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Ab initio relativistic many-body calculations for the Hg 6p resonances
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Relativistic configuration-interaction calculations have been made for the 6p resonances of Hg I

using a relativistic version of the Pano theory. Pair-correlation effects associated with the 5d and

valence electrons are important, contributing —1.5 eV to the positions of the resonances. Relative
to Hg 6s, the theoretical positions of the resonances (in crn ') are 90654, 94595, 97066, 106257,
and 111609 for 'Po

~
„'D2, and 'So. The experimental values are 90096, 93 980, 96 185, and (tenta-

tively) 103232, 109286 cm '. The theoretical values for the width (in eV) are 0.002, 0.0, 0.215,
0.914, and 0.298. The experimental value for the 'P2 width is 0.272+0.074 eV.

I. INTRODUCTION

We are seeking to complete the development of a rela-
tivistic many-body methodology that will allow us to cal-
culate, fully relativistically, lifetimes of metastable states
of atomic negative ions. To date, we have completed the
development of the methodology for bound-state func-
tions' and used these results to predict oscillator
strengths for the Tl resonance transitions. In this
work, we turn our attention to the generation of rela-
tivistic continuum functions, and by making the
configuration-interaction in the continuum (CIC)
theory ' relativistic, we combine this with the relativistic
bound-state methodology' to predict, for the first time
in an ab initio manner, the positions and widths of the
6p resonances of Hg I. These constitute an attractive
test, as the P levels are well established ' and the 'D and
'5 levels are still not completely identified. Additional-
ly, to a substantial extent we are dealing with a two-
electron system.

In Sec. II of this work, we outline the relativistic ver-
sion of the CIC method. Section III discusses the genera-
tion of relativistic continuum functions. Section IV tells
how the localized (bound) wave function is calculated and
Sec. V how relativistic continuum functions are allowed
to interact (via relativistic CIC theory) with the localized
wave function. Section IV includes discussion of the rela-
tivistic REDUCE method used to reduce the number of
couplings that must be considered and Sec. V the numeri-
cal and analytic methods used to calculate the shifts and
widths of the relativistic CIC theory.

II. RELATIVISTIC CIC THEORY

Since this is our first application of relativistic reso-
nance theory, we shall only introduce concepts and calcu-
lation methods that we feel are necessary at this stage to
produce reliable results for the resonances of Hg.
Later, as circumstances necessitate, we will introduce

refinements such as systematic treatment of nonorthonor-
mality, inclusion of localized correlation effects in contin-
uum wave functions, etc. , which have already been con-
sidered, at times, in the nonrelativistic treatment of reso-
nances (this will also include phenomena that arise solely
from relativity as well).

The CIC theory begins with a separation of the prob-
lem into a localized (bound) part, and a continuum (con-
tinua) part. To the greatest extent possible, we want to
deal with an orthonormal problem throughout (nonrela-
tivistically, this requirement has most frequently been re-
laxed in dealing with the widths). Our choice of how to
effect this separation is a relativistic generalization of ear-
lier nonrelativistic work. In the case of the Hg 6p reso-
nances, enough information is available to know that
these all lie above the Hg+ 6s threshold and below the
Hg+ 6p (hence the resonances are of the Feshbach type)
and Hg 5d 6s thresholds. Thus we must ' project out
the 6s s and 6s d continua in order to apply the theory.
Like the nonrelativistic work, we do this at the zeroth-
order (Dirac-Fock) level. In particular, we assume that
all continua in need of projection can be built from the
same 1s, . . . , 6s Dirac-Fock spinors, which are also the
same (ls, . . . , Sd) as the ones appearing in the localized
portion of the wave function (i.e., this is one assumption
of orthonormality). We add a 6s to the localized spinor
set, which we obtain from a convenient Dirac-Fock
calculation —in our case from Hg+ 6s. We should state
at the outset that most of our bound-state Dirac-Fock
spinors are obtained using the program of Desclaux; the
remaining bound spinors (those used in continuum func-
tion generation) are obtained using the program of Cxrant
and co-workers. The 6s spinor is then included in the
localized spinor set and, for the most part, all
configurations 6s s and 6s d are excluded from the local-
ized wave function. In the following, we use, for exam-
ple, the notation 6ses for a continuum subshell (es), 6sns
for a discrete (bound) subshell (ns), and 6s s when either
is meant. This not only projects out, to zeroth order,
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the continua (open channels, 6ses and 6sed), but the
denumerably infinite discrete series 6snd (two of them)
and 6sns that lie below the resonances. These discrete
Rydberg series can be formally reintroduced within the
context of the theory (correctly through first-order per-
turbation theory), and this is certainly "numerically con-
venient. " However, in Sec. V we shall demonstrate that
at least as far as the width of the J=2 resonances are
concerned this is not adequate.

