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We report a modified time-dependent local-density-approximation (TDLDA) calculation of the
linear polarizability of rare-gas atoms. The modification we use takes the self-energy into account
by introducing a scissors operator; we simply increase the energy differences of the occupied and
unoccupied orbitals from the LDA calculation by a constant. The energy shift is (1) estimated with
a single oscillator model and (2) determined such that the modified TDLDA with the scissors opera-
tor gives the experimental value of the static linear polarizability. The ratio of the energy shift to
the lowest LDA energy difference between occupied and unoccupied orbitals for each atom is calcu-
lated. These ratios are found to be comparable to the corresponding ratios of the energy shift to the
energy gap in the scissors operator in a solid. The modified TDLDA calculation with the scissors
operator agrees better with the experimental results, for the frequency dependence of the linear po-
larizability, than the TDLDA calculation. We apply the Schmidt-Ruedenberg even-tempered
Gaussian basis in our calculation and find that the energy-optimized basis set gives a rather poor
convergence rate for the linear polarizability. However, a good convergence rate can easily be ob-
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tained by adding a few diffuse basis functions to an energy-optimized basis set.

I. INTRODUCTION

The time-dependent local-density approximation
(TDLDA) has been used to calculate linear response of
rare-gas atoms by several groups' ™ since 1980. Within
the TDLDA formalism, one can incorporate the dynamic
electron-electron interaction into an effective single-
particle potential and form a set of self-consistent equa-
tions. The inclusion of this local-field correction gives a
much better description of the response of a system under
the influence of an external field. Zangwill and Soven? in-
troduced the TDLDA calculation of the total and partial
photoabsorption cross section of rare-gas atoms with suc-
cess. The TDLDA calculations of the linear polarizabili-
ty alw) shows that a reasonable agreement with the ex-
periment is obtainable. However, there still exists an ob-
vious discrepancy with the corresponding experimental
data. The latest TDLDA calculation by Senatore and
Subbaswammy* reports an overestimation of the a(w)
versus o slope by 50% for the He atom to 14% for the
Xe atom compared with the corresponding experimental
value. The discrepancy comes from the fact that the
TDLDA does not predict optical properties correctly.
Several groups® ' have suggested that quasiparticle ener-
gies are good predictors of optical properties. Currently,
the GW approximation is the most sophisticated practical
method to obtain the quasiparticle energies in solids.
Within the GW approximation, the optical excitation fre-
quencies in semiconductors can be predicted to within 0.1
eV of the experimental value. In Si, GaAs, and AlAs, the
differences between the computed quasiparticle energy
and local-density-approximation (LDA) energy depend
weakly on the wave vector k. One can simply shift the
LDA conduction bands by a constant to reach the quasi-
particle results. This is the so-called ‘“‘scissors operator.”
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The scissors operator has been successfully applied to cal-
culate the dielectric function of Si and Ge (Ref. 8) as well
as the dielectric constant and nonlinear susceptibility for
a few III-V compounds.®’ The results have shown that
the modified TDLDA with the scissors operator con-
sistently yields much better results than the TDLDA.

In this paper we will present our modified TDLDA re-
sults for the dynamic linear polarizability with the scis-
sors operator in rare-gas atoms. Our modified TDLDA
calculation has a better description of the frequency
dependence of the linear polarizability for all rare-gas
atoms than the one given by the TDLDA.

The calculation of the linear polarizability for atoms
and small molecules has a long history. The most com-
mon methods for the polarizability calculation are the
uncoupled Hartree-Fock (UCHF) and the coupled
Hartree-Fock (CHF) approximations.'®!! The major
difference between the UCHF and CHF methods is that
the UCHF approximation completely ignores the correla-
tion effects while the CHF includes mainly first-order
correlation effects. To minimize the error in the linear
polarizability calculation, the inclusion of the correlation
effects is fairly important. Werner and Meyer!? have con-
ducted a pair-natural-orbital configuration-interaction
(PNO-CI) calculation, where the correlation effect is tak-
en into account at the level of the coupled-electron-pair
approximation. Their results are within 2% of the corre-
sponding experimental results. Other methods!® are also
developed so that the second- and third-order correlation
effects can be taken into account. However, the compli-
cation of the methods themselves confined their applica-
tions only to small molecules. The LDA is an alternative
to the complicated configuration-interaction (CI) family
of calculations. It takes the correlation interaction into
account in a much simpler form and has already been ap-
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plied to both small and large systems.

