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The exact exchange-correlation functional E„,[n] must be approximated in density-functional
theory for the computation of electronic properties. By the coupling-constant integration
(adiabatic-connection) formula we know that E„,[n]=j ( V„[n]—U[n])da, where V„[n] is the

electron-electron repulsion energy of '0, '"', which is that wave function that yields the density n

and minimizes ( T+a V„). Here a is the coupling constant. Consequently, knowledge of the be-
havior of V„[n) as a function of a ensures knowledge of E„,[n]. W. ith this in mind and for the pur-
pose of approximating E„„it was previously established that (0V„/Bo;) ~ 0. The present paper re-
veals that V„[n]=a V,', [n, z ], where n&{x,y, z) =f3 n (/3x, /3y, gz), and where P is a coordinate scale
factor. In other words, knowledge of V,', [n] implies knowledge of V„[n] for all a. Alternatively,
knowledge of V„[n] for some small a implies knowledge of all of the V„[n]. In any case, any vi-

able approximation to V„[n] should be made to satisfy the above displayed equality. Analogous
conclusions hold for the second-order density matrix, the pair-correlation function, the exchange-
correlation hole, and the correlation component of the exchange-correlation hole, etc. For example,

p„,([n, a];r, , rz)=a'p„, ([n,~, l]; ar„ar2), where p„,([n, a]; r, , rz) is the exact exchange-correlation
hole of 'P„'" . (A corresponding expression holds for the correlation hole alone. ) Further, when n

belongs to a noninteracting ground state that is nondegenerate, then
lim 0 V„[n]=A [n]+f„(a)B[n]+ .

, where f„(a) must vanish at least as rapidly as a, and
limq „E,[nz]) —co, where E, [n]=E„[n]—limr y E„,[nr), and where E, is a familiar ex-
act density-functional "correlation energy. " In contrast, in the local-density approximation and in

certain nonlocal approximations, f„(a) is replaced by a function that goes as a[in(a ')], a~o, and

E, is replaced by a functional that is unbounded as A,~~. Further, lim&, „E„,[n~]) —~ and
limq E„[nq]) —~, which are also not generally satisfied by common approximations. Here
nz(x, y, z)=An(Ax, y, z) and E is a familiar exact density-functional "exchange energy. " Finally,
comparison is made between E, and the traditional quantum-mechanical correlation energy, which
is expressed exactly as a functional of the Hartree-Fock density.

I. INTRODUCTION

Hohenberg-Kohn-Sham density-functional theory'
constitutes a dramatic simplification of the many-electron
problem for the study of electronic properties. Only the
three-dimensional electron density n (r) need be em-

ployed, independent of the size of the system. One sim-

ply minimizes the energy functional E [n] to obtain the
ground-state energy. However, the exact exchange-
correlation E„,[n] component of E [n] must be approxi-
mated. It is the purpose of this paper to show that coor-
dinate scaling provides a powerful tool for understanding
fundamental aspects of E„, that were not previously
known in connection with the coupling-constant integra-
tion (adiabatic connection) formulas of Harris and
Jones, Langreth and Perdew, and Gunnarsson and
Lundqvist. This paper derives exact coordinate scaling
conditions involving E„, and its correlation component.
Approximations to these functionals should be construct-
ed to satisfy these conditions because coordinate scaling
requirements help to dictate the form of E„,. Most com-
monly employed approximations to E„, do not presently
satisfy all the coordinate scaling requirements presented

within.
Following is the adiabatic connection (or coupling-

constant integration) formula, which involves only the
diagonal part of the second-order density matrix (pair
probability density), and which has served as a marvelous
exact formal expression for E„,

E„,[n] = f ( V„[n]—U [n] )da, (I)
0

where V„[n] is the electron-electron repulsion energy
functional associated with (T+aV„), and where U[n]
is the classical electron-electron repulsion functional
which is, of course, known exactly and is given by

U[n]= ,' f f n (r—,)n(r, )lri —r~l

In the above formula the density is held fixed in the in-
tegrand as the coupling constant a is varied from 0 to 1.
Hence, Eq. (I) is the form of the coupling-constant in-
tegration formula of Langreth-Perdew and Gunnarsson-
Lundqvist. (The density is not held fixed in the earlier
formula of Harris and Jones. ) In Eq. (I), it is V„[n]
that must be approximated. Accordingly, this paper re-
veals exact properties of V„[n] as a function of a. Now,
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it is already known that V„[n] is monotonically decreas-
ing with increasing a. Here through the asymptotic
coordinate scaling study of E, in Sec. II, it shall be shown
that

and where n&(r) is a uniformly scaled electron density
with /3 as a coordinate scale factor. Hence, Eq. (3) reveals
the surprising fact that knowledge of V,', [n], the univer-
sal repulsion functional for +=1, is sufhcient to know
E„,. Alternatively, knowledge of V„[n] for some small a
implies knowledge of all of the V„[n] and therefore
knowledge of E„,. Hence, knowledge of the universal
V„[n] for some small fixed a is all that is necessary in
principle for solution to the many-body problem, and an
appropriate perturbation treatment might be applicable.