Once the localized function is constructed (see Sec. IV),
the next concern of the CIC theory is the construction of
continuum wave functions that, hopefully will be satisfac-
torily orthonormal. In the present case, these are con-
structed by doing frozen-core relativistic Dirac-Fock
continuum calculations for 6ses (1=1), 6sed& (7=1,2),
and 6sed& (J=2). This notation implies the following.

(i) The s relativistic continuum spinor is calculated
from the Si coupling and that spinor is then used for the
'So continua. The problems' associated with the use of
a single configuration and an orthogonal spinor set are
thus avoided. The same approach was used for the
discrete 6sns spinors, although in this case it was neces-
sary to modify Desclaux's program, by setting the 6sns
Lagrange parameter to zero, in order to generate the
J= 1 solution.

(ii) In the case of the d spinors, the coupling implies
that we assumed that there was very little interaction
within or between ed channels. This was checked by ex-
amining "high-n" matrix elements, viz. , ( 6snd lHl 6smd ) .
It was found that within a channel these were 10 or
less in magnitude and that between channels (J=2) ma-
trix elements were 10 or less in magnitude. For the
calculation reported here, this was considered adequate.

Formally, the localized basis function P and the contin-
uum wave functions ltd form an orthonormal set and the
shift of the localized energy (E& = (PlHlg) ) is given by

Bates. ' The mesh is a combination of the exponential
grid used by Desclaux for the first few hundred points,
and a linear grid spaced so there are at least six grid
points per half cycle of oscillation (current dimensioning
is limited to 2000 points so that orbital energies must be
~ 100 a.u. ). In the "match region" a rational function in-
terpolation and/or extrapolation procedure is applied to
allow the integration to continue smoothly from the ex-
ponential to the linear mesh.

The bound spinors are obtained from either the Grant
or Desclaux programs. Integration of the continuum
equation proceeds until the asymptotic region is reached
(exchange potentials effectively zero). Normalization
then proceeds via the Stromgren method, ' ' which ap-
plies a WKB approach to the major component of the
relativistic continuum function. This agreed quite well
for the relativistic hydrogenic cases for Z «60, where
both components were asymptotically fit to the regular
and irregular conAuent hypergeometric solutions.

The off-diagonal Lagrange parameters y, are calculat-
ed in a somewhat novel way. One inputs estimates for
them (y; =0), solves for the continuum orbital, calcu-
lates the orthogonality integrals, and uses these results to
estimate new parameters by the bisection method. Thus
one is able to avoid having to input specific information
concerning the Dirac-Fock equations used to construct
the bound spinors, in contrast to the nonrelativistic pro-
cedure. '

IV. CONSTRUCTION OF THE LOCALIZED
WAVE FUNCTIONS

One begins by solving the Dirac-Fock (DF) equations
for the 6p resonances and the 6s reference state of Hg I.
The correct electrostatic structure for each level is used'
with the average energy Breit contributions; the results
are shown in Table I. Since the contribution of the aver-
age Breit energy to energy differences is less than 0.5
mhartree, and because the valence-valence radial Breit in-
tegrals are one to two orders of magnitude smaller than
the largest ones in the average energy, one concludes that
nonaverage Breit effects can be ignored for the energy
differences.