In most published work, only the static polarizabilities
of various atoms and molecules are calculated. The static
polarizabilities are calculated from either the second
derivative of the total energy with respect to the external
electric field'* or the difference of the induced dipole mo-
ments at small, finite external field strengths (finite per-
turbation calculation).!’!2 These methods are limited to
static phenomena. For frequency-dependent polarizabili-
ties, one needs to start with a time-dependent perturba-
tion theory. The TDLDA is a time-dependent perturba-
tion theory which is built on the local-density approxima-
tion; hence it enables us to study both the static and finite
frequency polarizabilities.

To obtain a dependable result for the linear polarizabil-
ity, it is also important that the wave functions are ex-
panded in an appropriate basis set. We applied an even-
tempered Gaussian basis in our calculation. The parame-
ters of the even-tempered Gaussian basis functions have
been optimized by Schmidt and Rudenberg!® from H to
Ar atoms for total-energy calculations. As we show
below, we must augment these energy-optimized basis
functions to obtain good convergence in the linear polari-
zability calculation.

Previous workers' * solved the TDLDA problem us-
ing a numerical solution of the differential equations rath-
er than expanding the wave functions in terms of a basis
set. It is simpler to directly solve the differential equation
for atoms; but it’s hard to apply the same method on mol-
ecules. With a long-range goal of studying molecules, we
implement the Gaussian basis and gain the advantage of
ease of the application of the scissors operator in our
modified TDLDA calculation.

The outline of the paper is as follows. We start with a
brief overview of the formalism of the modified TDLDA
with the scissors operator, where we introduce the
single-oscillator model in the estimation of energy shift in
the scissors operator. Our results from the TDLDA and
modified TDLDA with the scissors operator are then
presented. Next we illustrate the convergence rate of the
total energy and linear polarizability with energy-
optimized Schmidt-Ruedenberg Gaussian basis sets as
well as the augmented basis sets. A discussion on the ap-
plicability of the scissors operator in rare-gas atoms for
the linear polarizability calculation concludes the paper.

II. MODIFIED TDLDA
WITH A SCISSORS OPERATOR

A. Formalism

Our TDLDA calculation begins by solving for the
ground-state orbital eigenvalues and their corresponding
eigenfunctions. The Kohn-Sham!® eigenvalue equation
(in atomic units) is applied,

( _%Vz—'_ Vext + th +:u'xc)¢nlm (r)zenl¢nlm(r) (2.1
Vext = Z— ’ (22)
r
f n(r’) 2.3)
=rlka
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where the Ceperley-Alder exchange-correlation energies
are used in our calculation to approximate the exchange-
correlation potential u,..!” In the equation, €, and
¥, (1) are taken to be the eigenenergy and eigenfunction
for the orbital with quantum numbers nlm, n(r) is the
number density of the electrons. The wave functions
¥, (1) are expanded in a Gaussian basis set; specifically,

N
lpnlm(r) 2 Cin1¢ilm(r):RnI(r)Ylm(6’¢) 2.4)
i=1
and
¢ilm(r)=bilrlexp é,]r Ylm 0 ¢ 2.5)

In Eq. (2.4), N, is the total number of the Gaussian func-
tions used to expand the wave functions with angular-
momentum quantum number /. The coefficients c;,; and
b, are introduced to normalize the wave functions ¥,
and the basis functions ¢;,,, respectively. Orbitals with
the same angular-momentum quantum number [/ are ex-
panded in the same set of the Gaussian basis functions.
Details on choosing the Gaussian basis parameters §;
will be discussed in the next section. The calculated
LDA ground-state eigenvalues €,; and their correspond-
ing wave functions v, (r) are then used in the calcula-
tion of the linear response of the system.

