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A new type of "intermediate" state, ~4J ), is introduced in the representation of many-body prop-
agators and related resolvent matrix elements. A simple algebraic procedure is presented for con-
structing the unitary transformation matrix Q that relates the intermediate states and the exact en-

ergy eigenstates,
~ 4„),of the interacting system. Here the starting point is the matrix Xof general-

ized spectroscopic amplitudes (%'„~C'J ~Co ), where CJ denotes a physical excitation operator and

~+o ) is the ¹lectron ground state. A block QR decomposition [G. H. Golub and C. F. von Loan,
Matrix Computations (Johns Hopkins University, Baltimore, 1989)] of X according to the equation
X=Q E allows one to determine explicit expressions for the subblocks of Q and the intermediate
propagator representations constituted by a nondiagonal effective interaction matrix C and an
effective spectroscopic matrix f. These effective quantities f and C are formulated entirely in terms
of ground-state density-matrix elements and related energy expectation values. The relevance of the
intermediate representations as a means for deriving computational schemes is based on the regular-
ity and compactness of the perturbation expansions for the effective matrices f and C. These basic
properties also establish that the intermediate representations are closed-form versions of the
algebraic-diagrammatic construction approximation schemes derived previously as a reformulation
of the original diagrammatic propagator perturbation series. The intermediate representations
represent a link between algebraic and diagrammatic approaches in the field of propagator methods
and are expected to be useful also in the development of nonperturbative approximations.

I. INTRODUCTION

In the language of Green's-function and propagator
methods' the many-electron problem of atoms and mole-
cules is formulated in terms of ground-state expectation
values of Heisenberg operator products which after
Fourier transformation take essentially the form of
many-body resolvent matrix elements. The propagators
allow for a direct access to the basic excitation processes
in the considered system, such as single electron removal
or attachment by the one-particle Green's function G(co);
electronic excitation by the polarization propagator
LI( co ); double ionization or at tachment by the two-
particle (hole) propagator P(co). Another advantage, be-
ing particularly important in applications to larger sys-
tem, is the emergence of "size-consistent" approximation
schemes, leading to results that scale correctly with the
number of particles in the system.

The usefulness of the propagator approach depends, of
course, crucially on the quality of the available approxi-
mation schemes. Diverse computational schemes have
been developed and used in the field of applications to
atoms and molecules, and the reader is referred to recent
review articles and textbooks ' as an introduction.
One may distinguish essentially between an algebraic ap-
proach for deriving approximation schemes and methods
based on diagrammatic perturbation theory. In the form-
er family of methods, a widely adopted procedure is to
rewrite the propagator as a superoperator resolvent and
to apply inner projection techniques for its evaluation. '
Approximations result by truncating the operator spaces
employed in the inner projection of the operator inverse

and by the choice of a reference state replacing the exact
ground state. Fully equivalent approximation schemes
have been obtained in the context of the equation-of-
motion (EOM) method. "' The diagrammatic approach,
on the other hand, is based on the perturbation series for
the considered propagator, which —as is well known-
can be formulated in terms of Feynman diagrams. In
general, useful approximation schemes cannot be ob-
tained by a finite summation of these series, but one must
resort to summations through infinite order of certain
classes of diagrams. The prototype of such an infinite
partial summation is the random-phase approximation
(RPA) for the polarization propagator. ' However, the
RPA summation is complete only through first order, "
which is completely unsatisfactory for the treatment of
finite electronic systems.

Within the framework of the diagrammatic approach,
practical higher-order approximation schemes have been
obtained by a method referred to as algebraic diagram-
matic construction (ADC). ' ' The ADC method refor-
mulates the diagrammatic perturbation series according
to a simple algebraic form which may be viewed as a non-
diagonal representation of the considered propagator.
The ADC form introduces a constant Hermitian secular
matrix (effective interaction matrix) C and a matrix of
effective spectroscopic amplitudes f. Approximations for
these quantities can be successively determined by com-
paring the perturbation expansion of the ADC form with
the original diagrammatic series through finite order.
Hereby one arrives quite naturally at systematic approxi-
mation schemes [ADC(n)j representing infinite summa-
tions complete through order n for the propagator per-
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turbation expansion. Diagonalization of the effective in-
teraction matrix then leads to the spectral representation
in which the physical information of the propagator be-
comes explicit: excitation (ionization) energies are ob-
tained directly as the eigenvalues; the associated spectro-
scopic (spectral intensity) amplitudes result from a linear
combination of eigenvector components and effective am-
plitudes. The ADC approximations combine two distinct
numerical elements, namely the diagonalization of a
(Hermitian) secular matrix and finite perturbation expan-
sions of its matrix elements. An essential feature of the
perturbation expansions is the absence of so-called
dangerous denominators (which makes these expansions
practical). The merit of the ADC secular problem is the
compactness of the explicit configuration spaces required
for a consistent nth-order treatment.

While the explicit ADC reformulation of propagator
perturbation expansions through low orders of perturba-
tion theory has lead to practical approximation schemes,
questions of more theoretical interest, e.g. , those concern-
ing the feasibility and uniqueness of this construction in
higher order, remained unanswered. Of particular in-
terest is the question of whether one can find direct
closed-form expressions for the ADC transformation and
the corresponding effective quantities. This would make
it possible to replace the cumbersome indirect procedure
of deriving higher-order schemes by a more practical
direct approach. Attempts to solve this problem were
presented recently by Tarantelli and Cederbaum. '

Motivated by the obvious correspondence of quasidegen-
erate perturbation theory (QDPT) and the ADC in the
(exactly solvable) case of noninteracting particles, these
authors applied essentially block-diagonalization pro-
cedures to suitable chosen blocks in the configuration-
interaction (CI) representation of a propagator secular
matrix. In this way, explicit nonperturbative algebraic
expressions could be derived for the effective quantities
introduced on the level of the third-order [ADC(3)]
scheme. An extension beyond that level was envisaged by
adopting their general noninteracting particle scheme
also in the case of interacting particles. However, no
proof has been given so far that this approach leads to
the basic properties of the ADC representations. Anoth-
er algebraical approach recently proposed by Mukherjee
and Kutzelnigg' seems to be relevant in the present con-
text. These authors consider the resolvent of an effective
Liouvillean superoperator and introduce a special ("con-
sistent") operator manifold in the representation of this
resolvent. According to Mukherjee and Kutzelnigg, their
perturbative procedure for the construction of the con-
sidered propagator reproduces the ADC schemes. An
explicit proof of this assertion is still not available, which
makes it dificult to compare their formalism with the ap-
proach discussed below.

