r) f/*, (r)=5/, /, (2.14a)

Qk g Qk'Uk'k

in which the matrix U* is defined as

U,*,= f«.(r)f,*(.) fk(r) .

(2.17b)

(2.18a)

5 p(r, r')= g fk (r)fk"p(r) .
k

(2.14b)

on the functions f„(r).
It is a little more difficult to describe the corresponding

completeness relation. The functions gk obviously pro-
vide a complete set in the subspace of I. functions, that
is defined by the gauge condition,

V [&e(r)gk(r)]=0 .

The distribution gk gk(r) gk(r') is therefore an identity
on this subspace of functions.

We find it useful then to define the analogous distribu-
tion

fk(r) x Ukk' fk'(r)
k'

(2.18b)

We shall presently see that when the functions fk are
chosen to fulfill appropriate asymptotic boundary condi-
tions, the matrix U becomes related to the scattering ma-
trix 5 for the classical scattering problem defined by Eq.
(2.12).

The matrix U* has three important properties.
(i) It is symmetric:

It is clear from Eq. (2.14a) that the integrals Ukk are the
expansion coefficients of the functions fk(r) in terms of
the fk(r), i.e.,

In free space [i.e., when E(r) =1] the distribution (2.14b)
reduces to a standard transverse 5 function' defined as

1 k kp ik./r —r')
(2 1S)

(2 )'

UkI —Uk k .

(ii) It is unitary:

y Ukk'Uk "k' 5kk"
k'

(2.19a)

(2.19b)

The action of the transverse 6 function can be explained
as follows. Let X denote an arbitrary transverse vector
field

V-X =0

These properties are derived from Eqs. (2.18) and (2.14a)
together with the definition (2.14b) and its properties.

(iii) Finally, it vanishes everywhere off the "energy
shell":

while X denotes a longitudinal vector field

VXX'=0 .

We then have

fdr'5 //(r
—r')X&(r')=X (r),

fdr'5 &(r r')X&(r') = .0—

(2.19c)

This latter property follows from the fact that the matrix
elements Ukk, defined as scalar products of the eigen-
mode solutions of Eq. (2.12), must vanish when the two
solutions correspond to different eigenvalues.

We may construct analogously an expansion of the
II(r, t) field, which is canonically conjugate to A(r, t), by
writing



474 ROY J. GLAUBER AND M. LE%'ENSTEIN 43

II(r, t) =—g P„(t)e(r) fk (r) .
1

(2.20)
1/2

k+22') k k'
(2.26a)

The need for a factor of e(r) in this expression arises from
the transversalit condition V II(r, t) =0. The reality
condition II=II takes a form analogous to that of Eq.
(2.18a),

y Pk fk(r) y Pk fk(r)
k k

and requires that

P/, —X Pk, Uk, k
k'

(2.2 la)

(2.21b)

2 X (Pk Pk +~k Qk Qk )
k

(2.22)

It is easily verified that the Maxwell equations follow
from the Heisenberg equations of motion for the Q and P
variables under the assumption of the following equal-
time commutation relations (or Poisson brackets in the
classical case):

When the expressions (2.13) and (2.20) are used to
evaluate the Hamiltonian (2.11) in terms of the variables
Qk, Qk, Pk, and Pk, we find it to reduce to the diagonal
quadratic form

Pk =i
1/2

ACOk

2
ak y Ukk'ak'

k'
(2.26b)

The expressions (2.25) and (2.26) realize, at the same
time, a representation of the commutation relations
(2.23). The proof that Eqs. (2.25) and (2.26) indeed assure
the relations (2.23) requires use of the symmetry and uni-
tarity properties of the matrix U.

When the expression (2.26) for Qk and Pk are substitut-
ed in the Hamiltonian (2.22) and further use is made of
the properties of the matrix U, we reach the familiar ex-
pression

~= —,
' g &~k(akak+akak ) = g ficoka„ak+ C [ej . (2.27)

k k

The constant C [e] depends functionally on the dielectric
susceptibility e(r) and is formally infinite. It does, how-
ever, contain important physical information; its deriva-
tives with respect to geometrical parameters are related
to the so-called Casimir forces, ' the forces produced by
the cumulative eFects of zero-point oscillations.

The operators ak and ak obey the elementary equations
of motion that give them the time dependences

[Qk Qk j=[Qk Qk j=[Qk Qk j=o

[Pk, Pk j = [Pk, Pk ]= [P/„Pk, ]=0,
[Qk iPk' j =«&kk

(2.23a)

(2.23b)

(2.23c)

IC0$(t to)ak(t)=e ' ak(to) .

(2.28a)

(2.28b)

From the reality condition (2.21b) we can then derive the
remaining commutation relation

[Qk, Pk ]=i A Uk*k (2.23d)

[A (r), II&(r')]=i%+ fk (r)fk/3(r')e(r)

The commutation relations (2.23) are equivalent to the
canonical commutation relation for A(r) and II(r'):

Expansion of any of the physical fields in terms of ak and
ak then defines simultaneously the positive- and
negative-frequency parts of the field. For example, by in-
serting the expressions (2.26a) and (2.26b) into the expres-
sions

A(r, t)=c g Qk f„(r),
k

E(r, t) = —g Pk fk(r),
k

= ii/I5'/3(r, r')e(r') . (2.24) we obtain

The distribution 5' appearing in this commutator is pre-
cisely the generalization of the transverse 6 function
defined by the formula (2.14b).

The final step of our quantization procedure requires
that we represent the commutation relations (2.23) in
terms of photon creation and annihilation operators. In
order to do that we assume that both Q„and Pk are
linear combinations of Hermitian conjugate creation and
annihilation operators ak and ak, which fulfill the canoni-
cal commutation relations

A(r, t)=c g
k 2~k

1/2

[a/, f/, (r)+a/, f/*, (r)], (2.29a)

E(r, t)=i g
k

1/2
fZCO k

[a/, f/, (r) ak f/, (r)], (2.29b)

and the positive- (negative-) frequency parts are simply
equal to the terms in this sum proportional to ak (ak ):

1/2

[ak, ak ]=0,
[ak ak' j fikk'

(2.25a)

(2.25b)

A'+'(r, t)=+c g
2' k

1/2

(2.30a)

Both Qk and Pk must fulfill the reality conditions stated
by Eqs. (2.17b) and (2.21b). It is easy to check that the
following representation of Q„, Qk, Pk, and Pk fulfills the
reality requirements:

A' '(r, t)=+c g 2' k

'ACO kE'+'(r, t)=+i g
k

ak'fk(r),

1/2

ak fk(r),

(2.30b)

(2.30c)
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' 1/2
i6COk

(2.30d)
eke e —kp ' (3.2)

The expansion of the magnetic field analogous to Eq.
(2.29) is

B(r, t) =cV X
2COk

' 1/2

[~
J&
fk ( r ) + tt k fk ( r ) ]

(2.31)

As we can see, the quantization of the electromagnetic
field in polarizable media in terms of the eigenmode solu-
tions of Eq. (2.6) has a number of appealing properties.
One of the most important of these is that the normal or-
dering of observables with respect to the eigenmode
operators ak and ak corresponds to ordering with respect
to positive- (negative-) frequency parts. The latter form
of ordering has an important physical significance since it
corresponds to the ordering of all the operator products
measured in photon-counting experiments.

It can also be useful, however, to carry out the quanti-
zation in ways that do not rely on the eigenmode expan-
sion (2.13), but are based instead on expansion in some
other set of functions. For example, if we consider a
problem in which a plane electromagnetic wave is in-
cident upon a dielectric medium, it seems natural to work
with the plane-wave expansion of the field. The quantiza-
tion procedure, based on such an expansion, will be de-
scribed in Sec. III.

III. QUANTIZATION IN THE PRESENCE
OF DIELECTRIC MEDIA—PLANE-WAVE EXPANSION

ik. r
A(r, t)=c g Q„(t)e„

k y 1/2 (3.1)

In this expression the index k should be thought of as
corresponding to a pair of indices k and p, where k is a
plane-wave propagation vector and p is a polarization in-
dex. The Q& ( t ) are time-dependent operators that
represent the complex mode amplitudes. The polariza-
tion vectors ek are transverse to the propagation vector,
k.ek =0. It is convenient to choose them in such a way
that

There are certain problems for which it is interesting to
carry out the quantization procedure in an orthogonal
basis quite different from that defined by Eq. (2.12). An
example is the frequently occurring one in which the
dielectric medium is finite in size and surrounded by free
space. In that case it is often natural to use plane waves
to describe both the incident and scattered quanta. In
this section we shall discuss the quantization of the elec-
tromagnetic field, on the basis of the plane-wave expan-
sion.