As a fact which was tacitly used for the derivation of
the inequality in Eq. (96) of Ref. 9 and for the generation
of the right-hand-side of Eq. (97) in Ref. 9, Eq. (85) in
Ref. 9 dictates that

V„[n ]=aV,', [n] .

Equation (3) in the present paper follows from the above
equation by replacing n (x,y, z) by

n, & (x,y, z)=a n(a 'x, a 'y, a 'z)

on both sides of the equation. (See also Ref. 10 for relat-
ed coordinate scaling considerations. )

Consistent with Eq. (3), it will be shown that the exact
exchange-correlation hole satisfies

p„,([n, a];r„r2)=a p„,([n,&, 1];ar„ar2), (4)

where p„,([n, a];r„r2) is the exchange-correlation hole

associated with (T+aV„). Moreover, this paper also
reveals limiting coordinate scaling properties of E„,[n].
For instance,

lim (E„,[n&]—lim y 'E„,[n& ])) —oo . (5)
k—+ oo P —+ 00

In contrast, the local-density approximation (LDA) to
E„,does not satisfy Eq. (5) because the LDA is unbound-
ed as A, ~~.

Part of the appeal of coordinate scaling is the fact that
it is often quite easy to observe immediately how a func-
tional behaves upon coordinate scaling. It turns out that
one often just has to divide the functional by k and
within the integrand, one just has to replace n by k n, V
by A, V, and ~r, —r2~

' by A, ~r, —r2~ ', etc. For example,

lim V„[n]= 2 [n]+f (a)B [n]+
a~O

where f (a) must vanish at least as fast as a. (In con-
trast, it shall be seen that the local-density approximation
and certain nonlocal approximations, as well, take the
form A '[n]+a ln(a ')B'[n], as a~O. ) Moreover, the
work of Levy and Perdew implies that

V„[n]=aV,', [n, q ],
where np is defined by

n&(r) =n&(x,y, z) =P n(/3x, /3y, /3z),

E [n~]=RE„[n] (6)

so that E, [n] shall be defined in Sec. II as that com-
ponent of E„,with the complicated scaling, and it is thus
the E, component upon which I shall concentrate. Equa-
tion (6) enables one to project out the E, component from
E„,. In any case, as shall be discussed later, the correla-
tion energy in this paper and the traditional quantum-
mechanical correlation energy (which is expressed exactly
in terms of the Hartree-Pock density) yield very similar
numerical values for many systems, because E„here is
defined to be the exchange energy of the Kohn-Sham
determinant which is often close to the Hartree-Fock
determinant with the same density.

This paper concerns finite densities, but there is no lim-
it to the number of electrons provided that the density is
integrable. Also, this paper shall restrict itself to those
trial n s, for the interacting problem, which simultane-
ously arise from those single determinants which are non-
degenerate groundstates for noninteracting Hamiltoni-
ans. Situations stemming from various degeneracies are
planned to be discussed in a future paper.

II. CORRELATION ENERGY FUNCTIONAL

The correlation energy E„which is negative, is defined
here and is often defined in density-functional theory"
b 5 9 12 13

[n] (ymin~T+V ~qy
i ) (q min~T+V ~q min)

(7a)

f (~Vn
~

/n )dr becomes Af (~Vn ~
/n )dr when n is

replaced by nz. This result arises because

f [~vn ('/n'"]dr
= f [ ~

V(kr )n (Xr)
~

/n (Xr) ~ ]d (A r)

= f [~& 'V(r)n(Ar)~ /n(Ar) ~
]A, d r .

For another example, f n(~Vn~n +n '
) 'dr sim-

ply becomes f n(~Vn~n +A'n ,
'

) 'd r when n is
replaced by n&.

It shall be convenient to partition E„, as E„,=E +E,
and first focus upon the E, component, where E shall be
called an "exchange energy functional" and E, shall be
called a "correlation energy functional. " The results for
E, will then be added to what is already known about E„
to deduce vital properties of the whole of E„. Here E„
signifies a particular definition for exchange energy and
E, signifies a particular definition for correlation energy,
but given the definition for E„„it will become apparent
during the course of this paper that the conclusions for
E„, will be independent of the working definitions of ex-
change and correlation. I shall employ that partitioning
of E„, which best facilitates proof of the coordinate scal-
ing theorems for the whole E„,. For this purpose, E„
shall be defined in Sec. II such that E is that part of E„,
with the simple homogeneous coordinate scaling. In oth-
er words,
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E,[n]= V„[n] E—„[n]—U[n]+T, [n] .

with

N
1 q2

(7b)

and

lim A, 'E, [n 3]= b—[n],
A. —+0

(12)