Table I also contains the DF Imore properly, the
multiconfigurational Dirac-Fock (MCDF) j coefficients.
It is possible to determine how "pure" these are from an
LS perspective by forming LS eigenstates' from the jj
coupled configurations and then expressing the MCDP
results in terms of these LS states. The result is that the" P"

z state has a 21% admixture of 'D2 in it, while the" P"o state, at the MCDF level has an admixture of 6.7%
of 6p 'So in it. Without this admixture, the " P"J state
would not interact with the continuum (via the Coulomb
operator), so that we would have bound states rather than
resonances (the " P"

i state is pure at the MCDF level, so
it is bound at this level). As we shall see when we calcu-
late the widths, the large admixture of 'Dz in the " P"2
state produces a "broad" state, whereas "P"o remains
quite sharp, due to the small admixture of So in it. Fi-
nally, the "'D"2 state is 21% P2 and the "'So" state is
6.3%%uo Po.

Once the zeroth-order wave function (MCDF) is avail-

E E~ = g — + Q P J dE, '

n, i ni I E —E,'

III. GENERATION OF RELATIVISTIC
CONTINUUM ORBITALS

Relativistic continuum orbitals are generated" '

within the frozen-core approximation. The expression
for the energy is electrostatically correct for each level in
question (no Breit effects are included), and the off-
diagonal Lagrange parameters are fully included. This
approach is analogous to the nonrelativistic one used by

where the sums are over all open channels (6ses for J=O;
6ses, 6sed3 for 1=1; and 6sed3, 6sed& for 7=2), P indi-
cates a principal-value integral, itj& (g„) are the open
channel continuum (discrete) wave functions, and E E&-
is the desired shift.

The full width I of the resonances, which is inversely
proportional to its lifetime, is given by the equation
("golden rule" )

1(E)=2~I&y H Elq &I', — (2)

which is to be evaluated at the "final" position of the res-
onance.
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TABLE I. MCDF and Breit energies {a.u. ) and coe%cients. {In designating relativistic subshells, we
use 2j and not j as a subscript throughout this work. )

Coe%cients
State

6p Sp
6p2 1~
6p2 3p

6p2 3p

6p2 3p

6s 'Sp

EBreit

22.593 825 3
22.593 857 6
22.594 035 9
22.594 109 3
22.594 297 4
22.594 095 8

EMCDF

—19 625.824 177 0
—19 625.863 808 5
—19 625.894 569 2
—19 625.906 012 4
—19 625.920 164 7
—19.626.275 315 6

6p]

—0.352 79

—0.938 56

6P ] 6P3

0.463 58
0.887 08
1.0

6P3

—0.935 70
—0.886 05

0.461 616

0.345 123

able, the many-body wave function is constructed' from
those configurations characteristic of a first-order wave
function (single or double subshell excitation from at
least one configuration present in the Dirac-Pock solu-
tion). The wave function is further restricted to only per-
mit excitation from the n = 5 and 6 subshells of the solu-
tion [excitations from other shells are thought to contrib-
ute little to the properties of these resonances (see
below)].

While the 6p resonances lies below the Hg+ 5d 6s
continua, bound configurations of the type 5d 6s n/
where nl =7s, or 6d lie between the Hg 6p reso-
nances. Neither of these configurations was allowed to
appear in our energy matrices, because they are related
by triple excitation, viz. , Sd6p ~6s nl to the dominant
configuration (6p ), and so do not directly interact with
the MCDF solution.

Subshells unoccupied in the zeroth-order function are
called "virtual" subshells, and the radial parts of the spi-
nors associated with them are represented by relativistic
screened hydrogenic functions whose screening constants
are optimized using the energy variational principal. As
argued in our earlier work and further evidenced here
through the numerical results, use of such functions
seems to properly couple the major and minor com-
ponents to prevent collapse into the "positron" sea (for a
discussion of this problem see Ref. 17 and for other
remedies see Ref. 18) if the variations are done with some
care. In particular, we find, just as in the nonrelativistic
cases (e.g., Ref. 19), that a very good estimate of the
effective charge of the virtual radial function can be made
by forcing it to produce the same average value of r as
the Dirac-Fock spinor it is replacing (formulas are avail-
able in the literature ' ' for (r)). Final values of the
effective charges are determined during application of the
energy variational principle.