The next step of the linear polarizability calculation re-
quires the perturbed wave function W,,},’miw obtained from
the following equation:

(Enl to— HO )¢nlm o (26)

Viw(r)¢nlm ’
a result of first-order perturbation theory. Here V(1)
includes the external perturbation potential, the induced
Hartree or Coulomb potential, and the induced
exchange-correlation potential. If the external electric
field is written as

E=EyZcos(wt)=1E 2(e''4+e~1%) , 2.7
then
— Sn(r',w) , anc
V,(r)= —Eorcose+f rI dr'+—<8n(1,0) .
(2.8)

The latter two depend on the induced density &n (r,w),
given by

an(raa)): 2 [¢nlm w(r)lﬁnlm(r)*+¢(nllr)r:—w(r)¢nlm(r)] .

nl,m

(2.9)

Equations (2.6), (2.8), and (2.9) are solved self-consistently
for the induced density dn(r,w). The numerical method
used to solve for dn(r,w) is to expand the induced wave
function ¥}, . ,(r) in terms of the same set of the Gauss-

ian basis Eq. (2.5):
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M ()= Ng’ U+m+D)I—m+1) | relation'® [note, ¥, (r)=V(r)cosf]:
wim 2o 0= 3 21+ 1)(21 +3) Dm0 1 1172
(0080 ¥im = 20 +1)(21 +3 Yitim
Xd;p1+1,+0®i1 +1,m(T) ( ) )
172 172
2y | Ut —m il —m) o
@I+ 1)20—-1) QI+1)21—1) I=1,m

The coefficients d are independent of the quantum num-
ber m. The linear polarizability can be obtained from its
definition with the following formula:

Xdip1-1,+0®i1—1,m(T) - (2.10)

The factors in the square roots arise from the following
J

a(w)=—~EgO— z8n(r,w)dr
2 <¢'nlm 'r Cosehpn']'m ><¢n'1’m | lel//n]m )
" E, S 2.12
EO n%m r%’(fnlm fnlm) En,—“en'1'+a) ( )

The fact that V', =V _  is used to derive the above expression, where f,;,, is the occupation number for the orbital nim.
The value of f,,,, is 2 (spin freedom) for an occupied state and O for an unoccupied state. Also, ¢,;, and ¢,; are the
LDA eigenstate wave function and eigenenergy as in Eq. (2.1).

Optical processes necessarily involve quasiparticles.’~’ The LDA formalism, designed to calculate the ground-state
energy, does not compute the quasiparticle energies. Instead, the nonlocal and energy-dependent self-energy should re-
place the local exchange-correlation potential in the Kohn-Sham equation. Currently, the GW approximation is used to
compute the self-energies in solids. It has been found that the quasiparticle wave function of the GW calculations are in
very good agreement with the wave function of the LDA calculations.® In some solids, e.g., Si, GaAs, and AlAs, the
difference between the quasiparticle energy and the LDA eigenenergy depends weakly on the wave vector.” One can
simply apply a scissors operator to shift the LDA conduction band up by a constant to obtain the corresponding quasi-
particle energy band.

We introduce the scissors operator in our study for the linear response of the rare-gas atomic system to increase the
energy difference between the occupied and the unoccupied energy levels by a constant A, i.e., Eq. (2.12) is replaced by

the following equation:

2 <¢nlm |r COSQ'II}anrm ><"/Jn’l’m ! Vw|1/)n1m >

a(w)Z“E— > S SLuim—Fwrm
0

nlmn'l'

Here, the energy shift A is defined to be positive and the
+ sign in the above equation is to ensure that the scissors
operator always increases’ the energy difference between
occupied and unoccupied energy levels. Notice that the
contribution to the linear polarizability a from the transi-
tions between two occupied states or two unoccupied
states is zero. A simple single oscillator model is applied
to estimate the energy shift A.