(13)

and

v„=yy lr, —r, l-',
i j&i

V [n] —(q/minlV lq/min)

T [n ]= ( q/m'"
l
T

l

q/m'" )

E [n]= (4„'"lv„l@„'")—U[n],
T [ ] (@minlTl@min)

T, [n]= T [n] —T, [n],

(9)

(10)

so that'

BE,[n ]
T, [n]= E,[n—]+

ay

Consistent with the constrained-search formulation'
of density-functional theory, 4„'" is defined' as that an-
tisymmetric wave function which yields n and minimizes
(T+V„),and N„'" is defined' ' as that antisymmetric
wave function which yields n and minimizes just (T).
The minima always exist. ' %'hen +„'"is the nondegen-
erate ground-state wave function of an interacting Hamil-
tonian, then %'„'" is the original Hohenberg-Kohn in-
teracting wave function. ' Likewise, when N„'" is the
nondegenerate ground-state wave function of a nonin-
teracting Hamiltonian, then +„'" is the original Kohn-
Sham single determinant, ' and the present paper shall
restrict itself to this situation. The work of Levy for in-
teracting systems in Ref. 15 follows in the spirit of the
work of Percus for noninteracting systems in Ref. 16.

The E, defined in Eq. (7) is consistent with the desired
partitioning of E„, into E and E„as described in Sec. I,
so that all the complicated scaling is incorporated into
E, . Here E is the exchange energy of the Kohn-Sham
determinant. Hence E„satisfies the simple scaling in Eq.
(6). A different partitioning of E„, would not necessarily
yield an E with simple scaling. For example, simple
scaling for E would not result if a Hartree-Fock deter-
minant were to replace 4&„'" in Eq. (9).

There has been exciting progress recently' ' in the
generation of encouraging nonlocal approximations to
E, . To help in the continuing evolution of accurate ap-
proximations, this paper reveals limiting coordinate scal-
ing requirements that are satisfied by the exact E„and
this paper also reveals a coordinate scaling equality for
the correlation hole because these requirements help dic-
tate the form of the functional. It shall be proved that E,
is, surprisingly, bounded asymptotically upon coordinate
scaling. The new limiting relations, for an arbitrary trial
inhomogeneous electron density n (r), with the restric-
tions described in Sec. I, are the bounded asymptotic con-
dition

BE,[n ]0&
B)/

2E, [—n] ~b [n] ~ U[n]+E„[n]

( U[n] . (14)

(15)

or

q/min, a( r r ) a3N/2q/min( ar ar ) /( a —1

(16)

Also, since @„'"yields n and minimizes just ( T ), it
means that9 A,

"/ 4&„'"(/(,r„.. . , k,rN) yields n3 and mini-
mizes just ( T ) . In other words,

@min(r r )
—g3N/2C/min(gr gr ) (17)

Equation (7) implies

E,[n, ]=&q'. ,'"IT+V„lq'.,'"&

—&~ "IT+v„lq-. '"& .

Now substitute expressions (15) and (17) into the above
equation for E, [n3 ] to obtain

g2( ( q/min, alTl q/min, a) (g minlTl@min) )

+g( ( q/min, alV
l

q/min, a )

(@minlV i@min) ) (18)

Equation (12) is not satisfied by the LDA, which is un-
bounded as A,~~, when applied to finite densities. The
LDA goes as —ink, at high A, , from the Gell-Mann and
Bruecker high-density formula. This is not surprising
because the LDA is derived for and is thus exact for uni-
form densities, which must be infinite, while our coordi-
nate scaling requisites are derived for and are thus exact
for densities which integrate to a finite number of elec-
trons. Unlike a uniform density, a finite density has a
surface which vanishes as r~ ~. It is the presence of
this surface which is responsible, in part, for Eq. (12).

Equations (12) and (13) are proved by combining the
adiabatic connection with coordinate scaling. Define

as that antisgmmetric wave function which yields
n and minimizes (T+aV„). Clearly then, q/„'"'=q/„'"
and also +, '"' =4„'". Now, as first proved by Levy and
Perdew, and as later confirmed with an alternative proof
by Levy, Yang, and Parr, ' since +;„yields n and

minimizes (T+aV„), then A, q/„'"' (Ari, . . . , /(rN)
yields nz and minimizes (T+AaV„). (Note the pres-
ence of A, in the latter expectation value. ) Hence,

( Ar „.. . , /(rN ) yields n/„and minimizes
( T+V„) when A, =a '. In other words,

q/min( r r )
—g3N/2q/min, a( gr gr ) g a —1
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where it has been taken into consideration that V„ is
homogeneous of degree —1 and T is homogeneous of de-
gree —2 with respect to the scale factor A, . Equation (18)
exhibits the formal scaling essence of E, from which Eqs.
(12) and (13) are derived.