To date, the choice of n =l —1 (l is the orbital quan-
tum number of the major component) for the virtual radi-
al function's power of r has been most effective. When a
second virtual radial function is needed for the same
shell, we increase n by one unit (to avoid degeneracy
problems). This choice of n differs from that used nonre-
lativistically;' there, n had a value corresponding to the
lowest unoccupied subshell of the appropriate symmetry
(n=7 for s and p functions, n=6 for d, and n=5 for f
and g functions). But in the non-
relativistic case, the n ) l —1 virtual radial functions

were a single Slater-type orbital (STO), whereas relativist-
ically, hydrogenic virtuals with n ) l —1 consist of more
than one term. This may account for the differences we
encounter in choosing n (clearly a study of both the non-
relativistic and relativistic cases would be of interest).

Our experience (Ref. 19 and this work) and relativistic
experience to date suggest that two optimized relativistic
screened hyrogenic functions per l are suScient to gen-
erate about 90% of the pair-correlation energy. The fol-
lowing considerations apply to determine at which l to
truncate the virtual subshell space.

(i) Strict application of first-order perturbation theory
to all single and double excitations (except double excita-
tion into two virtual subshells) requires that the j sub-
script of the virtual be no greater than 3j „,where j
is the largest j in the zeroth-order wave function associat-
ed with the "active subshells. " This limits the virtual
subshell's l to ~ 3j,„+—,'. For example, for the 6p pair
energy, l would be ~ 5.

{ii) On the other hand, for the 6p case, the nonrela-
tivistic limitation' would be 3l „=3. It has also been
found nonrelativistically' that the "bivirtual" correla-
tion (double excitation into two virtual subshells) can also
have this restriction applied to it.

(iii) For the relativistic calculations reported here, we
have chosen to cut off the virtual symmetry at l=4. This
choice was based on computational evidence from our
nonrelativistic Hg studies (see below).

The choice of what pair correlation to include from the
"core" depends on the choice of reference state that is
made. In the present context, Hg I 6s 'So was chosen as
a reference. Nonrelativistic computational evidence
suggests that the pairs, in order of their importance in
contributing to the energy difference between Hg 6p and
Hg 6s, are 5d6p, 6p followed by Sd, 5p6p, Ss6p (the last
three are not necessarily in order). The core-valence
pairs (Sl, 6l') present two difficulties not present in the
valence pairs (6s, 6p ).

(i) They involve a lot more "parents" per configuration,
due to the opening of the Sd subshell.

{ii) They (and other pairs involving 5d; in particular,
Sd ) possess a large pair energy (for example, the 5d, 6p
pairs for "P2" have nearly 1.50 eV of energy), which
must be calculated so that the errors that have been made
nearly cancel out. We either have to make our absolute
error 5%, or so, or make sure that all Sd, 6p and Sd, 6s
pairs have similar errors so that energy differences be-
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tween these pairs are accurate to a few hundredths of an
eV. This involves, among other things, making sure that
comparable virtual subshell sets are used, that the same
variety of configurations are included (e.g. , the same l
truncations are used), and that all the parents associated
with each configuration are carefully screened.

This last point initially presents some difhculties in that
there are several thousand possible parents, but we desire
to keep our energy matrices to -300 parents due to the
lack of a multiroot large diagonalizer and for reasons of
analysis and interpretation. To overcome this, we initial-
ly introduced the relativistic REDUCE method. As ap-
plied here, we take the MCDF solution as our zeroth-
order function and then the energy matrix element be-
tween the MCDF solution and each virtual configuration
is written out symbolically' in terms of the M electro-
static R" integrals (and one-particle integrals in some of
the single excitation cases). Most frequently (J=O is an
exception) there are fewer of these integrals than there
are parents (X). The program then rotates the parental
set to a new orthonormal set having N —M parents,
which have zero matrix element with the MCDF solu-
tion. These N —M new parents are then discarded.
Reductions of a factor of 3 or more were observed in this
work (e.g., for Sd, 6p~ud, uf in P, we went from 118
parents to 42 parents). But these also prove to be too
many survivors. We then break the problem up, investi-
gating a subset of the Sd, 6p (or Sd, 6s) parents in the pres-
ence of the 6p (6s ) correlation. Small parents (energy
contribution &0.015 mhartree in magnitude, providing
the coefficient is smaller than 0.003) are then removed.
After all the sections have been investigated, the sur-
vivors are reassembled in a single final run. The final-

energy matrices have about 300 parents for each level.
Calculation times on a SUN Spare 1 are about 30—40 min
for the final run (iteration of the virtual radial functions
occurs during the "sectioning" process).