B. Single-oscillator method

The single-oscillator method is a simple but surprising-
ly successful way to describe the low-frequency electronic
dielectric function in many systems. Wemple and
DiDomenico!’ fit the dielectric function e(w) of more
than 100 different solids with a single-oscillator model us-
ing the relation

e(w)=E,E,/(E}—#w?) . (2.14)

In the formula, E; is the single-oscillator energy and E,
is a parameter which depends on the crystal structure
and ionicity of the solid.

We applied this idea in atoms to estimate the energy

(2.13)

€, "“EnrlfiA+CL)

shift needed in the scissors operator. In the single-
oscillator model, the imaginary part of the polarizability
a(w), which is directly related to the absorption cross sec-
tion, is simply a 6 function

Ima(w)=%8(w—a)o) , (2.15)

where K and o, are the parameters to be determined.
The physical meaning of w, is the resonance energy of the
single oscillator. The Kramers-Kronig relation leads to

Ko
Rea(w)=——— . (2.16)
5~ @

It is easy to see that Eqs. (2.14) and (2.16) have the same
form. For small frequencies, the real part of a is

Rea(w)z£+£3a)2 . (2.17)
(o)) [ory

The parameters K and w, are determined so that Eq.
(2.17) fits the TDLDA results,
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TABLE I. TDLDA calculation of the linear polarizability for the rare-gas atoms. In the region well
below the absorption threshold, a(w) vs »? is a straight line with a slope da(w)/d(w?*). Our TDLDA re-
sults are compared with those of Senatore and Subbaswammy (Ref. 4).

a(0) (A% 0al@) 110-3 &3/ev)?]
A w?)
Present Ref. 4 Expt. Present Ref. 4 Expt.
He 0.246 0.246 0.205 0.49 0.50 0.32
Ne 0.452 0.452 0.395 0.89 0.91 0.59
Ar 1.78 1.78 1.64 7.3 7.5 5.8
Kr 2.65 2.67 2.48 14.4 14.8 12.1
Xe 4.25 4.26 4.04 31.1 31.6 27.6
a(O)TDLDA:ﬁ within 1%. (We both use the Ceperley-Alder exchange-
g correlation results but different numerical calculation
methods.) This is as good as if not better agreement than
and achieved® among the calculations of Stott and Zamem-
dalw)TPLPA g ba,! Zangwill and Soven? and Mahan® all of whom used
3(w?) _w_g : (2.18) the Gunnarsson-Lundquist?® parametrization of the

To approximate the quasiparticle energy levels, w, is
shifted by a constant A™%! in the single oscillator model.
We replace w, in Eq. (2.18) by wy+ A such that the model
reproduces the experimental static polarizability,

K

= (0) (2.19)
(g + Amo%!)

The actual energy shift ASS° for our modified TDLDA
calculation in Eq. (2.14) is determined so that when the
energies of the unoccupied orbitals from the LDA calcu-
lation are shifted up by A%'*°™ with respect to the occu-
pied orbital energies, the modified TDLDA calculation
will reproduce the experimental result of the static linear
polarizability. It turns out that the single oscillator mod-

el Am"del provides a good guide for the energy shift
ASC!SSOI’S.

C. Results and analysis

Our TDLDA results (without scissors) for the linear
polarizability of the rare-gas atoms are shown in Table I.
Our calculated static linear polarizabilities agree with
Senatore and Subbaswammy’s* corresponding results

exchange-correlation potential.

We compare the experimental data?! with our results
from the modified TDLDA with the scissors operator
and also with the results from the single-oscillator model.
As described in Sec. II B, the parameters K and w, in the
single oscillator model are determined so that the model
reproduces our TDLDA result of the static linear polari-
zability. The energy shift in the single-oscillator model
A™odel js estimated such that the model will give the exact
experimental result of the static linear polarizability.
With this energy shift, the model can predict the frequen-
cy dependence of the linear polarizability. As shown in
Table 1I, the agreement with the model’s predicted slope
and the experimental slope is surprisingly good; except
for He, discrepancies are no more than 3%.