In this article a surprisingly simple algebraic solution
will be presented for the problem of determining a direct
nonperturbative access to the ADC representation of
propagators and related quantities. The starting point is
the matrix X of generalized exact transition matrix ele-
ments (spectroscopic amplitudes) for suitably chosen ex-
citation operators. A unitary matrix Q can then be con-

structed essentially by applying a block Gram-Schmidt
orthogonalization (or block QR decomposition) pro-
cedure to X, where the underlying block structure of X is
defined by the afFiliation of the matrix elements with dis-
tinct classes of physical excitations. The unitary matrix
Q transforms the exact excited energy eigenstates

~ 4„) to
"intermediate" states ~'IJJ) generating a corresponding
intermediate representation for the considered propaga-
tor which, as will be shown here, possesses the basic
ADC properties. The block QR decomposition (BQRD)
is quite practical and allows one to determine successive-
ly simple algebraic expressions for the blocks of Q and
also for the blocks of the effective matrices f and C. The
intermediate representations thereby obtained represent a
link between the algebraic and diagrammatic approaches,
and may prove to be useful as a starting point for new ap-
proximation schemes of both a perturbative and a non-
perturbative kind.

An outline of this paper is as follows. Section II re-
views the diagrammatical derivation of the ADC for the
illustrative example of the one-particle Green's function.
In Sec. III the block QR decomposition and the resulting
intermediate representation is introduced and discussed.
The generality of the BQRD representations is outlined
in Sec. IV. Here the treatment of the polarization propa-
gator and the two-particle propagator is briefly ad-
dressed. Some conclusions are given in Sec. V. Two ap-
pendices A and 8 are used to collect, respectively, the ex-
plicit ADC(2) equations for G(co) and the results for the
blocks of the BQRD-matrices Q, f, and C that are re-
quired for a consistent fourth-order treatment of G(co),
II(co), and P(co).

II. ALGEBRAIC DIAGRAMMATIC
CONSTRUCTION (ADC) FOR THE

ONE-PARTICLE GREEN'S FUNCTION

The ADC reformulation of propagator perturbation
expansions has been described previously for the polar-
ization propagator, ' the self-energy part of the one-
particle Green's function, ' and the pp propagator. ' A
brief review of the ADC approach will be given here, for
which the ADC treatment of the one-particle Green's
function G(co) may serve as a particular pedogogical ex-
ample.

A. Speetra1 representation

For an X-electron system with a nondegenerate ground
state

~
'Po ) the matrix elements of the one-particle

Green's function G(co) are defined in energy representa-
tion according to

G (co)=(% ~c (co E+H —iq)—'c ~~Ii+)

+(Vo ~c„(co+ED H+ig) 'c ~+o )—. (1)

Here c (c ) are the creation (annihilation) operators of
second quantization associated with a basis of single-
particle states ~cp ) usually chosen as the ground-state
Hartree-Pock (HF) orbitals; H is the Hamiltonian of the
system, F.o denotes the ground-state energy, and g is a
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(n) (n)e

6 (co) =
n~I+ —]I ~ en

Here the (negative) pole positions

EN —1 Een n o

(3a)

(3b)

correspond to the ionization energies of the system, while
the residue amplitudes

p n p 0 (3c)

referred to as spectroscopic amplitudes are related to
spectral intensities. Similar expressions apply to the case
of the (X+ 1)-particle part G+(cu).

B. ABC approximation

The ADC(3) and ADC(4) approximations derived pre-
viously' for the one-particle Green's function combined
the ADC approach for the self-energy part X(cu) and the
Dyson equation relating G(co) and X(co):

G(co)=G (ro)+6 (co)X(co)G(co) . (4)

Here 6 (co) is the free one-particle Green's function
defined with respect to noninteracting HF particles. In
the following we apply the ADC reformulation directly
to the part 6 (cu) or G (cu). Though this is certainly
less useful for deriving higher-order approximations, it is
the better suited for the purpose of demonstration. The

positive infinitesimal required for the convergence of the
Fourier transform between time and energy representa-
tion. According to Eq. (1), G(co) consists of two parts,

G(co) =G (co)+6+(co),

containing physical information on the (N —1)-particle
and (X+ I)-particle systems, respectively. The physical
content of G(co) becomes explicit in the well-known spec-
tral representation' obtained by inserting complete sets of
(¹I)-particle states ~%'„—') on the right-hand side of
Eq. (1). For 6 (co) the result is

treatment of G (ro) and G+(co) is completely analogous,
and we may confine our discussion to the former part.

The spectral representation (3) of 6 (cu) can be cast in
a more compact matrix notation:

G (cu)=x (col —Q) 'x (Sa)

where LI denotes the diagonal matrix of the (negative)
ionization energies

A„„=e„,
and x is the matrix of spectral amplitudes

(n1 ( @gal
—1

i
iqIX)

)

(Sb)

(Sc)

G (ru)=f (rol K —C) 'f . — (7)

Here C is a Hermitian matrix referred to as "effective"
interaction matrix, and K is the diagonal matrix of
zeroth-order ionization energies specified further below.
The configuration space of the matrices E and C is the
space of all (X —1)-particle configurations ~Pz ') fur-
ther subdivided into one-hole (1h) excitations, two-
hole —one-particle (2h-lp) excitations, and so forth, with
respect to the X-electron HF ground state. The matrix f
in Eq. (7) is referred to as the matrix of "e8'ective" spec-
troscopic amplitudes fz„. Its first index J labels the

The infinitesimal g is no longer essential and has been
dropped. The one-particle states r in Eq. (Sc) may be dis-
tinguished according to their HF occupation numbers
n„= 1 (hole states) and n„=1—n„= 1 (particle states), re-
spectively. Correspondingly, the matrix x is composed of
two parts:

x =(x(h), x(p)),
where the hole (or physical) part (h) and the particle (or
unphysical) part (p) comprise the columns of x with
n„=1 and 0, respectively. This organization of x is de-
picted in Fig. 1.

The ADC formulation replaces the special (diagonal)
form (S) of the spectral representation by the more gen-
eral nondiagonal ADC form

(h)

(h) (p)

X, (h) X,(p)
(o) (o)

Q„ Q„ Q„

(h) (2h —1p) (3h-2p)

(2h-1P) X,(h) X,(p)
(1) (])

Q Q 0 f, (p)
(1)

(&h-2p) X,(h) X,(p)

(2)

Q 0 f, (p)

X

FIG. l. Schematic representation of the ADC equation (24a) relating the exact and effective spectroscopic matrix x and f by the

unitary transformation Q. The order relations of the subblocks in x and f are indicated by the numbers in brackets.
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(N —1)-particle configurations, while the second index r
refers to one-particle states. As for x, we may divide f
into a physical (hole) part f(h) and an unphysical (parti-
cle) part f(p):

pansions

f(0)+f(1)+f(2)+

C —C(&)+g(2)+ C(3)+

(1 la)

(1 lb)
(&)

based on the usual (M((filer-Plesset) decomposition
The matrix inversion in Eq. (7) is equivalent to the Her-
mitian eigenvalue problem H=Hp+H (12)

(K+C)Y= YQ Y' Y=1 . (9)

x=Yf. (10)

Qbviously, the eigenvector matrix Y may be viewed as a
unitary transformation relating the explicit diagonal and
the ADC representation.