In Table II, we present our final values for the many-
body energy associated with pair excitations from 6p,
6s, 5d 6p, and 5d 6s, and the single-excitation
5d ~ud +ug, which is absent in the reference state. The
many-body energy is divided among various symme-
try classifications, using intermediate normalization,
(P~g) =1, where P is the MCDF reference function and
g is the complete function. In this context, according to
first-order perturbation theory, ' each parent contributes
to the many-body energy: (CALICO)*(Q~H~P) where Cp
(Co) is the parent's (reference function's) coefficient in g
and (p~H~P ) is the off-diagonal matrix element connect-
ing the parent and the reference function. While this
first-order analysis is very useful, there are obvious cases
where it is not valid; for example, when a parent raises
the energy, according to the analysis. This merely im-
plies that higher-order effects dominate.

As we can see from Tables II and III, the most
significant effect of the Sd, 6p (Sd, 6s) correlation is to
considerably increase (by 1.3—1.7 eV) the 6p -6s "gap."
The near uniformity of this increase, which is expected
based on our nonrelativistic experience (Refs. 22 and 23
and Table III), occurs within each symmetry category.
This characteristic presents us with a good "diagnostic"
test—if there were any significant discrepancies, then one
should reexamine the completeness of the various basis
sets used (virtual subshell, parental, configurational), to
make sure no large contributions were missed (this was
done for all the entries in Table II).

TABLE II. Contributions to correlation energy by symmetry pair (in mhartree).

E'
6p

$2

d2

f2

sd

CC3 ~0%
p

+ 1.740'
—1.269
—3.657

—1.044
—0.188

3p

—0.824
—2.765

—0.571

cc3 7) j9

—1.123
—2.935

—0.589
—0.060
—0.603

6p 2

cc]D&s

—0.969
—2.985

—0.621

—1.664

+3.500
—4.808

—13.638

—3.513
—0.852

$2

d2

f2

6$ —+$

s2~

—0.900
—16.092
—0.912
—1.143
—0.297
-0

dg

SP

pd
df

sf
5d ~d

'6s2= + 1.888.
6$ =+6.249.

—0.035

—4.504
—10.965
—18.267

—19.055

—2.770
—1.139

—0.788

—4.395
—8.778

—18.067

—16.775

—3.512
—0.957

—0.049
—0.609

—1.630
—1.345

—4.198
—7.051

—16.493
—0.460

—16.031
—3.079
—1.018

—0.177
—0.290

—0.519
—2.475

—4.084
—7.114

—15.509
—0.613

—12.287

—2.577
—0.972

—0.0350

—4.276
—7.117

—14.430

—14.084

—1.176
—1.147

5d6s

sd

pf
dg

f2

5d ~d
5d ~g

—13.733

—62.492
—4.954

—17.768
—0.137
—1.576
—0.211
-0
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TABLE III. Contributions to correlation energy by origin in (mhartree).

6s

e 2 Rel. '
6p

, NR
6p

e,d 6 Rel. '
~sd, 6p

NR"
e,d' Rel. '

" NR
NR"

ess6p NR b

Cc3
p

—4.453
—4.710

—52.791
—41.313
—3.909

—2.294
—0.129

'P,
—4.948
—4.710

—48.015
—41.313
—4.469

—2.294
—0.129

cc3 ~~~

—8.943
—4.710

—44.233
—41.313
—4.097

—2.294
—0.129

cc1 ~so
2

—9.69
—9.241

—39.607
—40.487
—3.549

—2.221
—0.0990

cc] ~
Mo

—19.346
—16.275
—39.907
—37.654
—2.323

—1.936
—0.0567

'So

, Rel. '
6s

2
NR"

c,d 6, Rel. '
e5d6, NR b

e,d' Rel. '
sd' NR"

e5 6s NR
~5s 6s NR

—19.344
—22.024

—100.871
—69.914

-0
—5.863
—0.4907

'From Table II.
Separate nonrelativistic calculations (this work).

'Single excitations from 5d.

The valence contributions vary more among the reso-
nance states because (i) a contribution may be excluded in
one resonance and present in another (e.g. , upuf) for
reasons of symmetry; (ii) many-body effects may be more
nearly degenerate for one resonance than another (i.e.,
many-body configurations may be closer to the MCDF
configurational energy in one case than in another).