Our starting point will be the expansion of the vector
potential A in terms of normalized plane-wave modes
that obey periodic boundary conditions in a box of
volume V. An expansion that is often used in free space
takes the form

It is exactly because of the transverse character of the
plane waves, however, that the expansion (3.1) is incon-
venient to use without alteration. That is because in in-
homogeneous media it fails to fulfill the generalized
Coulomb gauge condition (2.5b). That failure implies
that the scalar potential 4 is necessarily different from
zero in this case, since otherwise the Maxwell equation
V.D=O would not be fulfilled. It is reasonable to as-
sume, however, that by applying a gauge transformation
to the vector potential defined by Eq. (3.1), we can satisfy
the two conditions

V.[«(r) A(r)]=0 (3.3a)

and

@(r,t)=0 . (3.3b)

In general, in classical electrodynamics a gauge trans-
formation takes the form

A —+ A+V/,

Vf(r, t) =c Q Q„(t)Vg„(r)
k

(3.4)

for some suitable set of time-independent functions gk(r).
After such a transformation the vector potential becomes

i k.r
A(r, t)=c g Qk(t) e„,~~ +Vg (kr)

k y 1 /2
(3.&)

This gauge transformation is intended to turn the trans-
verse vector field A(r, t) into one that satisfies the gauge
condition (3.3) (without, of course, altering the fields D,
E, or 8). The condition that the functions g& must satis-

fy for this to be so is

i k.r
V. «(r) ez, zz

+Vg„(r)
p 1/2

=0. (3.6)

The reality property of A(r, t) requires, furthermore, that
we choose the gk to satisfy the relation

gk, p.
=g —k, p . (3.7)

As an existence proof for this gauge transformation, we
shall show presently how the functions gk can be con-
structed.

Two convenient properties of the gauge transformation
(3.5) are the following.

(i) The reality condition for A(r, t) may be reduced, by
using Eqs. (3.2) and (3.7), to the simple condition

Qk„(t)=Q g„(t) . (3.8a)

By introducing the abbreviation k =(k,p) and

C

where g is an arbitrary function of r and t. In the present
quantum-mechanical case we must further require that lt

be an operator expressible as a linear combination of the
independent coordinate operators Qk, so that
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—k =( —k, /M) for pairs of indices, the above condition
can be rewritten in the simpler form

V X Q Mkk, ek,e'" '
k'

Qk(t)=O k(&) . (3.8b)

ikr
B(r, t) =ic g Qk(t)(k Xek ),zz

k
V1/2

(3.8c)

(ii) The magnetic field B(r, r) is easily found to have the
simple expansion

eik r
VX ek e(r)

(3.15)

The field II(r, t)= —(I/c)D(r, t) which is canonically
conjugate to A(r, t), is also transverse, and can therefore
be expanded as

e
—i k.r

11(r,t) = —y Pk(&)e k, /,V1/2
(3.9)

g Pk Mkk'Pk'+ T g ~k Qk Qk
k, k' k

where the matrix Mkk. is defined as

1
i(k —k') r

M =— dre -ekk' y k k'
( )

(3.10)

(3.1 1)

The matrix Mkk. can be used, furthermore, to construct
the gauge transformation (3.5). It is important to note at
this point that the matrix Mkk. is invertible. That proper-
ty is easily seen for e(r)=1, since the matrix M in that
case is just the unit matrix

Mkk' ~kk'

It is then natural to expect that, for bounded functions
1/e(r), this property of M is preserved.

To prove the existence of the gauge transformation
(3.5), let us assume that the functions gk have the proper-
ty

i k'. r i k.r
1 e e

Vgk(r) g Mkk' k' i)p kEr) p
(3.12)

By substituting this expansion and Eq. (3.5) for A(r, t)
into the Hamiltonian (2.11), we can easily express the
latter in terms of the variables Qk and Pk and their ad-
joints. The result can be written in the form

[Pk, Pk. ]=[Pk Pk ]=0,
[Q„,P„]=iMk

(3.16b)

(3.16c)

The above commutation relations have a standard repre-
sentation in terms of creation and annihilation operators
bk and bk,

2COk

'Aflak
Pk =i

2

' 1/2

(bk+b'—k»
' 1/2

(b„bk ), —

(3.17a)

(3.17b)

and these expressions lead to a standard plane-wave ex-
pansion for the fields

1/2
iII(r, t)= —gc k 2V

(b1'~e —ik rb ~e . ik.r)

(3.18a)

The latter equality, which demonstrates the desired rela-
tion (3.13), follows from the fact that curl of the trans-
verse 6 function is equal to the curl of the normal 5 func-
tion. From Eq. (3.15) we conclude that the condition
(3.12) does indeed admit solutions for gk. We note that
this solution is also consistent with the reality condition
(3.7). We have thus proved the existence of the gauge
transformation (3.6).

Having discussed the required gauge transformation,
we may postulate a set of commutation relations analo-
gous to those of Eq. (2.23), that is

[Qk Qk ]= [Qk Qk ]=o (3.16a)

It is evident, in that case, that the functions gk obey the
Coulomb gauge constraint (3.6). Equation (3.12), howev-
er, admits solutions for gk if and only if the curl of the
right-hand side of Eq. (3.12) vanishes identically for all A::

B(r, t)= ic g—
2mk V

1/2

k(bt~e +e ik r b ~e ei—k.r)

(3.18b)

k' r

QMkk VX ek, q~ ( )k' er
~ik.r

X ek
V

=0.

(3.13)

The Hamiltonian, when expressed in terms of the
operators bk and bk, takes the nondiagonal form

&= g Acokbkbk

After matrix multiplication by M this relation becomes

ikr
VX ek er

= V X g Mkk ek.e'" '
k'

(3.14)

According to the definition (3.11) of the matrix Mkk. ,
however, we can express the sum on the right in terms of
the transverse 5 function (2.15). If we use the summation
convention for spatial indices, we can write

+— y bkQ~k~k e k e k.u *(k+k')bk,
k, k'

+c[e],
in which the function U is defined by

g bkV ~k~kek. ek u(k' —k)bk +H.c.
k, k'

(3.19)
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u(k)= —J dr e' ',1 e(r) —1

V e(r)
(3.20)

and C[E] represents a c-number functional of the dielec-
tric susceptibility e(r).

The expression (3.19) for the Hamiltonian indicates an
important feature of the plane-wave expansion. It shows
that the equations of motion for the operators bk and bk
must contain a coupling of bk's to the bk's, whenever e(r)
deviates from unity. This fact implies that the plane-
wave amplitudes do not simply oscillate, as they do in
free space, with definite signs of the frequency. In fact,
both bk and bk contain, in general, Fourier components
of both negative and positive frequencies. This mixing of
the signs of plane-wave frequencies is a general feature of
scattering phenomena, described by wave equations that
are of second order in the time derivative. Normal order-
ing of the operators bk and bk therefore, no longer has
any simple relation to the ordering with respect to posi-
tive and negative frequencies, which is required for the
description of photon-counting measurements carried out
in dielectric media.

The n-quantum states of the system defined in terms of
physical photons correspond to those generated by the
eigenmode operators ak and ak. Because of the presence
of the bk bk. terms and their conjugates in the Hamiltoni-
an (3.19), those states may contain unlimited numbers of
pairs of virtual photons of the kind generated by the
plane-w'ave operators bk and bk. The latter photons,
however, because of their partially virtual nature, are not
in general the ones registered by any photon counter.
Absorbing or annihilating a physical photon, for exam-
ple, may mean creating one of the plane-wave photons.
The plane-wave representation, nevertheless, does have a
number of useful formal properties. We shall examine
some of them in Sec. IV.

and of the related operators

O'= UOU

g [ A (k, k') A *(k",k') 8(k, k')—8 *(k",k')] =5kk ~ .