How can the effective quantities f and C be deter-
mined? For this task we consider their perturbation ex-

Here Y denotes the eigenvector matrix and Q is the diag-
onal matrix of eigenvalues 0 . The matrix x of the
spectroscopic amplitudes is obtained from f and Y by the
operation

of the Hamiltonian H into an unperturbed (HF) part H0
and an interaction part HI. The expansion of C begins in
first order, since all zeroth-order terms are comprised in
the diagonal matrix E with the elements

Kl I =e(, n, =1

+Jkl jkl ~j + ~k +~l j k 1

and so forth. Expanding the matrix (col —K —C) ' of
the ADC form (7) in powers of (0il —K) 'C and inserting
the perturbation expansions (11) for f and C, yields the
following perturbation expansion of the ADC form for
6 (co):

G (co)=f' ' (col K) 'f—' '+f' ' (col K) 'C'"—(col K) 'f'—'+f"' (col K) 'f' '+f—' ' (col K) 'f"'+-p t

(14)

By comparing this expansion with the original diagram-
matic perturbation series for G (co) through a finite, say,
nth-order one may successively determine the terms in
the perturbaton expansions of f and C. Inserting these
finite expansions f(n) and C(n) obtained through order n
in the general ADC equations [(7), (9), and (10)] one ob-
tains systematic approximations for G (co) referred to as
ADC(n) schemes. According to their construction, the
ADC(n) schemes sum up the perturbation expansion for
6 (co) completely through nth order and represent
infinite though only partial summations of higher-order
terms.

For n =2 this program can readily be performed. '

There is a single second-order Feynman diagram giving
rise to —,'(4!)=12 time-ordered diagrams contributing to
G (co) which can readily be evaluated and compared
with the formal expansion [Eq. (14)] of the ADC repre-
sentation. The resulting explicit ADC(2) expressions for
f and C are given in Appendix A. The case n =3 is
somewhat more involved, as here already 60 time-ordered
diagrams emerge for each of the three third-order Feyn-
man diagrams. A report on the third-order ADC scheme
for 6—(co) will be given elsewhere.

C. Basic properties of the ABC scheme

The ADC approximations combine perturbation
theory and secular matrix diagonalization. The particu-
lar usefulness of these schemes relies on two basic proper-
ties referred to as the compactness of the ADC(n)
configuration spaces and the regularity of the perturba-

tion expansions for the effective quantities f and C. Let
us consider these properties in some detail. Compactness
means that the explicit configuration space required in
the nth-order ADC treatment [for G (02)] is restricted
according to the following rule: for n =2v and
n =2v+ 1, v=0, 1,2, . . . , the ADC configuration space
comprises the v+ 1 lowest classes of excitations
lh, 2h-lp, . . . , (v+1)h-vp. This means that in each even
order the next higher class of (N —1)-particle excitations
comes explicitly into play, beginning with the 1h excita-
tions for n =0 and 1. For comparison, the consistent
nth-order treatment of (N —1)-particle states within the
conventional wave-function approach would require
configuration-interaction (CI) expansions up to the class
of (2v+1)h-(2v)p excitations for n =2v, 2v+1 (2v N().
We see that the ADC configuration space is smaller than
that of a comparable CI expansion and grows only half as
fast. The finite perturbation expansions f(n) and C(n)
account both for higher excitation classes not explicitly
considered and for ground-state correlation.

The compactness of the ADC configuration spaces is a
consequence of a remarkable order relation for the exact
spectroscopic amplitudes stating that for a state

~ %(„~
' )

deriving from an unperturbed (p+ 1)h -)L(p excitation
~P~ )

' ), the spectroscopic amplitude x(„)„is of the order
p:

x( )„=()Il(„)'~c„~V ) =O()M) .

A proof of this assertion, supposing a two-particle in-
teraction in H and a nondegenerate ground state, has
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been given in Ref. 15. The essential step here is to recast
the perturbation expansion for (15) into a sum of matrix
elements

denominators are not smaller than the ground-state HF
energy gap A.

A(p, l)=(P(„) '~[[. [c, 8] ' ' ] H]~go ) (16)
D. Intermediate ADC states and comparison

with other representations

f -&(p) (17)

for a (p+ 1)h-pp configuration J.
The other basic property of the ADC concerns the be-

havior of perturbation expansions for the effective quanti-
ties f and C. As is well known, direct Rayleigh-
Schro'dinger (RS) perturbation expansions for the
(N —1)-particle states and energies are in general not
useful, since they introduce terms with "dangerous
denominators, " that is, contributions of the form
V b(6 eb ) ', where V,b&0, and the energy diFerence

Eb ~
can become small or even vanish. For example,

the mixing of lh excitations (r) and 2h-lp excitations (jkl)
introduces contributions

V J-kr(E„EJ 6k Ei ) il„nj.nk/1i

that are of this kind; here V„.z& is the usual notation for
Coulomb integrals. The mixing of 1h and 3h-2p excita-
tions, on the other hand, does not lead to dangerous
denominators, since the coupling matrix elements vanish
unless the respective energies differ by a double excitation
energy. An example for a well-behaved perturbation
series is the RS expansion for the N-particle ground state
~VO ) (of a closed-shell system), since here the absolute
values of the denominators are bounded from below by
the energy gap 6 between the occupied and unoccupied
(HF) orbitals. The diagrammatic perturbation expansion
for G (co) is free of dangerous denominators, as can be
seen by inspecting the rules for drawing and evaluating
the diagrams. This property is maintained in the ADC
reformulation, leading to well-behaved expansions for the
matrix elements off and C. Like in the RS expansion for
the N-particle ground state, the absolute values of the

involving repeated commutators and HF states
~ $0 ) and

~P~„~ '); here l denotes the number of commutators. For
a two-particle Hamiltonian H the action of an I-times re-
peated commutator on ~$0 ) results at most in a
(l+1)h-lp excitation, which means that A (p, l) vanishes
for l (p; a nonvanishing contribution A(p, l) can arise
for the first time in pth order. This result can readily be
extended to other spectroscopic amplitudes, e.g. , those of
the polarization and pp propagator (see Secs. IVA and
IV 8), and to other Hamiltonians, e.g. , those including
three- and more-body interactions. A particularly simple
result is obtained for a pure one-particle operator (see
Sec. IV C).