The main source of error in Table II is associated with
the 5d, 6p (5d, 6s) pair energies and arises from at least
three causes: (i) truncation of the parental space (parents
contributing &0.015 mhartree have been excluded); (ii)
incomplete radial space (primarily failure to use a second
set of. virtuals for the 5d, 6l correlation); and (iii) trunca-
tion of the angular space, e.g., exclusion of fg (in some
cases), pg (in all cases), and all l )4 correlations.

In Table IV, we provide estimates of these three error
types. It is of interest to note that in the case of the "'D"
the Use of extra virtuals actually raised the energy some-
wh. at ( —2 mhartree). This appears to involve a third-
order eA'ect for a root that is not the lowest in the matrix.

There are other errors associated with Table II as well.

For example, we neglected the contribution of the Breit
operator within the Sd —+Ud excitation. For the " P" lev-
els, core-valence eA'ects might provide a significant
"shielding" of the bare-nucleus eAects from this source.

As part of this project, we undertook nonrelativistic
calculations as well. Originally, these were used as indi-
cators to give us an idea of what configurations should be
included. We have cited the final results of this study in
Table III (more detail can be found in Ref. 23). The non-
relativistic results (see Table III) follow the relativistic
ones fairly closely. Thus we may anticipate that when
the 5p, 6l correlation is obtained relativistically, the 6p-
6s gap may be widened by about 3.5 mhartree and that
the eftect of the 5s, 6l correlation will be &0.4 mhartree
(widening the gap). Nonrelativistic studies may be con-
tinued in the future for the 5d correlation to estimate
the size of the relativistic contributions from these excita-
tions (these calculations are difficult to perform relativist-
ically currently). The present nonrelativistic calculations
also indicate that Upug symmetries contribute & 0.8 mhar-
tree io 5d, 6p pairs, and that uf ug contributions should

Source cc 1 ~09
o

cc] ~os
2

cc3 7)00
2

cc3
o

TABLE IV. Total energies (add —19 625.0 hartree to get absolute values) (in hartrees).

3p 2 lg

MCDF'
Corr.
Errors'
Open channels
Down shift'
Total'
Total (6s')g
Total (cm ')"
Expt. (cm ')'
Error (eV)"'

—0.920165
—0.061 1. 53
—0.001 49
+0.000 030

0.0
—0.982 778
+0.412 753

90 654
90 096
0.069

—0.906 012
—0.057 432
—0.001 39

0.0
0.0

—0.964 834
+0.430 696

94 595
93 980
0.076

—0.894 S69
—0.057 273
—0.0161
—0.000 13

0.0
—0.9S4 582
+0.441 948

97 066
96 185
0.109

—0.863 807
—0.052 85
+0.002 23
+0.002 69

0.0
—0.911 737
+0.483 794

106 2S7
103 232
0.375

—0.824 177
—0.061 576
—0.000 043
—0.001 35
—0.000 22
—0.887 366
+0.508 165

111609
109 286
0.288

—1.275 316
—0.120 215

0.0
0.0
0.0

—1.395 531
0.0
0.0
0.0
0.0

'From Table I.
From Table II (total correlation).

'Estim. ated errors due to truncating parental and radial basis from Sd, 6p pairs (see text).
See Sec. V.

'Adding = —0.029 25 hartree to the 6s diagonal matrix element (see text).
'Sum of a through e.
gEnergies relative to 6s (f).
Converting hartree to cm '. Using 1 a.u. =27.21 1 396 eV and 84 184.1 cm ' = 10.43 eV.

'Refs. 5—7. The "'5"and "'D" assignments are tentative.



43 AB INITIO RELATIVISTIC MANY-BODY CALCULATIONS. . . 4665

be closer to 2.0 mhartree (rather than 0.5 mhartree, as in-
dicated in Table II); this suggests the need of an addition-
al Ug for the 5d, 6p pairs.

Finally, to account (in part) for the difierence between
the Hg+ 6s and Hg 6s spinors, we added —0.02925 har-
tree to the 6s diagonal matrix element (in 6p "'5"o),
which was built from the Hg+ 6s spinor (this properly ac-
counted for the diagonal element). As can be seen from
Table IV, the effect was small.