To obtain Eq. (13), use

(19)

with Eq. (18) to arrive at

'E [n ] & ( ~P '"'a V
~

gym» a )

be the noninter acting system for which 4„'" is the
ground state, where

H, =T+ g v, (r, ), (23)

and where v, is a local-multiplicative potential (the
Kohn-Sham potential). Then since ~II„'"' and @„'"have
the same density, n, Eq. (18) becomes

] g2( ( @mi,a~H ~@min, a ) ( @min ~H ~@min ) )

( C,min~ V
~

@min )

which with (4 '"' ~V„~4 '"' ) &0 gives

g
—1E [ ] & (q&min~V ~dmin)

(20)

(21)

+g(( op»in, a~V ~q/min, a)

( iIlmin
~

V
~

ipmin ) )

T, [ni, ]=ET,[n] . (22)

The condition limz „k E, [nz]=0, which is weaker
than condition (12), comes about directly from Eq. (18).
Just employ the fact that limz A, 'E, [ni„]~0, by the
definition of E, [n], and the fact that the presence of the
non-negative A. term implies lim2 A, 'E, [n&] & 0.

Condition (12) also arises from Eq. (18). Define H, to
I

Equation (21), in turn, yields the upper bounds to b [n] in
Eq. (14) upon employment of Eq. (9). The lower bounds
to b [n ] in Eq. (14) are obtained from9

T[n2 ]+V„[nz] ~A, T[n]+A, V„with Eqs. (7)—(11) and
with'

Next, expand +„'" in terms of the eigenstates of H, .
Couple terms in the expansion whose coeScients decay
alike as o, ~O to obtain

@min, 0
i i

i=0

~here Co =4 '" because
&+;I+;&=a„,y, ~C,'~'=I, C', =1, C,'=0 for i )0, and
lim, (C /C; ) =0 with j )i (Note .that each N; may
be a linear combination of more than one eigenstate of
H, and each eigenstate within N, is different from each
eigenstate within 4, i%j.) In the limit A, ~ nn, Eq. (24)
becomes

lim E, [n2. ]=~'ICi I'(&@ IH I+ "&—&@ '" H I@ '"&)

+g[ /

Ca /2( ( @a]V /q&a ) ( q&min/V [q&min ) )

+(C;)*(C;)&e;/V„[e;&+(C;)*(C;)(e;/V„fe;)]+

Now, it should be clear, as a —+0, that Ci in Eq. (26)
must decay to zero at least as fast as a (or A, '). Other-
wise, by virtue of

( (&pa~H ~@a) (q&min~H ~@min ) ) )0

we would have limz „E,[ni ]=+no, in violation of the
condition that E, [ni ] 0 which stems from the definition
of E, . Finally, since limz ~A, Ci ~

& ao, Eq. (12) follows
because the negative V„component of Eq. (26) is thereby
kept bounded as A, ~~. In essence, a proof by contra-
diction has been employed.

For a common and important situation we have addi-
tional knowledge about the bound on limz E, [ z]n.

Consider H, =H, +nV„. Call E, the ground-state ener-

gy of H, . Now express E, in the form of the perturba-
tion expansion E, =g," Oa's;. By focusing upon the
o.~O limit, it is straightforward to prove that

lim E, [n) ] E2g~ 00

when the perturbation expansion has a nonzero radius of
convergence. The constant cz is already known for some
densities. For example, c.2= —0. 16 a.u. when n is the
two-electron ground-state density of

H, =T—yr, '.

E, [n2 ]=D [n]+A, 'Di[n]+A, D2[n]+ (27)

We have recently imposed conditions (11), (12), and
(13) to help arrive at the following very simple nonlocal
formula for approximating E, for spin-paired systems

At large A, (small a), 4'„'"' may be expanded in powers of
a when 4, '"' is analytic about e=O. When this expan-
sion is valid, the substitution of 4„'"' into Eq. (18) yields
the following power series for E, [nz] which is applicable
for large X,
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E, [n]= f (an+b~Vnjn '
)

X(c+d ~Vn ~n +n '
) 'dr,

so that

E, [nz]= f (an+b~Vn~n '~
)

(28)

p, ([n, a];r„rz)=21'„, (r, rz~r, r2)/n(r, ), (36)

where I, is the second-order density matrix of 4„'",
which is independent of a, and I'„ is thus the correla-
tion contribution to I „.E, is obtained from the corre-
lation hole, p, because p, [n, a], the correlation hole of
4„'"', is related to I '„by

lim E, [n ]~g~ oo

n (r, )n (r2)

[(y, —y, )'+(z, —z, )']'"
(29)

lim A, 'E, [nq~q]) —co,
g —+ oo

lim E, [n q ] ) —co,
A, ~O

lim A, 'E, [ n P~ ]
X~O

(30)

(31)

n (r, )n (r2)) 1 I jd r2
[(x, —x2) +(y, —y~) ]'i

(32)

where n ~(x,y, z) = An (Ax, y, z) and n P~(x,y, z)
=A. n (Ax, A,y, z).