The order relation (15) for the spectroscopic ampli-
tudes x~„~„ofa (p, + 1)h-pp excitation means for the per-
turbation expansion of G (co) that this class of states
[represented by terms with denominators (co —K~„~) ']
appears for the first time in the order n =2p. This prop-
erty is preserved in the ADC reformulation of the pertur-
bation expansion; here the relation (15) is transferred to
the corresponding effective spectroscopic amplitudes,
that is,

The spectral representation (5) was obtained by insert-
ing the complete set of exact (N —1)-particle states on
the right-hand side of Eq. (1). Similarly, the ADC form
of Eq. (7) can be viewed as the result of instead inserting a
complete set of "intermediate" states

~
4 J ' ) . Then, the

effective interaction C may be expressed as the represen-
tation of Eo —H in the intermediate basis,

(Z+C)„,=(4, -'~E,"—H ~C,, -'),
and the effective spectroscopic amplitudes read

=(q &-&~c [q&)

(19a)

(19b)

The two sets of exact and intermediate states are con-
nected by a unitary transformation

@AN
—1) yQ i' N —1)

J
(20)

where Q=(Q J) is readily identified as the Hermitian

conjugate Y of the ADC eigenvector matrix introduced
in Eq. (9). Obviously, the unitary transformation Q com-
pletely determines the ADC representation of G (co).

How can Q and thus the intermediate states be chosen
so that the basic ADC properties are obtained? Before
we turn to this question in Sec. III, let us contrast the
ADC with two opposing choices for Q not fulfilling the
ADC requirements. The spectral representation (5) itself
may be viewed as a special, namely, diagonal "ADC"
form (Q =1). This leads to the usual RS perturbation ex-
pansions for the exact energies 0 =Eo —E ' and
spectroscopic amplitudes x „=( ql '

~ c„+o ) . As dis-
cussed above, these expansions introduce dangerous
denominators and, thus, do not represent a practical
means of calculation. An opposite choice is the CI repre-
sentation

G (co)=y (col+H Eo 1) 'y, — (2 1a)

(21b)

Here the effective" quantities H —Eo 1 and y require RS
expansions only for Eo and ~%0 ) which, of course, are
well behaved. However, the CI representation does not
fulfill the compactness property of the ADC, since its ex-
plicit configuration space grows twice as fast with in-
creasing order n. The CI and spectral representation
represent two extremes, namely maximal (full) diagonali-

(21c)

obtained by inserting [on the left-hand side of Eq. (1)] the
complete set of unperturbed (HF) configurations ~PJ '),
JR[lb, 2h-lp, . . . I. This corresponds to putting
Q =St, where S is the eigenvector matrix of the CI prob-
lem

HS=S(E 1 —LI) .
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zation and maximal perturbation theory (no diagonaliza-
tion), respectively. The ADC representation, on the oth-
er hand, mediates between these opposing cases and
might be characterized as introducing as much perturba-
tion theory as possible and as much diagonalization as
necessary.

III. A CLOSED-FORM ADC TRANSFORMATION

In the preceding section we have considered the uni-
tary matrix Q with matrix elements

Here C'J is a short-hand notation for the operator prod-
ucts of the form

1 I
=

Ick ) cj ckc(, c( cj ck clem ~ ' ' ' I (26)

corresponding to the physical 1h, 2h-lp, 3h-2p, . . . exci-
tations of N —1 electrons; the indices of the creation
operators (c, ) and annihilation operators (ci ) are restrict-
ed, respectively, to particle states (n, = 1) and hole states
(n& = 1). Similarly, we may introduce the matrix F of gen-
eralized effective spectroscopic amplitudes,

Q
—&qix —

I@N
—1) (23) (27)

transforming the exact (N —1)-electron states into the in-
termediate states of the ADC representation. According
to Eqs. (9) and (10), which read, if Q is replacing X,

x=Q f,
K+C=Q QQ . (24b)

A. The generalized resolvent matrix

Equation (24a) suggests to seek Q in the form of an ap-
propriate decomposition of the matrix x of the exact
spectroscopic amplitudes given in closed form by Eq.
(5c). However, the inspection of the different sizes of the
(rectangular) matrix x and the (quadratic) matrix Q
makes clear that this procedure cannot succeed. One is
thus lead to an obvious generalization of the original
problem: instead of x, we have to consider the (quadra-
tic) matrix X of generalized spectroscopic amplitudes

(25)

The transformation Q relates the ADC quantities f and
E+C the exact spectroscopic amplitudes x and ioniza-
tion energies 0, respectively, thereby defining the ADC
representation of 6 (co). Our aim now is to determine a
closed-form expression for Q (and thus for f and K+C).
What we have to show is that the resulting ADC(n)
schemes fulfill the two basic properties, that is, the prop-
er order relations for the blocks of f guaranteeing the
compactness of the configuration spaces and the absence
of dangerous denominators in the perturbation expan-
sions off and C.

Using these definitions we readily arrive at the following
generalization of Eq. (24a):

X=QF, (28)

which represents the basic equation for our further con-
siderations. It should be noted that the matrices X and I'
may be viewed as arising in representations of a general-
ized resolvent matrix I (co), defined according to

r-(~)„,=&+, Ic't(col+H —E, 1) 'c (29)

B. Block QR decomposition of X

The matrix X has a block structure induced by the
configuration spaces of 1h, 2h-lp, 3h-2p, . . . excitations.
For the second matrix index the assignment to blocks is
obvious; the block assignment of the first matrix entry
can be performed at least formally according to the per-
turbation theoretical genealogy of the exact states but is
not relevant for the final result. By simply numbering the
classes of configuration spaces v=1, 2, 3, . . . , X accord-
ing to the number of holes I

v= vh -( v —1)p ], the matrix X
may be viewed as being composed of blocks X „(Fig. 2)
arranged in their natural order (see Fig. 2). In a similar
manner we may define blocks E,„ofF and Q,„of Q.
For further reference we also introduce the notation X &,

X 2 X 3 . (and Q „Qz, Q 3, . . . ) for the columns of
1h, 2h-lp, 3h-2p blocks, respectively. In Sec. II B we have
discussed the order structure of the spectroscopic ampli-
tudes x. We have seen that the blocks of the first column
X, fulfill the order relations

(h) (2h —1p) (3h —2p) (h) (2h —'I p) (3h —2p) (h) (2h —1p) (3h —2p) ~ ~ ~

(h) X„ F„ F„ F„

(2t-)pl X
21

(1)

X2 Q„
(1)

0 F F„

(»-2r) X
31

(~)

32

(1)

Q„ 0 0

FIG. 2. Schematic representation of the block QR decomposition [Eq. (28)] transforming the generalized spectroscopic matrix X
into the upper block-triangular matrix I'. The order relations of the subblocks X and Q are indicated by the numbers in brackets.
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X i
—-O(v —1), v=1,2, . . . (30)

By an obvious extension of the previous proof' to the
generalized amplitudes (25) we arrive at the following or-
der relations for diagonal and subdiagonal blocks of X:

X „=O(v—p), v=p, @+1,. . . (31)

X i=Q iF ii (33)

In Fig. 2 the order structure of the blocks of X is indicat-
ed by the numbers in brackets.