V. CALCULATION OF SHIFTS AND WIDTHS
OF RESONANCES

The shifts are evaluated self-consistently using Eq. (1),
taking as an initial starting point E =E&, i.e., the local-
ized energy (referenced to Hg 6s ) from Sec. IV. To solve
this equation we initially made several approximations.

(i) To evaluate the off-diagonal matrix elements (both
discrete and continuum channels) only MCDF wave
functions were used (this was relaxed for the width; see
below).

(ii) The Breit operator was not included in the off-
diagonal matrix elements.

(iii) We assumed that the radial parts of the MCDF
wave functions of the localized portion of the resonance
states did not vary much from state to state so that we
did not have to calculate an R integral repeatedly for
different resonance states.

(iv) We assumed that the discrete and continuum
open-channel radial functions are independent of the final
J (see Sec. III for more detail).

All these approximations greatly simplify the calcula-
tion, which ends up requiring 30—50 points to cover the
energy range from 0 to 5 a.u. for each set of integrals:
R "(6p;6sed3), R "(6p;6seds), and R "(6p;6ses). Cal-
culation times for each point are about 1 h on a SUN
Sparcstation 1.

Two of the approximations were checked directly in
this work. For (3), for example, in calculating the shifts
for "I'"2 and "'D"2, we used the proper MCDF radial
functions for each level, and found that the radial in-
tegrals used to calculate the shift only changed about 5~o.

To check approximation 4, we ran the Desclaux" pro-
gram for 6s10d3, J= 1,2 and checked (r ) &od, eood, and
F (6s, 10d) (direct electrostatic radial integral). These
varied &0.9% for the two J values. As noted in Sec. III,
this assumption was essential in that is permitted us to
generate a 6sns (es) solution for J= 1, and use it for the
J=O case.

Providing that the first assumption is a valid orie, the
types of Breit integrals 8 that could appear would be of
the type 8 (6p;6sel), where I =s/d. These purely
valence-type integrals should be one to two orders of
magnitude smaller than core valence 8 integrals, and if
one is going to neglect the latter (through the assumption
of MCDF functions), it seems reasonable to also neglect
them. The first approximation is the most dificult to jus-
tify, but some analysis has been done nonrelativistical-
ly; which indicates that it is acceptable in some cases.
Removal (or at least further investigation) of these two
approximations will be the subject of future work (see,
however, the discussion of the widths below).

To evaluate the integral in Eq. (1), an analytic fit was
made of the graph of each R as a function of energy.
These integrals behave quite smoothly, including near
the resonance positions (about which they "know" noth-
ing), and a polynomial fit using powers smaller than 5 is
quite adequate. Once the fits are made, the principal-
value integral of Eq. (1) can be evaluated exactly (the off-
diagonal elements are given as an explicit' linear com-
bination of R integrals. The fit also allows one to extra-
polate the curves from the smallest positive energy (con-
tinuum) calculated, down to the highest (n=16) discrete
open-channel state computed, for as is well known the
electrostatic R have the (nonrelativistic) behavior,

n R "(6p6p;6snl)=R (6p6p;6sel) for n ~ oc, e~0 .

We found the contribution from the "extrapolated re-
gion" to be quite small, no more than a few tenths of a
percent. Once the shift was calculated, it could be rein-
serted on the right-hand side of Eq. (1) to generate an im-
proved shift. The final converged value was no more
than 4% from the initial value. The results are included
in Table IV; it is interesting to note that the J=1 state is
a "pure" P at this level (MCDF) of approximation, so

TABLE V. Comparison of Wilson's widths with this work {eV).

State Channel

6s es, 6sns

6sed3/2 6snd &&2

6s ed, ~2, 6snd, z,

6$ cd 3 g2, 6$nd 3 y2

6s ed ~ q„6snd, ~2

6s es, 6sns

This work'

0.298

0.385
0.500

0.106
0.219

0.002

This workb

0.395
0.519

0.066
0.149

Wilson'

0.088

0.672

0.189

0.007

Expt. "

0.272

'Our results without correlation effects {only MCDF configurations are used for the localized portion of
the resonance states).
"Our results with correlation eA'ects [MCDF configurations and the configurations of 6snd (6 . n 16)
are used for the localized portion of the resonance statesj.
'Reference 27.
Reference 6.
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TABLE VI. Positions of resonances (relative to 'Po) in cm

Expt. '
This workb
Error'
Wilson"
Error'

cc3 ~%9~ 0

90 096
90 096

90 096

3p

93 980
94 037

57
93 272

708

cc3 ~9%
2

96 185
96 508

323
95 533

652

CC j ~SO
2

103 232
105 699

2467
101 563

1669

CC]g~
0

109286
111051

1765
109616

330

'References 5—7.
bTable IV.
'Absolute value of row 1 minus row 2.
Reference 27.