(4.2b)

It is convenient at this point to introduce the matrix no-
tation A for A (k, k') and 8 for B(k,k'). The transfor-
mation of the ak and ak operators into the bk and bk can
then be regarded as the vector transformation

T

b a

b a
=M

where M is the supermatrix

A B
B' A* (4.4)

The relations (4.2a) and (4.2b) can now be abbreviated as
the matrix identities

A B~—B 3~=0 (4.5a)

These conditions imply the existence of orthogonality
and completeness relations for the coefficients A (k, k')
and 8 (k, k'). From the vanishing of the commutator
fbk, bk ] and the canonical commutation relations for the
ak and ak, we find the relation

g [A (k, k')8(k", k') B(k—, k')A (k",k')]=0 . (4.2a)
k'

From the commutation relation of bk and b& ~ we likewise
find

A A —BB =1L (4.5b)

IV. INTERPRETATION OF PLANE-WAVE
QUANTIZATION PROCEDURE

IN SCATTERING THEORY

where the index T stands for the transposed form of the
matrix. If we now introduce the supermatrix

In this section we shall show how the plane-wave pho-
tons, which are generated by the operators bk and bk of
Sec. III, and which contain virtual as well as real excita-
tions of the electromagnetic field, can be related within
the framework of scattering theory to the physical pho-
tons that correspond to the operators ak and ak of Sec.
II. Since the problem we are considering is a linear one,
it is clear that there must exist a linear transformation
connecting the physical and the plane-wave photons. Let
us assume that it takes the general form

0
0G=

and the Hermitian adjoint of M,

BT

B~ A

we find that the relations (4.5) imply the identity

MGM G=lL .

(4.6)

(4.7)

(4.8)

b„= g [A (k, k')a„,+8 (k, k')a„, ] .
k'

(4.1)
It follows from this relation that the determinant of M
cannot vanish. In fact, we have

We shall show that the inverse relation, which expresses
the physical operators in terms of the plane-wave opera-
tors, takes a closely analogous form involving the same
coefficient matrices. The transformation must preserve
the commutation relations, and corresponds thus to a un-
itary transformation of the quantum-mechanical state
vectors

M '=GM G=
—B T

A
(4.10)

(4.9)

The supermatrix M therefore has an inverse, and Eq. (4.8)
shows that it can only be
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The matrices A and B, in other words, must obey the
identities implicit in the relation' B(r, t) = ic—

2cok. V

1/2

that is to say

A B —B A*=0

A A —B B*=I

(4.1 la)

(4.11b)

(4.11c)

X[(k'Xek )e ' 'B*(k',k)

—(k'Xek )e+'"'3 (k', k)]ak

—H. c. (4.14d)

or more explicitly

g [ A "(k', k)B (k', k") B(k—', k) A *(k', k")]=0,
k'

(4.12a)

g [ A *(k',k) A (k', k")—B (k', klB *(k',k")]=5kk- .
k'

(4.12b)

Furthermore, the relation inverse to Eqs. (4.1) and (4.3) is
given, according to Eq. (4.10), by

E
ACOk

II(r, t) = ——e(r) g
C k 2

1/2

[a/, f/, (r) a/, f/, (r)],

B(r, t)=c g
2ct7k

1/2

(4.15a)

Ia/, [&X fk(r)]+ak[&X fk(r)]] .

(4.15b)

On the other hand, Eqs. (2.10), (2.29), and (2.31) state
that

ak = Q [2 *(k', k)bk B(k', k)b—k ] .
k'

(4.13)

1/2

Thus the expression for the physical operators in terms of
the plane-wave operators is no more complicated in form
than its inverse.

The transformation (4.1) has the further property that
it relates the eigenmode expansion of the electromagnetic
field (2.29) and (2.31) to the plane-wave expansion (3.18).
Let us consider the fields II(r, t) of Eq. (3.18a), and B(r, t)
of Eq. (3.18b), which are given by

k'

1/2
15COk/ e*,e '"'[B*(k' k) —A (

—k' k)]
2V

1/2
%CO k

2
e(r) fk(r), (4.16a)

1/2

2ruz V
(k'Xe *,)e

The coefficients multiplying ak on the right-hand side of
Eqs. (4.14c) and (4.14d) must be equal, therefore, to the
ones on the right-hand side of Eqs. (4.15); that is, we
must have

iII(r, t) = —g
C k, 2V

(b1'~ e —ik' r b
~ +ik' r)

(4.14a)

X[B*(k',k)+ A (
—k', k)]

1/2

[VX fk(r)] .
2' k

(4.16b)

B(r, t) = ic g—
2~k V

1/2

[bk (k'Xek, )e
By using the orthogonality of plane-wave modes we then
obtain from Eq. (4.16)

1/2

bk (k Xek )e+ik' r]

(4.14b)

3 (
—k', k) —B*(k',k)=

~k
A (

—k', k)+B*(k',k)=

uk(k'), (4.17a)

1/2

u„(k') . (4.17b)

l 'f16)k r

II(r, t) =-
c k kr 2V

1/2

[~e —ik rBe(kI'

When we insert the relation (4.1) these expressions be-
come

i k'. r

u/, (k')= I« f/, (r).e/, , /, ,V1/2
(4.18a)

In the above expressions we have introduced the trans-
verse Fourier transforms of the eigenmode functions fk
and e(r)fk,

ik' r
uk(k')= jdre(r)fz(r). e„,

V
1/2

(4.18b)

—H. c. (4.14c)
We may now construct a unique solution for the
coefficient functions A (k', k) and B(k', k) which obey
the conditions (4.2), (4.12), and (4.1'7),
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1/2
COt

uk( —k')+
' 1/2

u„( —k')

(4.19a)

The coefFicients 2 and 8 must then fulfill relations analo-
gous to those of Eqs. (4.2) and (4.12) because the time
evolution of the operators preserves the commutators.

The displacement field 0 and the magnetic field 8 can
be represented at t =0 as

8*(k',k) =
—,
'

' 1/2

ui, (k')—
1/2

u„(k')

(4.19b)

'Amok
D(r, O) = i —g 2V

1/2

[b t (0)~ e ik—r'.

(())~ +ik' r] (4.24a)
It is straightforward to verify that these coeKcients obey
the conditions (4.17) and correctly convert the plane-
wave expansion of the fields into the eigenmode expan-
sion. It requires a little more calculation in order to show
that conditions (4.2) and (4.12) hold. Indeed we have, for
example,

B(r,O)= ic —g 2uk V

1/2

X[b .(0)(k'Xe*)e
—b&(0)(k'Xek. )e '"'] . (4.24b)

g [ A (k', k) 3 '(k', k") 8(k', k"—)8*(k',k)]
' 1/2

u& (k')uz ~ (k')

For t ~ ~ these finds have an asymptotic expansion
1/2

D(r, t) = i g—

Q)k ir

+
Q)g

u&(k')u &
(k') (4.20)

+ik' r —
ice&, t,

(4.2Sa)

If we next note that

g uz(k')uk*. (k')= f fdrdr'e(r)f& (r)6 t3(r
—r')

B(r, t)= ic g—
2cog V

1/2

Xf„"ys(r')=5 (4.21)

be(t)=e "b
i, (t) .

(4.22a)

(4.22b)

Then the relation between b&(0) and bk( —~ ) =bi," must
take a form similar to Eq. (4.1),

b„(0)=g [3 (k', k)bk" +8 (k', k)(bk" ) ] . (4.23)

we reduce Eq. (4.20) to the form of Eq. (4.12b). To evalu-
ate the integrals in Eq. (4.21) we have used the gauge con-
dition V [e(r)fz(r)]=0, and the fact that the transverse

function applied to a transverse vector field e(r)f&(r)
acts as an identity.

As we see, for any choice of the eigenmode solutions
(i.e., incoming waves, outgoing waves, etc.) the relations
(4.19) establish a unique relation between a&, ak and
bk, bI, . For some specific choices, however, this relation
has an additional physical meaning.

Let us suppose that the dielectric is localized in space
[e(r)~1 for ~r~ ~ ao ] and that the interaction is turned
on and oA adiabatically. That means that in fact e is a
slowly varying function of time and obeys

e(r, t)~1
for t ~+~ with e(r, O) =e(r).

Under such assumptions one can solve the Heisenberg
equations of motion for the operators b& and b&, which
are governed by the Hamiltonian (3.19). Let us denote
the corresponding operators in the interaction picture by
bk and b q..