Now we may attempt to decompose the matrix X of
the exact spectroscopic amplitudes in the form suggested
by Eq. (28). How can this be achieved' The simple
answer is by Gram-Schmidt orthogonalization ' of the
columns X, of blocks combined with symmetric orthogo-
nalization within each column X;. This leads to a QR
decomposition ' of the blocks of X resulting in the upper
triangular block structure

F; =0 fori&j
for the matrix F as indicated in Fig. 2. We shall see that
this procedure transfers the order relation of X to Q pro-
viding one thus with the desired compactness property of
the ADC, and collects in Q all terms of X introducing
dangerous denominators so that well-behaved perturba-
tion expansions results for the matrix elements of F.

The first step of the Gram-Schmidt orthogonalization
procedure sets out from the equation

F 12=Q 1X2

=(X X )
' X,X2

=p(h, h) '~ p(h, 2h-lp), (39a)

where p(h, 2h-lp) denotes a density-matrix block with the
elements

p(h, 2h -lp) „ski
=

& @p l C„CJ ck ci l
q'o )

n =n~nI ni = 1
(39b)

The quantities Q 2 and F 22 are obtained by symmetric
orthonormalization of the matrix

X 2=X 2
—Q,F,2,

leading to

Q 2=X 2(X 2X )

F 22
= (X t2X 2 )

'

(40a)

(40b)

(40c)

The quantity X 2X 2 may be further evaluated, yielding

X2X2—X2X2—F )~F )2, (41a)

which in turn can be expressed in terms of density ma-
trices according to

of the second step allows us to determine directly the
block

for the first column Q, of the blocks Q, i of Q. Obvious-
ly the symmetric orthonormalization

X t2X 2=p(2h-lp, 2h-lp)

—p(2h-lp, h)p(h, h) 'p(h, 2h-lp) . (41b)

X,=X,(X tX, )
' (X tX, )' ' (34a)

for the columns of X
&

leads to the desired result and one
readily identifies Q, and F» as

Q, =X i(X,X, ) (34b)

F» (XtX )
~2—— (34c)

Using Eq. (25) the matrix elements of X 1X 1 may be fur-
ther evaluated as follows:

Here p(2h-lp, 2h-lp ) is the density matrix of the physical
2h-ip operators [defined analogously to (36b)] and

p(2h-lp, h )=p(h, 2h-lp) (41c)

Again it is clear that the matrix elements of F 2z are sub-

ject to well-behaved perturbation expansions.
Let us now consider the general, say, nth step leading

to the equation

(X t'X
) y( qpNi 1'i qpN

—1 ) ( @AN
—1

i
iqlN)

n —1

X„=g Q, F,„+Q„F„„, (42)

( @N~ „tc„~qgN) (35)

p(h, h)„„=(qio ~c„c„.~bio ), n„=n„.= 1 . (36b)

Thus, we see that X &X &
can be identified with the physi-

cal block p( h, h ) of the one-particle density matrix:

X",X,=p(h, h),

where Q, , i = 1, . . . , n —1 have already been determined.
The blocks F,„,i = 1, . . . , n —1 of F are given by

F,„=Q,X„, i=1,2, . . . , n —1, (43)

and as before Q „and F „„result from the symmetric
orthonormalization of

The (1,1) block of F can be written as

F „=p(h, h)'~ (37)

n —1

X„=X„—g Q;F,„,
that is,

(44a)

which makes explicit that the perturbation expansions for
the elements of F» behave like the ground-state RS
series. The equation

Q „=X„(X„X)

F „„=(X„X)'

(44b)

(44c)

X 2 Q 1F 12+Q 2F 22 (38) The product X „X„may be written more explicitly as
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n —1

X„X„=X„X„—g F;„F;„. (45)
i=1

Proceeding in this way until n =X is reached, one can
successively determine explicit expressions for the
columns Q,. and the (upper) blocks of F. The blocks (i,j)
of K+ C can readily be evaluated using Eq. (24b) once Q;
and Q have been determined (see Sec. III D). In Appen-
dix 8 the resulting expressions for i,j 3 are collected.

C. Proof of the ADC properties

We have seen that the blocks F», F 12, and F z2 of F
could be expressed entirely in terms X-electron ground-
state density matrices. One can easily convince oneself
that this assertion holds for all (nonvanishing) blocks of
F. The proof is as follows: Let us assume that the asser-
tion is true for the blocks F;~„1~,i ~ n —1, generated in
the Gram-Schmidt steps 1 through n —1. The ensuing
step n introduces the blocks F;„,i = 1, . . . , n —1 accord-
ing to Eq. (43) and the block F „„according to Eqs. (44a)
and (44c). For the first new block F,„we may write ex-
plicitly

F,„=Q,X „
=(X',X,)-'"X',X „
=p(h, h) '~ p(h, nh (n —1)-p), (46)

which proves our assertion for F,„and for the product
Q,X „. For any of the other blocks F t„with l (n we
find using Eqs. (43), (44a) and (44b)

F t„=g tX„

n —1

Q„= X„—g Q;F;„(F„„)

transfers the order structure of the diagonal and subdiag-
onal blocks X „,v ~ n, of X to the corresponding blocks
of Q, that is,

Q „=X „=O(v n—), for v=n, n+ I, . . . (50)

The unitary of Q then requires the symmetrical order
structure

Q -O(iv —tLti), v, p=1, . . . , N (51)

for the blocks of Q (see Fig. 2). In the following section
we shall see that the order structure (51) of Q gives rts«o
the compactness property of the ADC.

D. Application to the one-particle Green's function

f t(h)=0 for i) 1 . (53b)

Now we may return to the case of the one-particle
Green's function 6 (co). Equation (24a) establishes the
relation between the exact and effective spectroscopic
amplitudes x and f, respectively. Using the notation in-
troduced by Eqs. (6) and (8) we obtain the following rela-
tion for the hole parts of x and f:

f(h)=Q x(h)=Q X,=F„. (52)

This means that all blocks of f(h) vanish except for the
first (1-hole) block f,(h):

f I ( h ) =F 11
=p( h, It ) (53a)

—1F ll

l —1

X tX „—g F ~~(F „
j=1

=(X',X,)-'"X,'X „
For the unphysical particle part we have

f(p)=Q x(p),
and the first block here simply reads

(54)

The product X tX „on the right-hand side of Eq. (47) is
given by the density matrix of the physical Ih-(I —1)p
and nh n —1)p-excitations

X AX „=p( lh -( I —1 )p, nh -( n —1 )p ), (48)

and we may conclude (by induction) that all blocks F t„,
I = 1, . . . , n —1 have the desired property. Using this re-
sult for the remaining diagonal block F „„[Eqs.(44c) and
(45)] and noting that

X „X„=p(nh-(n —1)p, nh (n —1)p)- (49)

completes the proof. The property that the (nonvanish-
ing) blocks of F can be written in terms of ground-state
density matrices means in particular that the perturba-
tion expansions for the matrix elements of F are free of
dangerous denominators. In a similar way, this property
may also be shown for the effective interaction
K+C=Q QQ.