In our modified TDLDA calculation with a scissors
operator, the energy shift between the occupied and
unoccupied energy levels is determined so that the
modified TDLDA will give the exact experimental value
of the static linear polarizability. Keeping the same ener-
gy shift, we calculated the frequency dependence of the
linear polarizability a(w). In the region well below the
absorption line, a(w) depends linearly on w?. The calcu-
lated slope da(w)/d(w?) is compared with the experimen-

TABLE II. Modified TDLDA calculation of the linear polarizability for the rare-gas atoms. The
frequency dependence of the linear polarizability both from the modified TDLDA, which shifts the en-
ergy differences between the occupied and unoccupied states with the scissors operator and from the
single-oscillator model described in the text, are given. In either case (scissors or model), the relevant
parameters are adjusted to give the experimental value of the a(0). The parameter K is defined in Eq.
(2.15).

%‘("(‘;’; (1072 A°/(eV )] A (V) K [A® (V)]
©

Scissors Model Expt. Scissors Model Model
He 0.26 0.28 0.32 4.8 4.5 5.5
Ne 0.51 0.59 0.59 3.8 3.3 10.2
Ar 5.2 5.8 5.8 1.6 1.3 27.8
Kr 11.0 11.8 12.1 1.15 0.9 35.9

Xe 25.0 26.9 27.6 0.75 0.6 49.7
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TABLE III. Energy shift in the scissors operator. In the
table, A™%! and P! are the estimated energy shift and energy
gap in the single-oscillaior model given in Table II; A*i°™ js the
energy shift in our modified TDLDA calculation; o§P* is the
lowest energy difference of the occupied and unoccupied orbit-
als in our LDA ground-state calculation. The last two columns
are the ratio of the energy shift to the energy gap in the single-
oscillator model and in the modified TDLDA with the scissors
operator. The ranges of the ratio are comparable in solids and
atoms.

w, (eV) A/w,
LDA Model Scissors Model
He 16.0 22.4 0.30 0.20
Ne 13.5 22.5 0.28 0.15
Ar 10.1 15.6 0.16 0.08
Kr 9.0 13.6 0.13 0.07
Xe 8.0 11.6 0.09 0.05

tal slope. It turns out that the slope calculated using the
modified TDLDA agrees better with the experimental
slope than the one from the TDLDA calculation. The
discrepancies of the TDLDA slope with respect to the ex-
perimental siope are 51%, 51%, 26%, 19%, and 13%
and the corresponding discrepancies for the modified
TDLDA are —19%, —14%, —10%, —9%, and —9%
for the He to Xe series.

Tables III and IV are a comparison of the scissors
operator in the rare-gas atoms with the one in a solid.
The ratio of the energy shift and the lowest energy
difference beiween the occupied and unoccupied states is
calculated for each rare-gas atom in Table III. It ranges
from 0.09 to 0.30. Table IV gives the ratio of the energy
shift in the scissors operator to the energy gap in the dia-
mond crystal, which ranges from 0.22 to 0.59 for different
k points. The range of the ratio A /e®*P is comparable in
both solid and the rare-gas atoms. The TDLDA results
agree better with the experimental data for the heavier
atoms and need a smaller energy shift in the scissors
operator, even in comparison to the energy scale of the
valence electrons.

Figure 1 shows the linear relationship of the a(w)
versus o’ in a semilogarithmic scale. One can see that
the linear relationship holds well in the region well below
the absorption threshold. The data show a small upward
trend as the frequency approaches the absorption limit.
The TDLDA calculation overestimates the experimental
slope while the modified TDLDA with scissors operator

TABLE IV. Scissors operator in diamond. Data are from
Ref. 7; A=W —¢lPA are the self-energy corrections; the g“P*
are the LDA eigenvalue differences from the valence-band max-
imum.