X[b i, .(0)(k'Xe k )e

—b„(0)(k'Xek, )e '" "] . (4.24b)

%hen we deal with a time-dependent dielectric suscep-
tibility function e(r, t), the mode functions we choose
must, strictly speaking, obey an explicitly time-dependent
form of the wave equation. In the adiabatic limit, howev-
er, that is, when we can neglect terms involving the time
derivative of e(r, t), we can write the mode functions in

I @Ok t
the form e ' f&(r, t), where f&(r, t) obeys the equation

e(r, t)coi,
fi, (r, t) —VX[VX fk(r, t)]=0 . (4.26)

We note then that f(r, t) obeys a dift'erent wave equation
analogous to Eq. (2.12a) at each instant of time and that
its variation with time is adiabatically slow. At time
t ~ —oo, since e(r, t)~1, the asymptotic solution can be
taken to be time independent and to obey

eik-r
fk(» ek (4.27)

y 1/2

It is also necessary to specify spatial boundary conditions
for Eq. (4.26) at all later times. A natural choice for
those conditions is one that corresponds to a plane wave
plus outgoing spherical waves. It is that choice that de-
scribes the evolution of a normal scattering state at time
t=O from an initial plane wave. An alternative choice
that is also useful corresponds to a plane wave at
t~+ ~ plus the combination of a plane wave with in-
coming spherical waves at all earlier times. It is the
latter choice that describes the state that must be present
at time t=O in order to have a plane wave present at
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t ~+ oo.
Let us consider now the eigenmode functions, which

obey the first of the above-mentioned boundary condi-
tions, with the asymptotic behavior given by Eq. (4.27).
Let us denote these functions by f/,"(r, t). At any instant
of time the fields D and B may be expanded uniquely in
terms of the f/,"(r, t), which form a specific example of the
basis discussed in Sec. II,

A (k', k) =
—,
'

B*(k',k) =-,'

Nk/

' 1/2

(k, k')

1/2

0 (k, k')

1/2

0 (k, k')

(4.32a)

D(r, t)=i@(r, t) g
k

ACOk
1/2

[a/, (t) f/,"(r, t)
COk

0 (k, k') (4.32b)

1/2

—a„(t)( f'„")*(r,t)],
(4.28a)

The coeKcients that appear on right-hand side of Eqs.
(4.32) can be identified with the elements of the M/t(lier

matrices 0 (k, k') and 0 (k, k'). Namely,
B(r, t)=cV X

2COk

X [a&(t) f/,"(r,t)+a/, (t)( f/,")"(r, t)]

Ik' r
Q (k, k')= fdr f/,"(r,O) e/, , &2k ~1/2

lk 'r

0 (k, k') = J dr e(r) f/,"(r,O) e„k & k V1/2

(4.33a)

(4.33b)

(4.28b)

Since the functions f/,"(r, t) contain the effects of a slow
variation of c(r, t), the annihilation operators a/, (t) and
creation operators a/, (t) can be seen to have a very simple
time dependence. Let us write them as

a„'(t)=e'""'a '
(4.29a)

(4.29b)

(bin)t
k k

(4.30a)

(4.30b)

so that the expression (4.28) takes at time t=O the form

i6COk
D(r, O) =i e(r, t) g

k

1/2

X [bI,"f'I,"(r,O) (bI,") ( fI,")*(r—, O) ],
(4.31a)

1/2

B(r,O)=cVX
2COk

X[bgf/,"(r,O)+(b/', ") (f/,")*(r,O)]

where ak is the interaction picture operator correspond-
ing to a/, (t), and is extremely slowly varying in the adia-
batic limit. Then, by comparing Eq. (4.25) with Eqs.
(4.28) and (4.29), we can immediately make the
identifications

ik' r
e(r) fI,"(r,O) = g 0, (k, k')e/, . (4.33c)

The matrix 0 evidently is not unitary, because of the
role of the function e(r) in the orthonormality condition
(2.14a). The matrix adjoint to 0 with respect to that
scalar product has the elements

—ik'. r
fI' (k, k')= J dr[fI,"(r,O)]* e„',k ~1/2 (4.34a)

That it is an inverse of 0 is evident from the relation

g Q" (k, k')0 (k",k') =6/, /,
« .

k'
(4.34b)

Obviously 0* may be used to express the transverse
plane waves in terms of the transverse functions
e(r) f'„"(r,o).

We may summarize our findings as follows.
(a) If the eigenmode functions fI,"(r, t) are taken to cor-

respond to plane waves plus outgoing spherical waves for
all t, and to reduce to a single plane wave at t = —~,
then the relation (4.1), which connects the plane-wave
photons (defined through b„and b/, ) to the physical pho-
tons (defined through a/, and a/, ), can be interpreted in
terms of an action of the Mufller matrices 0 and 0 by
making the identifications

are the elements of matrices that express the solution of
the full scattering problem [corresponding to the asymp-
totic condition (4.27) at t —+ nn ] in terms of plane waves.
Indeed, it is easy to check that the transverse wave func-
tions obey

(4.31b)
a/ =b/, ( —~)=b/"

b/, =b/. (0),
(4.35a)

(4.35b)

We may now use the same method as the one used for
deriving the expressions (4.19) in order to calculate the
coefficients 2 and B that appear in Eq. (4.23). We thus
obtain

and using the expressions (4.32).
(b) Analogously, if the eigenmode functions f/, "'(r, t)

are taken to correspond to plane waves plus incoming
spherical waves for all t, and to reduce to a single plane



43 QUANTUM OPTICS OF DIELECTRIC MEDIA

wave at t =+ ~, then the relation (4.13), which connects
the physical photons (defined through ak and ak ) to the
plane wave photons (defined through bk and bk ), can be
interpreted as an action of the Mufller matrices 0+ and
0+ by making the identifications

The product of the two Mdller matrices (0+) and0, according to the familiar formulation of quanturn-
mechanical scattering theory, is the scattering matrix S,
which expresses the "in" states in terms of the "out"
states,

~k =bk(+ ~ )=bk"

b„=b„(0),
(4.36a)

(4.36b)

S(k, k') = f dr e(r)[fk"'(r)]*fk(r) (4.38a)

ik' r
II+(k, k') = Jdr fk"'(r, O) ek.k (4.37a)

and replacing 0 and 0 by 0+ and 0+ in the expres-
sions (4.32). The matrices 0+ and 0+ are defined by the
expressions

fk (r)= QS(k, k')f'„""(r) .
k

(4.38b)

In the present case we have two alternative representa-
tions of the S matrix,

S(k, k")= g Q+(k, k')0 (k",k') (4.39a)
k'

ik' r
II+(k, k') = J dr e(r) fk"'(r, O) ek. (4.37b) or

S(k, k" ) = g 0 ~+(k, k')0 (k",k') . (4.39b)

and may be used to express the transverse wave functions
e(r) fk"'(r, O) in terms of the transverse plane waves, as in
Eq. (4.33a).

k'

We can use Eqs. (4.1) and (4.13) to express the operators
bk"' in terms of the bk" by writing

bk"'= g I[A'"'(k', k)]*A'"(k,k")—8'"'(k', kl[B'"(k', k")]'Ibk"
k', k"

+ g t
8'"'(—k', kl[A'"(k', k")]*+[A'"'(k',k)]'8'"(k', k")J(bk", )~ .

k', k"
(4.40)

Elementary calculation then shows

bk"'= g S(k, k')bk",
k'

(4.41)

where the coefficients S(k, k') are indeed given by Eq.
(4.38a). Since the scattering matrix vanishes off'the ener-

gy shell,

kk' ~(~k ~k') (4.42)

the expressions (4.41) and (4.42) assure us that the
scattering is elastic (i.e., consists only of diffraction,
refiection, and refraction). The photon number is con-
served in the scattering process, as well as the photon en-
ergy. No mixing of creation and annihilation operators
of the kind evident in Eqs. (4.1) and (4.13) is present in
the asymptotic operator relations (4.41) (see also Ref. 15).
If the system is prepared asymptotically in the coherent
state

~ I
a'k"

I ) for t = —co, then it will emerge in a
coherent state ~Iak"'[ ) at t =+ no as well, where the
scattering matrix S effects an elementary linear transfor-
mation of the coherent state amplitudes,

a'"'= g S(k, k')a'"
k'

In fact, the conservation of the number of physical
photons remains true for all intermediate times as well.
The formula (4.1) suggests that the plane-wave creation
and annihilation operators at t=O are combinations of
both creation and annihilation operators (bk") and bk".
The plane-wave photons, however, are not in general the
ones detected in photon-counting experiments. The

&gh g S Ph(k k )bin (4.44)

with

S "(k,k')= J dry(r)[fPk"(r)]*. fk, . (4.45)

physical photons (i.e., the photons that are detected at
t=O) correspond to a pair of creation and annihilation
operators ag" and (ag") defined as in Eq. (4.13) with an
appropriate choice of the functions A (k', k) and
B(k', k). This choice corresponds uniquely to a set of
basis functions fPk"(r) which describe specific properties
of the detected photons. For example, detection may
have a directional character; it may correspond to
definite linear or circular polarizations. For a given pho-
ton frequency cok, it is therefore useful to choose the basis
functions f$"(r ) in a way such that each of them
represents a particular variety of photon that can be
detected by the measuring device. Such physical photons
are annihilated, therefore, by the operator

og"= g I[A (k', k)]*A'"(k', k")
I I II

B(k', k)[B'"(k'—, k")]*]bk"

+ g I 8(k', k)[A'"(k'—,k")]*
k', k"

+ [A (k', k) ]'8'"(k', k" ) [ (bk" )

(4.43)

A calculation analogous to that yielding Eq. (4.41) now
gives us
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Note that the formulas (4.44) and (4.45) imply that physi
cal photons are unchanged in number and frequency dur
ing their interactions toith a static dielectric; only refrac
tion, re+ection, and dijfvaction, or in more general terms,
scattering, can occur. It is intuitively clear then that the
presence of a lossless dielectric medium does not a6'ect
the nature of the quantum-statistical properties of the
electromagnetic field at any instant. We shall examine
the sense in which this statement holds in Sec. V.