The other basic property is the order structure of the
unitary transformation matrix Q. One can easily con-
vince oneself that the construction of block columns Q „
according to Eqs. (43) and (44),

f,(p) =p(h, h) ' p(h, p), (55)

f „(p)=O(v) (56)

for f (p). This means that f has the same order struc-
ture as x, which guarantees the compactness property of
the ADC(n) configuration spaces.

The matrix K+C of the effective interaction can be ob-
tained from the relation (24b). For a particular block
(K+ C)„ this relation becomes

(K+C)„=Q„QQ (57)

which allows for a straightforward evaluation once the

p(h, p) being the (h,p) block of the one-particle density
matrix. Explicit expressions for the blocks f 2 and f 3 are
given in Appendix B. By contrast to f(h), the blocks of
f(p) do not vanish. Let us consider a specific block
f,(p) of vh-(v —1)p excitations

f,(p)=Q ~(p)=QQ~~ i(p) . (55')
J

The order relations (51) of the blocks Q and those of
x .(p) [Eq. (15)] are seen to combine to the relation
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columns Q „and Q of Q have been constructed. For
example, the result for the first diagonal block reads

(K+C)„=p(h, h) '~ X(h, h)p(h, h) (58a)

where X(h, h) denotes a matrix of energy expectation
values

X(h, h)„,= & 4o ~c„"(Eo A')—c, ~%o &

=
& q,"~c„'[c„8]~e,"& (58b)

IV. GENERALIZATIONS

The closed-form ADC representation for the one-
particle Green's-function parts G —(co) presented in the
preceding Section can readily be generalized to the treat-
ment of other propagators, and we will briefly discuss the
polarization propagator II(c0) and the two-particle
(hole)-propagator P(co). In both cases explicit second-
order ADC equations are available ' third-order
[ADC(3)] equations for P(co) were derived recently by
Tarantelli and Cederbaum.

A. Polarization propagator

The spectral representation for the polarization propa-
gator 11(co) can be written in the form given by Eqs. (2),
(3), and (5):

II(co)= II (co)+ II (rd ),
II+(co)=x (col —Q) 'x .

(59)

(6Oa)

Here, 0 is the diagonal matrix of the exact (¹lectron)
excitation energies

for the physical one-hole states (n„=n, = 1). Explicit ex-
pressions for the further blocks of f and IC+C are given
in Appendix B.

It is interesting to compare the expressions for f and C
determined diagrammatically [see Eqs. (Al) and (A2) in
Appendix A] with the closed-form results obtained by the
block QR decomposition. Through second order, both
sets of results are identical, which is consistent with the
observation that the diagrammatical construction of f
and C is unique through second order. ' ' In third (and
higher) order the diagrammatic construction may lead to
expressions for f and C that differ from those of the
closed-form representation. This shows that the ADC
procedure is not uniquely determined by the two basic
conditions of compact and regular perturbation expan-
sions. Obviously, the closed-form ADC representations
obtained using the BQRD is a distinguished, highly
symmetrical form. The order-by-order procedure of the
diagrammatic construction, on the other hand, may re-
sult in less symmetrical though possibly simpler perturba-
tion theoretical expressions. Of course, the symmetrical
form can always be enforced in the course of the di-
agrammatic construction by suitable algebraic manipula-
tions.

x „,=&e"~ctc, ~q,"&, mXO. (60c)

The part II (co) is related to II+(co) according to the re-
lation

X=Qf,
K+C=Q QQ,

(62a)

(62b)

where Q relates the exact excited ¹lectron states ~%'

m%0, and the ADC intermediate states ~t &, leading to
the ADC form

II+(co)=f t(col 0) 'f .— (63)

As in Eqs. (6) and (8), we distinguish a physical (p-h) part
and an unphysical (up) part of x (and f) according to the
values n„n, =1 and n„n, =0, respectively, of the single
particle indices r, s in Eq. (60c):

x =(x(p-h), x(up )),
f=(f(p-h), f(up)) .

(64a)

(64b)

The unphysical part may be decomposed further in h-p,
h-h, and p-p parts, respectively. In analogy to Eq. (25),
we now consider the matrix X of generalized spectroscop-
ic amplitudes

X,=&q ~C', ~q,"&, maO

where CJ denotes excitation operators of the set

[~.1=[c'i c; c'Ick . ~ ]

(65)

(66)

comprising all physical p-h, 2p-2h, 3p-3h, . . . excitations.
The same generalization leads to the matrix I of eC'ective
spectroscopic amplitudes

(67)

Again, the basic equation for determining Q is

(68)

Labeling the classes of np-nh states by v=1,2, 3. . . the
block structure of these matrices is identical with that of
G (co), and the BQRD as described in the preceding sec-
tion can just be transferred to the present case. In partic-
ular, the order relations

X,„=O(v—p), v=p, p+ l,@+2, . . . (69)

for the lower triangular blocks of X are the same as those
for G (co) stated in Eq. (31). Explicit expressions for the
columns Q; and the blocks f; and (A +C),", i,j ~ 3 are
collected in Appendix B.

B. Two-particle (hole) propagator

(61)

The ADC form for II+(co) is obtained by the unitary
transformation

0 =E E, m@0, —

and x is the matrix of spectroscopic amplitudes

(60b)
In a completely analogous way we can treat the case of

the pp propagator'
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P(co) =P (co) —P (co), (70)

where the two parts P (co) contain information on the
removal or attachment of two electrons, respectively. We
may confine ourselves here to the (N —2)-particle part
P (co). Its spectral representation takes the familiar ma-
trix form

P (co)=x (col 0)—'x (71a)

where
Ex —2 EN

mm m 0 (71b)

are double-ionization energies and

x „,=(e '~c„c, e, ) (71c)

are corresponding spectroscopic amplitudes, which, ac-
cording to n„n, =1 or 0, belong to the physical part
x(2h) or unphysical part x(up) of x, respectively. The
set of physical excitation operators

I CJ ]
=

I CICk, Cj Clch Ck, . (71d)

here comprises the classes of 2h, 3h-lp, 4h-2p, . . . excita-
tions of X —2 particles. The corresponding generalized
spectroscopic amplitudes read

X,=(e 'iC, ie, ) . (72)

All equations given above for the BQRD of G (co) [and
II+(co)] can be formally transferred to the present case if
the (v+1)h-(v —l)p states are labeled by v=1,2, 3, . . . .
For explicit expressions of Q, f, and K+ C the reader is
referred to Appendix B.