'Absolute value of row 1 minus row 4.

that it should have no shift at all (at the MCDF level,
6ses and 6sed are incapable of forming a P). The small
finite value for this shift (0.0001 eV) represents the accu-
mulation of numerical errors made.

VI. CALCUI. ATION OF THE WIDTHS

The widths are calculated using Eq. (2), the "golden
rule. " In this work, full orthonormality is assumed (we
examined the validity of this for the core spinors by look-
ing at the ( 5d/5d') overlap integral for Hg+ 6s and Hg
6p . This was equal to 1.0 to within 0.05%). As for the
shift, we initially made two even more stringent assump-
tions.

(i) We used only MCDF solutions to evaluate the in-
tegral.

(ii) We ignored the Breit operator in evaluating the ma-
trix element.

The results we obtained using both approximations are
shown in Table V (column 3), where they can be com-
pared with Wilson's results, which were obtained using
a semiempirical Hartree-Fock-Slater method (scaling of
the integrals). These calculations included just the five
configurations 6s +6&6d +6z7d +6s8d +6p . Also list-
ed in Table V is an experimental value for the "P"2
width [the widths of other resonances are either very
small ( Po, ) or large but not yet available
(cclg rt cclD%9 )]

It can be seen that our result (Table V, column 3) is
considerably larger than either Wilson's or experiment.
A prime candidate for the discrepancy is the failure to let
6p interact with the 6sd series "beyond" first order. Not
only is this type of interaction, which we call' SEOS
(symmetric exchange of symmetry) known to be a strong
one, but it is just these configurations that are included in
Wilson's calculation (which being CI, goes beyond first
order). Our next calculation (column 4 in Table V) was
done (J=2 states) by using not the MCDF solution for
the localized function of Eq. (2), but a relativistic CI func-
tion generated by including the configurations 6p +6snd.
The stability of the width was studied by letting n run
from n=6 to 16. By the time the latter was reached, the

width (" P"z) was stable to one unit in the third nonzero
digit. This corresponded to the stabilization of the 6p
coefficients; we were able to directly show that one
could e6'ectively ignore contributions of the type
(6snd~H~6sed ) to the width (this was investigated by re-
placing ed with md, where m was large). As the 6p
coefficients stabilized, they more closely approached the
I.S limit (and hence zero width) as the 6snd series
members were added. With n) 16 included, the 6p, 6p3
and 6p3 coefficients were 0.834423 and 0.540431 1. The
LS limits are 0.816496 and 0.577 35.

From Table V, it can be seen that our results are gen-
erally in agreement with those of Wilson and experi-
ment, where available (" P"2). The greatest discrepancy
occurs for the "'S"o width. In this case, inclusion of the
6s +6s7s +6s8s configurations in the localized function
used to calculate the width increased it only slightly;
—3% (once again, direct contributions to the width from
6s, 6sns were ignored).

Clearly, further work on the widths should initially be
in two directions: (i) use of a larger, more accurate local-
ized function; (ii) inclusion of the Breit operator when
evaluating the widths, particularly when single excita-
tions (localized to the continuum function) are involved.

Finally, in Table VI, we compare our results for the
resonance positions directly to those of Wilson and ex-
periment. In Wilson's work the position of the Po
was adjusted to agree with the experimental position. We
can see that we have accounted for the splittings within
the "P" manifold better than has Wilson, but the posi-
tion of the "singlets" is not as well accounted for
(presuming the experimental assignments have been
made properly). The reasons for the differing sizes of the
discrepancy are not clear at the moment —they may be
connected either with the upper root nature of the "sin-
glets, "or core-valence correlation not included here.
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