V. ELECTROMAGNETIC FIELD FLUCTUATIONS

Y[v]=fdr B(r) v(r), (5. lb)

where u(r) and v(r) are real-valued vector functions.
These are integrals of the same sort as typically occur in
the evaluation of transition matrix elements. We may as-
sume, without loss of the generality, that both functions
u and v are transverse since longitudinal components of u
and v do not contribute to the integrals.

Since the equal time commutator of the electromagnet-
ic field operators is

[D;(r),BJ-(r')]=i 'iite8„5(r —r'), (5.2)

it is easy to show that the commutator of the averaged
operators is

[X[u],Y[v]]=

iaaf

dru(—r) [VXv(r)] . (5.3)

Therefore, the observables, defined by the expressions
(5.1), fulfill the uncertainty relation

bX [u]h Y'[v] ~ —f dr u(r) [V X v(r)]
2

(5.4)

In principle, the functions u and v may be independent of

The results of the preceding sections may seem to
present a certain contradiction. The creation and annihi-
lation operators for plane-wave photons at t=O are, ac-
cording to the formula (4.1), linear combinations of both
creation and annihilation operators for the plane-wave
photons at t = —~. That means that a coherent state
prepared at t = —~ and expressed in terms of those pho-
tons appears to be "squeezed" at time t=O. The plane-
wave photons mix the signs of the frequencies at t=O,
however, and are not uniquely the ones detected in pho-
toabsorption experiments. The theorem formulated at
the end of Sec. IV, which generalizes the results present-
ed in the Introduction, shows, on the other hand, that the
same state remains coherent at all times, when expressed
in terms of the physically detectable photons. Those are
the ones that correspond to definite signs of the frequency
in the expansion of the electromagnetic field. Here again
we see that "squeezing" is not a property of a quantum
state, but of a particular choice of variables used to de-
scribe it.

The discussion of the uncertainty relations presented in
the introductory section can easily now be generalized to
the case of infinitely many modes, by using the result of
Secs. II—IV. To do that we introduce, following Ref. 15,
the spatially averaged field operators

X[u]=fdrD(r). u(r), (5.1a)

one another. In particular, the right-hand side of the ex-
pression (5.4) can even vanish, which means that the un-
certainty relation, in that case, does not impose any re-
strictions on the observables X[u] and Y[v]. On the
other hand, the restrictions imposed by the uncertainty
relation will be strongest if the functions u and v corre-
spond to the same photon wave packets.

If we expand both fields 0 and B in terms of plane
waves (as done in Sec. III), we may easily show that the
creation (or, alternatively, annihilation) parts of X and Y
become

1/2

ei*, u(k)bi, , (5.5a)

Y„[v]= ic g—
2co k

1/2

(k Xe f, ) v(k)b&, (5.5b)

where 6 and v denote the spatial Fourier transforms of u
and v.

The operators X and Y will thus describe the same pho-
ton wave packet if the operators X„and Y„are propor-
tional to one another, i.e. , if we choose v(k) to be v„(k),
defined by

v„(k)= iak X 6(k),
C

(5.6)

[X,„[u],X„[u]]=A'/2,

[ Y,„[v„],Y„[v„]]=A'/2,

(5.7a)

(5.7b)

where X,„=X„,, and Y,„=Y„are the annihilation parts
of X and Y, respectively. That requirement leads to the
conditions

ACOk

(u(k)/ =—,
2 2

' (5.7c)

iv„(k)/ =—.
2 " 2

(5.7d)

These conditions, together with the expression (5.6), im-
ply that ~v„(k)~ = ~u(k)~. The conditions (5.7) provide
also that the variances AX and 6Y in the vacuum state in
free space must be equal to one another,

b,t„+=b„„,Y =&A'/2 . (5.8)

In the presence of a dielectric the creation and annihi-
lation parts of X and Y do not have definite signs of the
frequency. Nevertheless, the uncertainty principle pro-
vides the greatest lower bound for the product of the
variances if the conditions (5.6) and (5.7) are fulfilled. In
that case, X[u] and Y[v„] describe the same packet of
plane-wave photons. If we choose u and v„ in that way
and normalize them as in Eq. (5.7), we find quite general-
ly that the uncertainty relation becomes

where o; is a proportionality factor, independent of k. In
free space, the creation and annihilation parts of X and Y
have definite signs of the frequency, i.e., they describe
creation and annihilation of a physical photon wave
packet. Thus it is natural to normalize u and v so that
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bX[u]AY[v„] ~ —.
fz

W
(5.9)

D(r)=i g
k

B(r)=c g
k 2COk

1/2

e(r)[ak fk(r) —ak fk(r)], (5.10a)

Iak[V& fk(r)]+ak[V& fk(r)]I,

(5.10b)

and all of the ak's have eigenvalues zero in the ground
state,

This inequality must hold for any quantum state both in
free space and in the presence of a dielectric.

Let us now calculate the variances of the observables X
and Y in the ground state of the Hamiltonian (2.27) for a
dielectric characterized by e(r). The quantized fields pos-
sess the eigenmode expansions:

1/2

In the dielectric, Eqs. (5.12) can be simplified by using
the completeness relations (2.14b) and Eq. (5.6). We have
to take into account, however, the fact that since the
functions u and v„correspond to wave vectors clkl =cok,
and since they are spatially localized in the region where
e(r) =e(r„), they must at the same time, according to the
dispersion relation within the dielectric medium, corre-
spond to the frequency

COp

COk-
Qe(r„)

(5.15)

For example, by using the relation (5.15) we may
rewrite the expression (5.12a) as

i5COp

bd;„X[u]= g 2+@(r„)

X J f [e(r)fi', (r) u(r)]

&k I0~d; &

Elementary calculation yields

ACOk

bd;„X[u]= J I g [e(r)fi*,(r) u(r)]
k

(5.11) X [e(r') fk(r'). u(r')]dr dr' .

(5.16)

By employing the properties of the distribution (2.14b)
and the fact that the fraction u is transverse, we then ob-
tain

X[@(r')fk(r').u(r')]d rdr', (5.12a)

2

&d',„Y[v„]=f J y [VXfk(r) v„(r)]
2COk

X [V X fk(r'). v„(r')]dr dr' . (5.12b)

1/2
ACOp

Ad;, iX[u]= J dry(r)lu(r)l
2+@(r„)

1/2
fico()Qe(r„)

drlu(r)l (5.17a)

From Eqs. (5.12) it is clear that b.X and b, Y depend on e.
We shall show that either of them may become greater or
smaller than VA'/2.

A simple approximate way to show that these possibili-
ties indeed can be realized follows from the assumption
that the weight functions u and v„are chosen in such a
way that their main contribution to the terms in the sums
(5.10) is through spatial modes with wave vectors k,
which in free space have temporal frequencies close to
some optical frequency coo, i.e., cok =elk l = coo. Such wave
packets u and v„, although localized in the Fourier
domain, may still be fairly well localized in space. In par-
ticular, in the region of their localization around, say, r„,
the dielectric permittivity e(r) may be assumed to be ap-
proximately constant, i.e.,

e(r)u(r) =e(r„)u(r),

e(r)v„(r)=—e(r„)v„(r) .

(5.13a)

(5.13b)

For such wave packets we may approximate the free-
space variances (5.7) and (5.8) as

%CO k
bf„,+[u]= g lu(k)l

k

ACOp

g lu(k)l'= J «lu(r)l', (5 14»
k

flCO k ~COp

bf„,Y[v„]=g lv„(k)l = J drlv„(r)l . (5 14b)
k

Quite analogously we derive

d;el Y[vu]—
ACOp

J drlu(r)l'
2 e(r)

1/2

(5.17b)

Obviously, for the normalization (5.7), we then have
1/2

i5COp

2 f dr u(r)
2

' (5.18)

(5.19)

The examples we have discussed show that the pres-

so that 6&;,]X or 6&;,&
Y, depending on the form of the

function e(r„), may easily become smaller or greater than
A'/2. Equations (5.17) provide a worthwhile generaliza-
tion of the single-mode relations (1.31), discussed in the
Introduction.