C. A special case

In this case the matrices X for any of the propagators
considered here have already the upper triangular block
form:

X „=0 for v)p. (74)

The BQRD procedure here leads to a block-diagonal ma-
trix Q, that is, Q „=0for vip, , and the diagonal blocks
are given by

Q „„=X„„(X'„„X„„)-'". (75)

Of special interest is the case of the one-particle propaga-
tor G (co) [or G+(co)] where one can readily establish a
direct relation to the problem of quasidegenerate pertur-
bation theory (QDPT) or block diagonalization. A more
detailed discussion of this connection is planned to be
given elsewhere.

V. CONCLUSIONS

A new type of intermediate inany-electron state ~ipse)
has been introduced in the representation of propagators

We finally consider the special case where the interac-
tion part HI of the Hamiltonian 0 is a nondiagonal one-
particle operator

(73)

and related quantities, augmenting the familiar spectral
and CI representations associated with the exact states
~%„) (eigenstates of the full Hamiltonian) and the HF
states ~Pj ) (eigenstates of the HF Hamiltonian), respec-
tively. Here the unitary matrix Q relating the exact and
intermediate states is constructed by a simple algebraic
procedure consisting in a block QR decomposition
(BQRD) of the generalized spectroscopic matrix X. The
BQRD procedure generates successively the blocks of the
effective spectroscopic and interaction matrices f and C,
respectively, which constitute the intermediate propaga-
tor representations. As a result, explicit closed-form ex-
pressions have been derived for these quantities formulat-
ed entirely in terms of ground-state density matrices and
related energy expectation values.

The relevance of the intermediate representations as a
means for deriving approximation schemes arises from
two basic properties, namely the regularity and the com-
pactness of the perturbation expansions for the effective
matrix elements. Regularity means the absence of terms
with dangerous denominators which would disqualify
these perturbation expansions as a computational
method. The BQRD procedure provides a mechanism to
automatically separate dangerous and well-behaved con-
tributions both contained in the original spectroscopic
matrix X. All terms with dangerous denominators are
collected in the unitary matrix Q leaving the upper trian-
gle matrix F and the effective matrices f and C well
behaved. The compactness property, on the other hand,
restricts the size of the explicit intermediate configuration
space required for a consistent nth-order treatment of the
considered propagator. Indeed, one may say that the
nth-order intermediate configuration space is the minimal
space compatible with the regularity requirement for the
respective perturbation expansions of the effective matrix
elements. Clearly, the compactness property does not ap-
ply to the CI representation. We recall that in the usual
case of a two-particle interaction the CI space for a con-
sistent nth-order treatment grows in each even order by
two next higher classes of configurations, whereas only
one higher class is required in the explicit intermediate
configuration space. The compactness requirement dis-
cards also other apparent possibilities to define an "inter-
mediate" representation, such as the simple choice
X(XtX) ' for the unitary transformation Q.

The regularity and compactness properties prove the
intermediate representations to be closed forms of the
algebraic diagrammatic construction (ADC) introduced
previously' ' as a reformulation of the diagrammatic
propagator perturbation series. The closed-form ADC
representations provide us with a direct access to deter-
mine the effective spectroscopic and interaction matrices
f and C, and may be used instead of the original indirect
procedure, which consisted in comparing the diagram-
matic series and the perturbation expansion of the ADC
representation. This will be very useful for deriving
higher-order approximation schemes. A particularly im-
portant aspect here is that it is no longer necessary to
resort to the lengthy and numerically impractical pertur-
bation theoretical expressions for the matrix elements of
f and C. Instead one may code only the building blocks,
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that is, the perturbation expansions for the density matrix

p and the matrix g of the related energy expectation
values and then assemble numerically —according to the
formulas in Appendix 8—the required effective quanti-
ties.

Besides the more practical consequences, there are
theoretical aspects concerning the existence, uniqueness,
and convergence of the ADC approach. The first point is
manifestly demonstrated by the closed form presented
here. Uniqueness, on the other hand, does not follow as
the consequence of the defining regularity and compact-
ness conditions, as the example of different third-order
schemes has shown. It is clear, however, that the BQRD
procedure leads to a distinguished highly symmetrical
form, which is reAected by the Hermiticity of the diago-
nal blocks I' in the generalized effective spectroscopic
matrix F. QR decompositions with less symmetrical
forms of I' may be obtained by modifying the symmetric
orthonormalization used here within a column of blocks
of Q. With respect to the convergence properties of the
ADC schemes, the explicit expressions of the intermedi-
ate representation show that the effective matrix element
expansions behave essentially like the Rayleigh-
Schrodinger perturbation series for the X-electron
ground state. It should be recalled here that the pertur-
bation expansions of a finite-order ADC representation
account both for ground- and final-state correlation.

In several respects, the intermediate representations go
beyond the original concept of the ADC reformulation of
propagator perturbation series. For instance, the BQRD
procedure can be applied in cases where a (diagrammatic)
perturbation expansion is not readily available. More im-
portantly, this approach may be useful even in cases
where the ground-state pertubation series and hence the
effective matrix element expansions do not converge.
The closed-form representation allows one to evaluate the
effective quantities without resorting to perturbation
theory, e.g., by introducing a suitable multiconfiguration
representation of the X-electron ground state. Future
work must show whether the intermediate representa-
tions introduced here will serve as a useful starting point
for developing such nonperturbative approximations.
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APPENDIX A: ADC(2) EQUATIONS
FOR THE ONE-PARTICLE GREEN'S FUNCTION

The (X —1)-particle part G (co) will be considered
here. The ADC(2) configuration space comprises the lb
and 2h-1p configurations specified by the sets of one-
particle quantum numbers

(k), where nk =1;
(j,k, l), where njnknl =1 and k & l .