Diamond A (eV) elPA (eV) A/e
s, 2.01 5.50 0.37
X,, X, 2.29 10.44 0.22
L. 2.10 8.00 0.26
E, 2.06 3.48 0.59
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FIG. 1. The frequency dependence of the linear polarizability
for the rare-gas atoms. If a(w) and »? had a strict linear rela-
tionship, the curves would be straight lines parallel to the hor-
izontal axis. The arrows around the vertical axis point to the
corresponding experimental values, which lie in between the
TDLDA (without scissors) and the modified TDLDA (with scis-
SOrs) curves.

overcorrects the TDLDA slope. If we assume?®? that the
wave functions from the LDA and the GW calculation
are almost identical in atoms, then the overcorrection of
the TDLDA slope can be explained by the way we deter-
mine the energy shift in the scissors operator. In the
available GW calculation in the solid case, the energy
shift A generally increases as the energy gaps from the
LDA calculation increases.® In our case, this means that
A should increase as |e,;—¢,| in Eq. (2.13) increases.
We choose the energy shift A to be a constant so that the
modified TDLDA with the scissors operator will give the
exact static linear polarizability. The A value we used in
our modified TDLDA calculation is therefore an average
value of the A as a function of g,,—e,; so that it is
higher than the energy shift needed for the small
€, —€,p values. If we ignore the induced potentials in
the linear polarizability calculation (independent-particle
model), it is easy to find an analytical expression for the
alw) versus w? slope, %aza(w)/aa)z. From Eq. (2.13), the
slope depends on (g,; —¢,tA~+w)”? rather than the
(e, — €,y tA+@)”! for the linear polarizability. The
slope depends more on small |e,; —¢,.| values than the
linear polarizability. Since the constant energy shift A
used in the modified TDLDA calculation is higher than
the correction needed for small values of |e,, —¢, |, the
slope of the modified TDLDA tends to be lower than it
should.

III. CONVERGENCE STUDY OF THE LINEAR
POLARIZABILITY WITH GAUSSIAN BASIS

Independent of the concerns of an appropriate treat-
ment of the correlation interaction, the selection of ap-
propriate basis functions has always been a major
difficulty in linear polarizability calculations. Compared
to the considerable study on constructing minimal basis
sets for the total-energy calculation of atomic and molec-
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ular systems, there is little published work on the corre-
sponding linear polarizability calculation. Most basis
functions used in the linear polarizability calculation are
augmented from the energy-optimized basis sets by add-
ing a few diffuse basis functions with small exponents.
The simplest way to choose the diffuse basis functions is
to continue an approximate geometric series in the aug-
mented basis. To obtain some insights into a good choice
of basis functions for the linear polarizability calculation,
Zeiss et al.'? analytically solved the perturbed wave func-
tion of the H atom under the influence of an external stat-
ic field. Further, a scale factor, introduced as a parame-
ter in the perturbed H atom wave functions is used to ap-
proximate the perturbed wave functions for all atoms.
The scale factor can be determined so that the approxi-
mated perturbed wave functions reflect the range of the
outermost orbital of a particular atom. The approximat-
ed perturbed wave functions are fitted by a set of Gauss-
ian basis functions with the least-squares method. These
Gaussian basis functions (field-induced polarization func-
tions) are then used with an energy-optimized basis set in
the linear polarizability calculation. There also exist
basis sets obtained by minimizing the Hartree-Fock (HF)
energy of the molecule in the presence of a weak electric
field.?* All of these methods produce a similar choice of
the exponents for the diffuse basis functions needed in the
linear polarizability calculation.

There are many choices of the energy-optimized
Gaussian basis.?* All these optimized Gaussian basis sets
are constructed to describe the occupied wave functions.
We concentrate on the even-tempered Gaussian basis in
which [cf. Eq. (2.5)] the { are

Ca=aqBi7Y, i=1,2,...,N,. (3.1)
For orbitals with quantum number /, there are three pa-
rameters q;, 3;, and the total number of the basis func-
tions N;. For the total-energy calculation, Schmidt and
Reudenberg!® parametrized a; and 3, as a function of the
number of the basis functions N, for all elements from H
to Ar. With this scheme, one can condense the three pa-
rameters «;, f3;, and N, into one for each I.