It should be stressed that the vacuum state of the
dielectric is not necessarily a minimum uncertainty state
for the operators X and Y. The product
Ad;„X [u]bd;„Y[v„],which according to the approximate
expression (5.17) is equal to fi/2 for the special state con-
sidered, may and usually will exceed A'/2, when calculat-
ed exactly. The ground state of the dielectric may never-
theless be either subAuctuant or superAuctuant in the ob-
servables X[u] or Y[v„]. On the other hand, the ground
state of the dielectric does not show any squeezing, since
the normally ordered variances vanish,
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ence of the dielectric medium does indeed affect the
quantum-statistical properties of the electromagnetic
field. Although such modifications are not detectable in
photoabsorption experiments, they may be revealed by
other schemes of measurement. We shall discuss exam-
ples of such detection schemes in Sec. VI.

If we introduce the transition operators

d' I=dli &&01,

d'+'=d*iO&
& li,

the interaction term can be written in the electric dipole
and rotating-wave approximations as

VI. MODIFICATIONS
OF SPONTANEOUS EMISSION

BY DIELECTRIC MEDIA

H„,= —d'-'E'+'(r, ) —E'-'(r, ) d'+'

or, more explicitly,

(6.6)

As we have seen, the presence of a dielectric can modi-
fy the quantum-statistical properties of the electromag-
netic field by changing the mean values of the equal-time
correlation functions. Another type of modification
occurs because of changes in the two-time correlation
functions of the electromagnetic field.

In free space the vacuum expectation value of the two-
time correlation function of the electric field is

C.,(r, r —r')=(E'.+'(r, r)E~-'(r, r') &„„

)~q ek ek+xp[ —&cok(t —t')] .
2y 1/2

(6.1)

i5COk

H„F= i g-
k

1/2

d fl, (ro)l 1 &(Olak+H. c. (6.7)

Note that the Hamiltonian (6.3) conserves the total num-
ber of atom and field excitations,

~ =I»& ll+ y.,", .
k

Thus assuming that the initial state at t=o was
~

l,vac&,
i.e., that the atom was excited and that no photons were
present, only one photon may be emitted in the course of
the evolution governed by the Hamiltonian (6.3). The
time-dependent solution of the Schrodinger equation for
our system

while the free field part is

HF = g flCOkQkQk
k

(6.5)

The distribution (6.1) does not depend on the position r.
In the presence of an dielectric, on the other hand, we
have

C z'(r, r r')=(E—'+'(r, r)E& '(r, 'r) &„,

'flCOk

fl, (r)fki3(r)
k

Xexp[ —
izaak(t

—t')] . (6.2)

Evidently, the distribution (6.2) has a nontrivial r depen-
dence.

Modifications of two-time and, in general, multitime
correlations of the electromagnetic field can be expressed
in the frequency domain, through temporal Fourier or
complex Laplace transforms. As we shall see below, this
fact has important physical consequences and leads to
measurable modifications of spontaneous emission pro-
cesses. Such situations have been noted in a series of pa-
pers by Agarwal which are reviewed in Ref. 20.

Let us consider a two-level atom that has the transition
frequency duo and is located at ro. We assume that initial-

ly the atom is in the excited state
~

1 & while the field is in
the vacuum state. The atom undergoes spontaneous de-
cay to the ground state ~0& by means of an electric dipole
transition with the dipole moment d = ( 1 ~r ~0 &. We shall
assume in the following that the interaction of the atom
with the photon field is not too strong, so that the
Weisskopf-Wigner ' approximation holds and the decay
process proceeds exponentially.

The Hamiltonian of such a system is given by
H —Hq +HF+HqF, (6.3)

where the free atomic part is

H, =X~,
i 1 & &1~, (6.4)

ie&=Hie &

dt

can be therefore written in the form

~e(t) & =a(t)
~
l, vac&+ y p(k, t) ~0, lk &,

k

(6.8)

(6.9)

where p(k, t) describes the probability amplitude for
emission of a single photon into the mode k. The solu-
tion to the Schrodinger equations for the amplitudes a(t)
and p(k, t) can be formulated exactly by using the
Laplace transform technique. When the transforms are
evaluated within the framework of the Weisskopf-Wigner
approximation, the solution for the amplitude a(t) takes
the form

(6.10)

where the natural line width is

1
y, = lim R.e g d&dsC&s(ro, v icoo)—

v 0

„Id fk(ro) I'5(~k —~o),
k

(6.11a)

while the radiative shift of the frequency is

'1
5coo= lim Im

z g deeds Cps(ro, v i coo)—
v 0

ld'fg(ro)l
P

2A' ( a)„—coo )

In the above expressions C&s(ro, z) denotes the Laplace
transform of the correlation function (6.2), while d&'s are
the components of the dipole transition matrix element.
The symbol P in the expression (6.11b) denotes the princi-
pal value.
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If the dielectric is bounded in space and the basis func-
tions are chosen to correspond to outgoing-wave bound-
ary conditions, then the individual terms in the sum
(6.11a) show that the rate of emission of a photon with
polarization p and momentum ko pointing in the direc-
tion Q,o is

(ko p nor)
COk 2Id. f„(r)I 5(~~ —~o)5(nk —no»
2A

(6.12)

where c~k~=cok. As we can see, the spontaneous emis-
sion rates (6.11a) and (6.12) depend on the local structure
of the electric-field modes that have the transition fre-
quency coo.

Let us illustrate this dependence by considering two ex-
amples.

(a) Spontaneous emission in free space We. obtain in
this case the familiar result

2
COk

e f„(r)—VX[VX f„(r)]
C

2
—(e—1)B(R —r) fk(0) =0 .

2 (6.15)

The unit step function B(R —r) describes a hole at r=0
In Eq. (6.15) we have substituted the approximation

B(R —r) fk(r) =B(R —r) fk(0), (6.16)

2

+(e—1) g f G~l(r, r')
C

since R ((A, for cok-—o~o. Equation (6.15) may now be
solved by treating this term as an inhomogeneity. We
may then write the solution of Eq. (6.15) in the form of a
sum of "homogeneous" and inhomogeneous" parts

CO d
~free COO

3~AC
(6.13) X B(R —~r'~ )fk, (0)«',

(6.17)

A
coo d eke

?',""(kV ~o) =
Ac

2

(6.14)

and the spontaneous emission rate is r independent as we
expect. The probability, furthermore, of emitting a pho-
ton with the momentum k and polarization p is given by

where G,"(r,r') is an approximate matrix Green's func-
tion and the indices i,j= 1,2,3 label the components of
fk. As we shall see, the expression (6.17) implies the
correct normalization of fk(r) in the limit R —+0 so that
the condition (2.14a) is automatically fulfilled. The ma-
trix Green's function G is defined to satisfy the wave
equation

(b) Spontaneous emission within a dielectric We as-.
sume that the excited (probe) atom is located within a
uniform medium of dielectric constant e. We then face
the following question: which set of eigenmode solutions
fk(r) should we substitute into the expression (6.1 la)?
This question entails the familiar problem of determining
the strength of the field E that acts locally on the atom.

An approximate answer to that question can be ob-
tained by much the same technique as is used in the
derivation of the Clausius-Mossotti law (see, for example,
Ref. 22). The excited atom is assumed to feel the local
electric field inside an empty spherical hole, cut out of the
homogeneous dielectric medium. We assume that the
hole has a radial dimension R much smaller than the
relevant wavelength A, =2mc /coo.

The eigenfunctions fk(r) must therefore fulfill the
wave equation

2

G; (r, r') —[V X V X G (r, r')] ~
=5~5(r —r') .

C
(6.18)

It therefore has the plane-wave expansion

2 p.p . i p (,r—r')

E'Mk
p P

+lim yo e(cog /c )+ iv —p

e ip (r —r')

(6.19)

By inserting the expression (6.19) into Eq. (6.16) we ob-
tain for f„(r) the expression

fk(r) = e'~'+ B(R —r) f&(0)y)1/2

lim g f dr'
v~O

2 e , e ..fk(0)P PP PP k iP (r —')B(R ir i )
p

' —e(cok IC ') —» V
(6.20)
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Elementary calculation shows that for R ~0 the inhomo-
geneous part of f&(r) does not contribute to the norm,
i.e., the condition (2.14a) is indeed fulfilled.