Equations (29)—(32) are easily derived. For this pur-
pose note that V„[n~]~0, E [n~] ~0, and '
T, [n&] ~0, with corresponding equations for n &~&. Next,
the substitution of these inequalities into Eq. (7) gives

X( c+d~ Vn~ n +A, 'n '
) 'dr,

where a = —1.2067, b =0.0967, c =5.8043, and
d =3.6558. E, yields competitive results. For example,
it gives, in atomic units, —0.042, —0.095, —0.383,—0.444, and —0.787 for the He, Be, Ne, Mg, and Ar
atoms. The corresponding exact results are estimated to
be —0.042, —0.094, —0.387, —0.444, and —0.787.

Nonuniform scaling was recently introduced into
density-functional theory. ' Here I now reveal the fol-
lowing new limiting nonuniform coordinate scaling rela-
tions:

p, ([n];r„rz)=f p, ([n, a];rl, rz)da . (38)

From Eqs. (37) and (38), it is clear that p, ([n, a];rl, r2) is
the unknown that has to be modeled to obtain E, [n], and
a vast literature exists on this subject. With this in mind,
it is already known, of course, that Eq. (35) implies

fp, ([n, ajr Irz)d r2=0, (39)

for arbitrary n and arbitrary a, because both I, and
I „yielded n.

As constraints for approximations, new coordinate
scaling equalities shall now be revealed involving the ex-
act p, [n, a]. Perhaps the most important new equality
is

p ([ 'a] I 2 a p ([n lpga, 11 arl arz) (40)

This coordinate scaling equality for the correlation hole
arises by integrating Eq. (16) over the coordinates of elec-
trons 3 to N. With the latter expression, Eq. (37) be-
comes

1

Ee["]=2 f a f riz nlza(rl)
0

Xp, ([n&z, l];r„r2)d rid rzda
(41)

so only knowledge of correlation holes with coupling con-
stants of unity are needed. Further, from Eqs. (35) and
(40) and from the definition of @„'",it follows that

so that by the form of the adiabatic connection of
Langreth-Perdew and Gunnarsson-Lundquist,

E, [n]= —,
' f rI2'n (rl)p, ([n];rl, rz)d r&d r2 (37)

where

E, [nq] ~ —U[nq] (33) lim a p, ( [n I&, I ];arl, ar2) =0 .
+~0

(42)

(34)

which lead to Eqs. (29 —(32). In contrast, the LDA
violates conditions (29) and (32) because the LDA gives

for both limits. Most other common approxima-
tions to E, also violate these conditions.

It is common for density-functional investigations to
approximate the correlation hole. With this in mind,
the remainder of this section shall concern coordinate
scaling properties of the exact correlation hole. Con-
sistent with our definition of E„the second-order density
matrix of 4„'"', I „(r',r2 ~r, r~), is conveniently parti-
tioned in density-functional theory as

(35)

Also Ref. 9 implies that a JrI2'n» (rl)p, ([n&~, 1];
r, , rz)d r, d r~ is never positive, decreases monotonically
with increasing a, satisfies

lim e r I&'n I/~ r& p, n &&, 1;r&,r2 d r&d r2

~ —U [n ] E„[n ] ~ —U [ n ], (43—)

and thus must decrease to a finite negative constant.
To quickly illustrate the use of Eq. (40), consider

p, ""'([n,a];r, s) =aa(s z)nF/(1+az), —

which is the spherically averaged hole function, for two
electrons, which is proposed in the pertinent work of
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Becke. Here, a is a constant, I is a "damping" func-
tion, and z is a correlation "length" given by
z =n +nonlocal terms. Now, Eq. (40) is satisfied by
p, ""' only if m = —

—,', which supports with rigor the
value obtained by Becke through a more qualitative argu-
ment.

It should be noted that the development leading to
Eqs. (15) and (16) implies the following generalization to
Eq. (40):

p, ([n, a];r, , r2)=p p, ([n&,ap];p 'r„p 'r2), (44)

where p is not necessarily equal to a '. In fact, as a is
varied from 0 to 1 in Eq. (38), it may actually be desirable
to make ap=tU, where w is some smal/ fixed constant
such that 0&w «1. In other words, knowledge of the
uniUersa/ hole for some small fixed coupling constant w is
all that is necessary for solution to the many-body prob-
lem.

III. EXCHANGE AND EXCHANGE-CORRELATION
FUNCTIONALS

n (r])n (r2)) 1

2 2 1/2 d r&d r
[( )2+( )2]1/z

(45)

lim A,
' E„,[n z~z ] ) —oo,

g~ CQ

(46)

For the whole exchange-correlation hole, Eq. (16) im-
plies Eq. (4). The latter equation would be used in the
adiabatic connection formula for E„,; simply replace
p, [n, &, 1] and E, [n] in Eq. (41) by p„,[n, &, 1] and
E„,[n]. Further, any approximation to E„, should be
made to satisfy Eq. (5).