Ifk, q ~kq s ~ '] ku[rs] Yqu[rs]nunr'nsnq
v, r, s

V )fc

ks [uv]+
q g Ys [„] n, n„nunq

u, v, s ~q

Vqu [st]+
~ g Yk„[ ) ssn n, nrnq

u, s, t &q

2h -1p block:

fjkl, q Yqjklnq (A lb)

Here nk =1—nk are ground-state HF occupation num-
bers. In the following equations, Vlj ( ki)

= Vjki
—

Vi~1k

denotes the antisymmetrized Coulomb integral, e, are HF
energies, and

Vij tkl I

Yi kl e+a —e —ei j k I

serves for a short notation.
(i) Effective spectroscopic amplitudes

1h block:

(ii) Effective interaction
1h block:

(+ + )kk' ek~kk' 2 y Yku [ ]Yk u[rs]( u 'es +
p ek +

p ek') u ns
v, r, s

1h /2h-1p block:

(+ + C)k,j 'O'I' ~kj'[k'I']

2h -1p block:

(+ +C)j klj 'k'I' ( ej +ek + i @jj'~kk'~ll' ~jj' ~kl[k'I']+ (~kk' Vj 'I[jl']+ ~ll' Vj'k[jk'] )

(A2a)

(A2b)

(A2c)

Here (k~l) means repeating the preceding term, but
with k and I interchanged. It should be noted that the
Coulomb terms in Eq. (A2c) are anticipated from the
third-order scheme.

APPENDIX 8: EXPLICIT INTERMEDIATE
REPRESENTATION RESULTS OBTAINED

BY THREE BQRD STEPS

In the following we collect the explicit results obtained
by the first three steps of the block QR decomposition for
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the intermediate representation of single-particle
Green's-function G(cv) (Sec. III), the polarization propa-
gator II(cv) (Sec. IV A) and the two-particle (hole)-
propagator P(co) (Sec. IV 8). A common notation may be
used for all three cases. As in Secs. III and IV,
v=1,2, 3, . . . refers to the successive classes of excita-
tions, that is,

X(p, v), =+(0, ~
C t(H —E, )C

~

4", ) . (83)

the classes v and p, respectively; the second term on the
right-hand side of (82) applies only to the case of the po-
larization propagator. Similarly, X(v, p) denotes the ma-
trix of the corresponding energy expectation values

vh-(v —1)p for G (co)

v= vp-vh forII+(co)
(v+1)h-(v —1)p for P (co) .

(81)

Here a positive sign on the right-hand side applies to
II+(co) and a negative to G (co) and P (co). Finally,
density matrix blocks p(v, 1) have to be introduced where
the second entry corresponds to an unphysical excitation
operator, more specifically:

The short-hand notation p(v, p) is used for the matrix of
ground-state density matrix elements

P(v p)i, J =
& +0 I IJ 1 +0 &

—(@ ~P tt~y )(y ~Cg~y ) (82)

where CI and CJ are physical excitation operators from
I

p for G (cv)

1= h-p, h-h p p for II+(co)

h-p, p-h, p-p for P (co) .

(84)

The modifications of the notations (81) and (84) for the
case of G+ and P+ are obvious.

(i) Generalized effective spectroscopic amplitudes F „
F ii=p(1 1)'"

F,~=p(1, 1) ' p(1,2),
F 22= [p(2, 2) —p(2, 1)p(1, 1) 'p(1, 2)]'

F,3=p(1, 1) 'i p(1, 3),
F 23=p(2, 2) '~ p(2, 3),
F 33= [p(3,3) p(3, 1)p(1,—1) 'p(1, 3)—p(3, 2)p(2, 2) p(2, 3)]

Here and in the following quantities

p(2, 2)=p(2, 2) —p(2, 1)p(1,1) 'p( 1,2),
P(2, 3)=p(3,2)t=p(2, 3)—p(2, 1)p(1, 1) 'p(1, 3),
P(3, 3)=p(3, 3)—P(3,2)p(2, 2) 'p(2, 3)—p(3, 1)p(1,1) 'p(1, 3)

are used.
(ii) Unitary transformation matrix Q

Q, =X,p(1, 1)

Q2=[X~—Q,p(1, 1) '~ p(1, 2)]p(2, 2)

Q3=[X3—Q,p(1, 1) '~ p(1, 3)—Q~p(2, 2) '~ p(2, 3)]p(3,3)

(85a)

(85b)

(85c)

(85d)

(85e)

(85f)

(86a)

(86b)

(86c)

(87a)

(87b)

(87c)

According to Sec. III 8, X, are columns of blocks X„; of the generalized spectroscopic matrix X [Eqs. (25), (65), and
(72)].

(iii) Effective spectroscopic amplitudes f
Physical part:

f i(1)=p(1, 1)'i',

f (1)=0 for v) 1 .

Unphysical part:

f )(1)=p(i, i) ' 'p(1, 1),
f 2(1)=p(2,2) ' [p(2, 1)—p(2, 1)p(l, l) ' f,(l)],
f 3(l)=p(3, 3) ' [p(3, 1)—p(3, 1)p(1, 1) '~ f,(1)—p(3, 2)p(2, 2) '~ f z(1)]

(88a)

(88b)

(88c)

(88d)

(88e)
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(iv) Effective interaction matrix K+ C

(K+C)„=p(1,1) ' y(1, 1)p(1, 1)

(K+C))2=p(1, 1) '~ [y(1,2) —y(1, l)p(1, 1) 'p(1, 2)]P(2,2)

(K+ C)22=p(2, 2) ' [y(2, 2) —y(2, 1)p(1, 1) 'p(1, 2)

—p(2, 1)p(1, 1) 'y(1, 2)+p(2, 1)p(1,1) 'y(1, 1)p(1,1) 'p(1, 2)]P(2,2)

(K+C)i3=p(1, 1) 'i [y(1,3)—y(1, 1)p(1, 1) 'p(1, 3)—f(1,2)p(2, 2) 'p(2, 3)]p(3,3)

(K+C)23=p(2, 2) '~ [y(2, 3)—p(2, 1)p(1, 1) 'y(1, 3)
—g(2, 1)p(1, 1) 'p(1, 3)—f(2, 2)p(2, 2) 'p(2, 3)]p(3,3)

(K+C)33=p(3, 3) 'r Iy(3, 3)+p(3, 1)p(1, 1) 'y(l, l)p(l, l) 'p(1, 3)+p(3,2)p(2, 2) 'g(2, 2)p(2, 2) 'p(2, 3)

—[y(3, 1)p(1, 1) 'p(1, 3)+g(3,2)p(2, 2) 'p(2, 3)
—p(3, 1)p(1, 1) ~g(1, 2)P(2, 2) 'p(2, 3)]—(h. c. )]p(3, 3)

(89a)

(89b)

(89c)

(89d)

(89e)

(89fl

For notational brevity the quantities

f(1,2) =g(2, 1) =p( 1, 1)'~ (K+C ) )2p(2, 2)'~

f(2, 2) =p(2, 2)'i (K+ C)22p(2, 2)'i (89h)

f(2, 3)=f(3,2) =p(2, 2)'i (K+ C)23p(3, 3)'

are introduced in Eqs. (89d) —(89fl.
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