By inserting r=O on both sides of the expression (6.20)
we obtain a self-consistent relation which requires f&(0)
to be

eip
fI, (0)=

(~p)1/2 2e+ 1
(6.21)

In the limit V~ ~, the mode summation (6.12) may be
evaluated by noting that the mode density at frequency
co& within the dielectric is n (k) =( I/~ )k (dk/dc@) V
=(E /ir )(co&/c )V. We find in this way the total de-
cay constant

5/2
free

(2e+1)
as well as the partial decay constant

5/2

),(k,p, coo) = y,"'(k,p, coo),
(2@+1)

(6.22)

(6.23)

for emission into a given plane-wave mode. %'e can see
that the emission in the dielectric has the same angular
distribution as in free space. The rate of spontaneous
emission is enhanced for e) 1 and inhibited for @&1.
The formula (6.23) has recently been derived and checked
experimentally by Yablonovich, Gmitter, and Bhat.

The methods we have described also can be used to
find the modification of the spontaneous emission rate for
magnetic dipole transitions. For this purpose we study
the Zeeman coupling of the atomic magnetic moment to
the local magnetic field B(0). The expression for the tran-
sition rate then takes a form analogous to that of Eq.
(6.1la), except that the electric dipole transition matrix
element must be replaced by the corresponding magnetic
dipole matrix element, and the electric-field amplitude
fl, (0) by the magnetic-field amplitude (c/col, )V X fi, (0).

It is easy to show by using Eqs. (6.17) and (6.19) that,
when the presence of the hole at r=O affects the value of
f&(0) in the limit R ~0, it does not alter the value of
VX fI, (0). The effect of having dielectric constant e'&1
then is a global renormalization of the value of the mag-
netic field, according to the rule

VII. QUANTUM THEORY
QF TRANSITION RADIATIQN

The theory we have formulated in Sec. II can easily be
generalized to the presence of external charges and
currents. An immediate application of such a generalized
theory is the formulation of a quantum description of the
transition radiation' emitted by a charged particle that
moves through a nonuniform medium. Such transition
radiation, emitted at the boundaries of laminar media,
has recently attracted attention in connection with the
possibility of constructing coherent x-ray sources.

The Maxwell equations in the presence of external
charges and currents take the familiar form in Heaviside
units:

V D=p
V-8=0
1BD j=VXH ——,
c Bt C

1 BB = —TXE .
c Bt

(7.1)

The charge density p and the current j are constrained to
fulfill the continuity equation

a p+V'. j=O . (7.2)

Once more we shall limit ourselves to considering the
case of linear, isotropic dielectric media, for which the
electric displacement vector and magnetic induction are
given by Eq. (2.2). The scalar and the vector potentials
are then introduced precisely as before in Eqs. (2.3). In
the radiation gauge, however, we can no longer take the
electric potential N to vanish. We take it instead to satis-
fy the relation

spontaneous emission. Such an approach is valid only if
the time scale of the emission process bears an appropri-
ate relation to the other time scales of the system. In par-
ticular, in our example (b) if the medium is to be con-
sidered infinite, I/y, must be smaller than e' V'~ /c,
the approximate time it takes the photons to leave it.
Otherwise the outer boundaries of the medium may sub-
stantially inhuence the decay process.

[VX fl, (0)]d;„= kXei,
eV V [e(r)VC&]+p=O, (7.3a)

We thus find the decay constant for magnetic dipole tran-
sitions to be

which suggests implementing again the transversality
condition on the vector potential that we used earlier,

] /2~ free (6.24) V.[e(r) A] =0 . (7.3b)

The differences between the decay constants
(6.22) —(6.24) and their vacuum values, it is worth em-
phasizing, have two causes. One is the change in the
zero-point Auctuations of the local electric and magnetic
fields, and the other is the change in the spectral density
of plane-wave modes available at the fixed frequency at
which the atom is prepared to radiate.

It should be stressed that all the results of this section
are based on the (Weisskopf-Wigner) approximation for

mr B2A jT+VX(VX A)=
c~ Qt2 C

(7.4)

where the transverse part of the current is defined by

j T(r, t) =j(r, t) e(r)VC(r, ti—) . (7.5)

The equation of motion (7.4) can be derived from

The equation of motion for the vector potential A thus
becomes
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Hamilton's principle for the Lagrangian

X=fdr A(r, t) ——[VX A(r, t)]
2c

——jT(r, t) A(r, t)
1.
C

(7.6)

value zero, evolve in separate Poisson distributions. It
follows that the total number of photons emitted in tran-
sition radiation also forms a Poisson distribution.

To find the radiated field more explicitly we introduce
the interaction picture annihilation operator ak (t) via the
relation

(7.13)
Equivalently we may use, as in Sec. II, the Hamiltonian
description of the motion with

1
a (~)=a (

—ce) i-k k
2QCok

We then find from the equation of motion (7.12) that
1/2

f j T(k, t)e' " dt .

+—jT(r, t) A(r, t)
1.
c

(7.7)

A(r, t)=c g
k 2' k

where the eigenfunctions fk(r) fulfill as before, the
difFerential equations (2.12) and the appropriate boundary
conditions.

When written in terms of annihilation and creation
operators the Hamiltonian then takes the form, analo-
gous to Eq. (2.27),

We shall make explicit use of this Hamiltonian in the cal-
culations that follow. By carrying out the same steps as
in Sec. II, we Inay expand the vector potential in terms of
photon creation and annihilation operators as

' 1/2

[a/, f/, (r)+a/, f/*, (r)], (7.8)

(7.14)

ak(~)=S ak( —~)S. (7.15)

It is evident from Eq. (7.15) that this transformation sim-

ply effects a displacement of ak( —~ ) by a complex c
number. If we write that complex amplitude as

jT k, te "dt,
+2Acok

(7.16)

then we see that, apart from an undetermined phase fac-
tor, the operator S must be the unitary displacement
operator

The scattering matrix S, when regarded as an operator, is
defined as the unitary transformation that carries the
ak ( —~ ) into the ak ( oo ), i.e.,

&= g fitokakak+C [e]
k

S =exp g [a(k)ak( —~ )
—a*(k)ak( —~ )]

k

(7.17)

1/2

+c g [akj T(k t)+akj T(k t)]
2Q) k

in which

(7.9)
that maps the in states into out states, and transforms the
vacuum state at t = —~ into the coherent state

~ tak I )
at t = ~. The probability that there are n photons finally
present in the kth mode is then

jT(k, t)= f dr jT(r, t). fk(r) . (7.10) Pn

[zn

en!
(7.18)

By using the definition (7.5) and the transversality condi-
tion (2.12b), we see that the full current j(r, t) may equal-
ly well be substituted in the integrand of this expression,

jT(k, t)= f«(j,r)t. f(k)r, (7.11)

since the gradient term in the definition (7.5) makes no
contribution to the integral (7.10).

The equation of motion for ak(t) that follows from the
Hamiltonian (7.9) is

1
a„(t)= i tokak (t)——i

2%cok

1/2

jT(k, t) . (7.12)

If the current j(r, t) can be regarded as predetermined,
this equation belongs to a general class for which the in-
duced time dependence of the state vector in the
Schrodinger picture is particularly simple. For such sys-
tems an initially coherent state, for example the vacuum
state, evolves into a pure coherent state at all later
times. The occupation numbers of all the modes
defined by the functions fk(r), if they begin with the

To illustrate the foregoing results let us consider the
simplest possible case' in which a charged particle
moves uniformly along the z axis and crosses a perpendic-
ular plane boundary between two different uniform media
at z=O and t=O. The dielectric constant in this case can
be written as

e(z) =e(z)e, +e( —z)e, , (7.19)

p(r, t) =e5(x)5(y)5(z —vt),

j(r, t) =(0,0,ev5(x)5(y)5(z —vt)) .

(7.20a)

(7.20b)

With this simple current distribution we find that its
transverse Fourier components are given by

jT(k, t) =ev fk(vt), .

and the amplitudes ak by

(7.21a)

where e(z) is the unit step function, and e, and ez are the
constants characteristic of the two media, respectively. If
the particle moves uniformly with velocity U, its charge
density and current are given by
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I fk*, (vt)e "dt .
+2Acok

(7.21b)

f ( r )
—Jlit Ei( k )e i k r+ Er.

( k )e i k r ] (7.22a)

where JV is a normalization constant that remains to be
specified. The same solution contains only a transmitted
wave for z&0,

fk(r) =AX'(k)e'" ' . (7.22b)

This expression is a general one, valid for all variations of
the dielectric function e(r). The different ways in which
e(r) may vary, however, call for different forms of the
mode functions fk(r). We shall restrict consideration,
for the present, to the simple two-medium variation ex-
pressed by Eq. (7.19).