Equation (7), V„[n z ] )0, T, [n z ])0, and analogous
relations for n &~& dictate that

lim E„,[nz]

E, [n] =E„,[n] —lim A, 'E„,[n~ ] .
g~ QO

(50)

Hence, since the right-hand sides of Eqs. (49) and (50)
contain the whole of E„„the analysis in the present pa-
per really is independent of which definition of the correla
tion energy one chooses. In other words, I have simply fo-
cused upon the coordinate scaling properties of the whole
of E„, with emphasis upon the projection given by the
right-hand-side of Eq. (50).

IV. DIFFERENT DEFINITIONS
OF CORRELATION ENERGIES

One should be careful when one compares numerical
values for approximations to E, with the conventional
correlational energy as defined at the end of this section.
However, as discussed in the following paragraph, the
present paper does provide information about a meaning-
ful correlation energy which is meant to be used in con-
junction with a Hartree-Fock calculation.

Define EeF by34, 35

En~[n]=(ql~'"~T+V„~+~'") —(@ "~T+V„~+ ")
(51)

where N„" is that single determinant which yields n and
minimizes (T+V„). Equation (51) was introduced by
Baroni and Tuncel and Stoll and Savin. Now, it has
previously been shown that when the functional deriva-
tive of E, " is added to the Fock potential and self-
consistency is achieved, then the exact ground-state den-
sity n~s is obtained and the highest-occupied orbital en-
ergy turns out to be the negative of the exact ionization
energy. Further, the exact ground-state energy is ob-
tained when E, "[nos] is added to the expectation value,
via the true interacting Hamiltonian, of the optimum sin-
gle determinant. With all this in mind, note, from their
definitions, that

E,[n]&E, "[n] (52)

lim E„,[n z ]) —ce,
A, ~O

(47) when n is pure-state noninteracting U representable.
Hence, when the latter situation applies it follows that

E [n]= lim A, 'E„,[n~]g~ 00

and thus

(49)

lim A,
'

„E,[nz~z]
A, ~O

n (r, )n (rz)) i
2 212d r)d r2

[(x, —x~) +(y, —y2) ]'~

(48)

Equation (7) also dictates that the right-hand-sides of
Eqs. (45)—(48) are lower bounds for the E„component of
E„, because E, [ &]n&0 and E, [n&~&] &0. Common ap-
proximations to E generally Uiolate conditions (45) and
(48).

Assume that one is given a healthy approximation to
E„,. Then according to Eqs. (12) and (6) one could pro-
ject out, for study and analysis, those components which
are approximations to E„and E„because for the corre-
sponding exact components,

lim E, [n~]) —Oo,
g~ oo

(53)

and the bounds in Eqs. (29)—(32) also follow for E,
The conventional quantum-mechanical definition of

the correlation energy E, , for let us say an atom, is of
course the difference between the true ground-state ener-

gy of the nonrelativistic Schrodinger equation for the
atom and the Hartree-Fock energy for the atom. From
the work of Linderberg and Shull, we know that as the
nuclear charge z becomes large, E~ either goes to a con-
stant or goes as z, depending upon the number of elec-
trons N in the atom. For instance, for two and ten elec-
trons, E~ is bounded from below as z~oc, while for
four electrons, EP is linear in z as z~ 0O. (This asymp-
totic dependence of E, on the number of electrons, as
ascertained by Linderberg and Shull, has already been
discussed by Perdew, McMullen, and Zunger within the
context of density-functional theory. ) Now, in view of
the Linderberg-Shull results what is "surprising" about
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the results for E, [n] in the present paper is how general
Eq. (12) is. This bounded condition applies generally to
finite systems such as atoms, molecules, and solids. For
example, Eq. (12) applies for lim& E, [n i

' ], where n

is the ground-state density of the Be atom which has four
electrons, even though E™is linear in z at high z for a
four-electron atom. Then does not Eq. (12) violate the
Linderberg-Shull result? The answer is no for at least
two reasons. First, although the density does, of course,
become more compact as z becomes large, the density at
high z is not simply a scaled Be density. Second, E, is
not the same as E, . How E, depends on high z is
determined by whether or not there are degeneracies as-
sociated with the bare-nuclear hydrogenic Hamiltonian.
But as in the Be atom, one may have degeneracies associ-
ated with the bare-nuclear hydrogenic Harniltonian and
no degeneracies associated with the Kohn-Sham nonin-
teracting Hamiltonian. It is the latter Hamiltonian
which is of relevance to E„and the Kohn-Sham nonin-
teracting Hamiltonian for Be has no ground-level degen-
eracies.