In order to study the spectral and angular distributions
of the emitted photons we must first find the mode func-
tions appropriate to the discontinuity e(z) at the plane
boundary z=0. That problem is solved by the well-
known Fresnel solutions' of the wave equation. The
complete set of required eigenfunctions consists of two
classes, which may be denoted by an incident wave vector
k=(k, k~, k, ) and by the accompanying polarization in-
dex p=1 2 for the incident wave. We choose the polar-
ization p=1 to lie in the plane of incidence, i.e., the plane
containing k which is perpendicular to the boundary
plane. The polarization p=2 is then chosen to be paral-
lel to the boundary plane.

The two classes of eigensolutions are defined then as
follows.

(I) The first class of eigensolutions corresponds to
waves incident from the half-space z(0. For these fk(r)
contains both incident and rejected waves for z(0 and
these can be written as

(note that we assume the media to have unit magnetic
permeability, so that B=H). These require continuity of
the parallel component of fk(r) and of the vector func-
tion VX fk(r) at z=O.

(II) The second class of eigensolutions corresponds to
waves incident from the half-space z&0 and has wave
vectors with k, &0. Those solutions take a form analo-
gous to the first class, except that we have to exchange ei
and ez and let z~ —z.

According to the expression (7.21) for the amplitudes
o.k, transition radiation can only lead to the emission of
photons of the polarization p=1, i.e., polarized in the
plane of incidence, since for @=2 the vector function
f&(r) is perpendicular to the z axis and to v.

The boundary conditions to be satisfied by the class (I)
eigenmodes are

e,(E,'+ E,")=e2E,',
E'+E'=E'

II II Il
'

k XE'+k"XE"=k'XE'
II

(7.25)

Any pair of different solutions satisfying the conditions
(7.22) of their analogs for class (II), together with the
boundary conditions (7.25), can be shown to be orthogo-
nal in the sense indicated by Eq. (2.14a). We can further-
more secure the normalization specified by that equation
by choosing the constant JV to satisfy the relation

4~'W' ~E'~'+ ~E" '+ ~E'~'
elk,

(7.26a)
@2k,

in the absence of total internal reAection. The coefficient
multiplying ~E'~ on the left-hand side of Eq. (7.26a)
arises from the identity

For both of the solutions (7.22) the incident, transmitted,
and reAected waves are taken to be transverse. The
rejected wave then has a wave vector

5(k, —k,') = dk, e,k,
5(k, —k,')= ilk, —k,') .

dk,

k"=(k,k, —k, ), (7.23a)

while for the transmitted or refracted wave we can write

When total internal reAection takes place in the medium
(I) there is no transmitted wave and the normalization
condition reduces to the form

k'=(k„k, k, ), (7.23b)
4' ~(

~

E'I +
I

E"
I

') = 1 (7.26b)

These wave vectors fulfill the dispersion relations
2

k +k +k, =e)
C

2

k2+k2+k 2—
C

(7.24a)

(7.24b)

which, together with Eqs. (7.23), express Snell's law.
Note that for e, & e2 certain of the solutions correspond
to k, & 0, i.e., to total internal reAection.

To fully satisfy the transversality condition (2.12b) the
functions fk(r) must also obey an appropriate boundary
condition, that is, the condition that the normal com-
ponent of e(z)fk(r) be continuous at z=O. In addition,
we have the usual continuity condition on the parallel
component of the electric field E and the magnetic field B

To find the amplitudes ak for the class (I) modes we
must introduce the expressions (7.22) into Eq. (7.21) and
carry out the indicated integrations over t. Those in-
tegrals, though not strictly convergent, are easily summ-
able by using the familiar device of letting &ok have a
small imaginary part and taking the limit as it goes to
zero. In this way we find

' 1/2
1

ak = lim iev E,'(k}
v o 2A'cok ' v+i (k, v —cok )

+E,"(k)
v i (k, v +cok)—

+E,'(k)
v i (k, v —c—ok )

(7.27}

Note that for v )c; =c /Qe, , i = 1,2, Cerenkov radiation
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1uk= lim iev
~~Q 2ACOk

1

v i—(k, v +coi, )
E,'(k)

will be emitted for k, v =cok or k, v =cok. We shall limit
considerations here to cases in which v (c, for both i = 1

and 2, so that no Cerenkov radiation is present.
For the class II solutions the expression for ak reads

1 /2

COk

' c
cosO, = (n, —n2sin 8)'

COk

k,'=n2 cosO .

where O, is the angle of incidence, and

(7.31a)

(7.31b)

+E,"(k)
v i —(k, v —cok )

1+E'(k) + (k +

Any contributing mode of class (II) and frequency Iok will
likewise have a propagation vector of magnitude

2

(kII )2 —~2 2
C

(7.32)

In this case, however, it is the reAected wave that falls
into the solid angle d Q. It follows then that

(7.28)

, , dk'
d COk

2

=ni
C

where n, =Qei is the refractive index of the first medi-
um. The waves of the first class that reach any point of
observation in the forward hemisphere are those that
have been transmitted by the plane interface, and so their
contribution is proportional to the transmission
coe%cient, which we shall write as T . The contribution
of the modes of the first class to the spectral density of
photons is thus proportional to

2

TII a„,I2n 'I

c

The contribution of the solutions of the second class is
likewise proportional to Ia„III and to the mode density

nzcok/c . It is only the reAected part of these waves,
however, that is observed in the forward hemisphere and
so a factor of the reAection coefficient, which we write as
R", is also included. The total expression we find for the
photon distribution over angles and frequencies is thus

= T'Ia„II'n I, +R "Ia„„I2n32, (7.29)

We propose now to calculate the average number of
photons of frequency near co& emitted in the forward
hemisphere into the solid angle d 0=cosO d 8 d P. This
quantity, because of the axial symmetry of the problem,
depends only on the angle O and is given by the sum of
two contributions, one from each class of mode functions.
The contribution of the first class of modes is proportion-
al to Ia, I, where a„i is the amplitude given by Eq.
(7.27), and to the frequency density of such modes in the
solid angle dO,

COk COkk,"=n, cosO, = (n I n2—sin 8)'~
C

(7.33a)

k,"=n2 cosO . (7.33b)

We should note that if sinO; )n2/n I, then the contribu-
tion of the class (I) modes to the intensity (7.29) will van-
ish due to the total internal reAection.

The coeKcients T' and R" that enter the expression
(7.29) for the photon distribution are the familiar
transmission and reAection coefficients given by the ex-
pressions'

2(ni —n2sin 8)'
TI 1 2

(n I n2sin 8)—'~ +n2cosO)

n2cosO —(n I n2sin 8)'—

n2cosO+ (n, n2sin —8)'

(7.34a)

(7.34b)

We shall restrict considerations here to the case of an-
gles O small enough so that total internal reAection can-
not occur. In that case we have for the class (I) solutions

E,' = I
E'I sinO, ,

E,"=IE"IsinO, ,

E,'= IE'IsinO,

(7.35)

with sinO, IsinO=n2/nI. For the class (II) solutions, on
the other hand, we have

where 8, is the angle of transmission of this wave [it is
equal to 8,. for the class (I) mode]. The z component of
the incident propagation vector for the class (II) mode is
given by

To evaluate this expression more explicitly we note
that any contributing mode of class (I) and frequency Iok
has a propagation vector k of magnitude

E,' = I

E'
I sinO,

E,"=
I
E"IsinO, (7.36)

2

( kI )2
COg

c 2
(7.30) E,'= IE'IsinO, ,

If its transmitted wave, furthermore, is to fall into the
solid angle d 0, it must also have

with sinO/sinO, =n, /n2. From the above expressions
one easily derives the final result
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n, k,'U —
su~

d 1V(cok, 0) e v toksin0 T n1 n2

d Qd cog 2Acok c

R IIn 3

+ (g II
)

I /2

kz U

——(T )
II in

tl i k, U +cog
(7.37)

The transition and regection coe+cients obey the identities R'+ T'=R"+ T"=1, while the normali ation constants
are given by

and

4~' 1+R'+T'
@2k,

~ kII
4 1+R +T ok"

i z

A11 our results are based, of course, on the assumption that the refractive indices are independent of frequency. In the
limit in which the moving charge has velocity close to c, v =c, and when e, and e2 are close enough to 1, the expression
for the average intensity may be simplified. The emission in that case takes place predominantly in the forward direc-
tion, i.e., with sin0=0. In the expression (7.37) the terms with denominators k, v —cok and k, v —cok give the principal
contributions. In all the other places we use the approximate values

TI TII

R =R =0,
pl =n =1

1 2

d X(0,cok) e~v~0~ 1

dQdcok 4tr3htokc 0 +2(1—v/c)+2(1 n, )— 1

0 +2(1—v/c)+2(1 n2)—
The result we obtain is then the well known Frank-Ginsburg formula'
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