E, should often be close in value to the traditional
quantum-mechanical correlation energy which, as in-
dependently discovered by Harris and Pratt and Levy,
may be given exactly in the terms of the Hartree-Fock
density. This functional, EQ [n„"],is defined by

EQM[n HF] ( qIGs~ H
~

qgGs ) ( q)HF~ H
~

q)HF )

where

H, =T+V„g u(r, ),

and where n, ", N, ", and O„are, respectively, for H„,
the Hartree-Fock density, the Hartree-Fock wave func-
tion, and the exact ground-state wave function. The ex-
act ground-state energy is obtained when EQ [n, "] is
added to the Hartree-Fock energy for H, . (Incidently,
note that the existence of EQ [n, "] implies the existence
of E™[%,"]. This latter E, has the same numerical
value as EQ [n, "].) Now, from Eq. (7), E, [n, "]is

[ HF] ( ipmin
~
H

~

illmin ) ( @min H
~

@min )
U U U U

Hence, E~ should often be close to E, because the ine-
qualities

density-functional theory to help simplify the rnany-
electron problem. Assume that we are interested in the
ground-state energy E~s and the ground-state density of
the electron-nuclear attraction operator u,„(r). Then, of
course, by the Hohenberg-Kohn theorem and its general-
izations,

EGs = min f u,„(r)n (r)d r +F[n]
n

where

(54)

F [n]=T[n]+ V„[n] . (55)

F[n]=T,[n]+ f V„[n] . (57)

The latter is an alternative way of expressing the adiabat-
ic connection (coupling constant integration) formula
which was written in Sec. I with respect to E„,. [See Eq.
(1)]. Here,

[nl f ri2'I ...(rir2lrir2)d'rid'r2 (58)

Properties of V„[n] have already been ascertained.
From Levy and Perdew, we know that

8 V„[n] ~0 for all a&0,
Ba

(59)

Now, the interacting T [n] is never really used. Instead,
the simpler noninteracting T, [n] is employed, and T, [n]
is computed exactly, for present practical calculations, by
taking a sum of kinetic energy expectation values involv-
ing the Kohn-Sham orbitals. Does this mean that we
need, in return, knowledge of something other than
V„[n] to pay a price for the additional simplicity in the
kinetic component of F [n]. The answer is, surprisingly,
no because the formulation in the present paper dictates
that

F[n]=T,[n]+ f aV„[n&& ]da . (56)
0

Hence, knowledge of the universal I „,(r, r2~rir2), the di-
agonal part of the second-order density matrix for n = 1,
is all that is needed. Noteworthy then is the fact that Lee
and Parr and Valone have very recently studied
V„[n].

Equation (56) arises from the combination of Eq. (3)
with

and

(qpGS~H ~@GS) & (qpmi ~H ~qlmin )
U U

and that

lim V„[n ]= ( C „'"
~ V„~C „'"),

CX~ 0
(60)

(@HF(H (g HF) & (@min [H (@min )
U U

are often tight and are always partially offsetting in the
evaluation of ~iEQ~ E, ~.

—

V. ANALYSIS, SUMMARY, AND CONCLUDING
REMARKS

The main implications of this paper can be cast in
several different forms. Which form one uses depends
upon which orientation one chooses when one employs

F[n]=T,[n]+U[n]+E„,[n] .

Equation (3) allows us to express Eq. (1) as

E„,[n]=f a(V„[n,z ]—U[n, z ])da,
0

(61)

(62)

where use has also been made of U[ni& ]=a 'U[n].

which identifies 2 [n j in Eq. (2) as the right-hand-side of
Eq. (60).

As has been emphasized throughout this paper, one
naturally works with E„within the Kohn-Sham pro-
cedure where one expresses F [n] as
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E„,[n]= V„[n]—U[n], (63)

where

Hence, only knowledge of V„[n], the universal repulsion
energy functional corresponding to a=1, is necessary to
know E„,[n]

Most often in the literature the "average" of V„(from
a=0 to 1) has been approximated. In particular, we
often see in the literature '

1

E, [n] = r]2' I '„d r]d r2da
1= f V;, [n]da,

where

(73a)

[See also Eq. (6).] Hence, it is I'„which varies with a
and possesses the more complicated coordinate scaling.
For these reasons, this paper has focused upon E, [n] and
I'„which are linked by

V„[&]=f r. (r]r2lr]r~)r]2'd'r]d'r2, (64)
V,", [n]= f r,~'1'„d r]d r2 . (73b)

and where the average second-order density matrix I is
given by Equations (3), (59), (66), and (69) imply

r„=f 'r„.da . (65)
0

In other words it is I „(r]rzlr]rz) which is most often ap-
proximated. However, in order to ensure that I „ is ap-
proximated adequately I feel that it is wise to actually ap-
proximate each 1 „(r]rzlr]r2) by utilizing what are im-
plied in Eqs. (59) and (60) and by utilizing other known
properties of I „as a function of a. Other properties of
I „ include4'

and

V;, [n]=aV; [n]q ],
]1V;,' [n] &0 all a~0,

Ba

(r2r]lr2r])

I '„(r,r2lr]rz) =a r'„](ar]ar2lar]ar2) .

(74)

(75)

(76)

(77)

1 „(r2r, lr2r, )=1 „(r,r2lr, r2)

2 f I „(r]rzlr]rz)d r2 =n(r, ),

(66)

(67)

Section II gave analogous equations involving the corre-
lation hole. Equations (73) to (77) are presented here for
those who are more familiar with thinking in terms of the
second-order density matrix rather than in terms of the
correlation hole. In addition, Eqs. (39) and (43) dictate

2 f I „ (r, r2lr, r2)d r] =n (rz) . (68)

V;,' [n]=0,
V;,'"[n]) —oo .

(78a)

(78b)

Et is interesting that the local-density approximation does
not satisfy ' Eq. (66).

It has been a purpose of this paper to reveal key coor-
dinate scaling properties of I „.With this in mind, it is
now asserted that

I „(r]r2lr]rz) =a r„](ar]ar2lar]ar2) (69)

r =r'
n, O n (70)

which arises by integrating Eq. (16) over the spatial coor-
dinates of electrons 3 to N and over the spin coordinates
of all the electrons. Further, from Ref. 9 we know that

As an illustration of how one uses the adiabatic con-
nection by starting with a guess for V,", , following is
perhaps the simplest local form to satisfy the latter two
equations and Eqs. (74) and (75):

V'I: l= an(r)
a +abn ' (r)

where a and b are negative constants. Substitution into
Eq. (73) yields

E, [n]= f d r f "
]&3 da,

a +abn ' (r)

V,", [n]= Inf f r(r r ]lr2rz])r, ~'d r]d r2,
1 ~n (71)

so that I"„omust possess all the known properties of I,
Also, from Ref. 9

so that

E[n]= fd r b 'n +ab n ln
a

a+bn-'"

=A,f r]2'I „(r]r2lr, r2)d r]d r2 . (72)

where the I are n representable. [See Ref. 40 for approx-
imations to the right-hand-side of Eq. (71).]

From the perspectives of this paper, Eq. (35) serves as a
natural partitioning of I „because I, does not vary
with o. and because I „exhibits very simple coordinate
scaling. Namely,

f r]2'r„(r]r2lr]r2)d r]d r2

Note that E, [n&] is bounded from below as A, ~ ~ but
E, [n] violates condition (32). Nonlocal components in
V,", correct this deficiency.

It has been shown by Stoll and Savin that Eqs. (73)
applies for the generation of E, "[n] as defined in Eq.
(51). Moreover, it can be shown that Eqs. (74) and
(76)—(78) apply for E, "[n] Simply replace I. „ in Eq.
(35) with the second-order density matrix of that
Hartree-Pock determinent which yields n and minimizes
( T+aV„). In addition, Eq. (75) should generally apply



43 DENSITY-FUNCTIONAL EXCHANGE CORRELATION THROUGH. . . 4645

BE,[n~]
V,', [n] =2E, [n]—

ay
(80)

where V;, [n]= V;,'[n]. Equation (2) then results from
use of Eqs. (12), (79), and (80). [Also, note that the
bounds in Eqs. (29)—(32) are applicable for V;, ; simply re-
place E, by V,', in the left-hand-side of each equation. ]
In contrast to Eq. (2), the local-density approximation to
Eq. (2) is

lim VLDA [n]=U[n]+E [n]+aln(a ')&'[n], (81)
a~o

where E" is the local-density exchange energy which is
proportional to f n ~ d r. Equation (81) stems from

when the above replacement for I „ is made in Eq. (35)
Equation (2) arises from the combination of

Va[n] —(@min ~ ~@min)

+ [ ( q/mina~g ~q/min, a) ( q)min / ~q)min ) ]

together with Eq. (25) and with the argument following
Eq. (25) concerning the behavior of qI„'"' as a~o. An
alternative means of arriving at Eq. (2) employs

V„[n]= (+„'"~V„~@„'")+a V;, [n ], (79)

where from Eq. (11), V;, [n], the electron-electron repul-
sion contribution to E, [n], is given by

VLDA, a[n] U [n]+ELDA[n]+~ Ve, LDA[n ] (82)

with the following local-density counterpart to Eq. (80):

Vc, LDA[n] 2ELDA[n] (83)
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and with the employment of the fact that E, [n&] goes
as —log(A, ) as A,~ ac.

The last term in Eq. (81) is too negative at low a,
which is, perhaps, part of the cause for the fact that the
LDA correlation energy is too large in magnitude. Also,
when atoms combine to form a molecule, the charge den-
sity becomes more compact. Hence, perhaps the well-
known LDA overbinding in molecules is due, in part, to
the fact that the LDA correlation energy is unbounded as

However, on the basis of preliminary calcula-
tions it is important to note here that V„' appears to
correctly give cjV,", ' /Qa~O, at least when the Vosko-
Wilk-Nusair parametrization for E, is employed in
Eq. (83).
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