It is more convenient to think in terms of the real
space rather than the § space covered by a Gaussian basis
set. Since £ is proportional to 1/r2, the Gaussian basis
function with small § values covers the large-r region.
For the linear polarizability calculation, both the occu-
pied and low-lying unoccupied orbital wave functions
need to be fitted well. This means that the basis functions
for the linear polarizability calculation need to cover a
larger-r region than the energy-optimized basis functions
provided. It is logical to think that for the polarizability
calculation, some diffuse basis functions with small §
need to be added to the energy-optimized basis set.

Before augmenting the energy-optimized basis set, we
present the convergence rate of the linear polarizability
using an energy-optimized basis set. Figure 2 shows the
convergence rate of the total energy and static linear po-
larizability of the Ne atom with the Schmidt-Rudenberg
energy-optimized even-tempered basis set. In the
Schmidt-Ruedenberg scheme, only the parameters for the
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FIG. 2. Convergence study of a Ne atom with energy-
optimized Schmidt-Ruedenberg basis sets. The vertical axis in-
dicates either the logarithm of the relative discrepancy of the to-
tal energy or the static linear polarizability a(0). The horizon-
tal axis is the total number of the basis functions, which is the
sum of the number of basis functions for the s, p, and d orbitals
(not counting the degenerate subshells separately). The com-
binations of the basis functions are 12s9p5d, 17s14p10d,
27s24p20d, 32529p25d, 35532p28d, and 40s37p33d.

occupied orbitals are given for each atom. We choose to
use the basis functions with small-§ values of the outer-
most occupied orbital with angular-momentum quantum
number [/ to describe the unoccupied orbital / +1. One
can easily see that the convergence rate of the total ener-
gy is rather good while the convergence rate of the linear
polarizability is poor. With a large basis set of total 110
functions (40s37p33d), the linear polarizability is 0.449
A3, while the “exact” theoretical value is 0.452 A3 Itis
obvious to see that an augmentation to the energy-
optimized basis set is needed.

We choose to add a few diffuse basis functions such
that the augmented basis set is still an even-tempered
one. For each atom, the N, are chosen so that they give a
reasonably good value for the total energy. The parame-
ters in the even-tempered basis set @; and 3, are then cal-
culated according to the Schmidt-Ruedenberg formula'®
for the fixed N,. These 3, values are used to add a few
diffuse basis functions to the energy-optimized basis set
N, to form a new even-tempered basis. The difference be-
tween the augmented even-tempered basis and the
energy-optimized even-tempered basis is that the f,
values are unchanged when more basis functions are add-
ed in the augmented basis set. Figure 3 illustrates the
convergence of the total energy and the linear polarizabil-
ity with the augmented basis set for He, Ne, and Ar. The
convergence rate of the linear polarizability improves
dramatically compared to the one with the energy-
optimized basis set. For a neon atom, for example, with a
total of only 30 basis functions (14s 10p 6d), the linear po-
larizability has already reached the exact theoretical
value of 0.452 A 3. It is not surprising that the additional
basis functions only slightly improve the total energy.
The added basis functions in the augmented even-
tempered set describe the large-r region, which is beyond
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FIG. 3. Convergence study of He, Ne, and Ar atoms with the
augmented Schmidt-Ruedenberg basis functions. The vertical
axis indicates either the logarithm of the relative discrepancy
of the total energy or the static linear polarizability a(0).
The symbols E and a stand for logo(AE,,/E,;) and
logo[Aa(0)/a(0)], respectively. The top axis is the total num-
ber of the basis functions, which is the sum of the number of
basis functions for the s, p, and d orbitals. The bottom axis indi-
cates the total number of the extra diffuse basis functions added.
The combination of the basis functions are for He: 8s4p, 9s5p,
10s6p, and 11s7p; for Ne: 12s8p4d, 13s9p5d, and 14s10p6d;
and for Ar: 16s8p4d, 17s9p5d, and 18s510p6d.

the range of the occupied wave functions. For the Kr
and Xe atoms, there is no energy-optimized even-
tempered basis set we are aware of; rather, we used large
even-tempered basis sets with small [3; values to ensure
the well-converged values for the linear polarizability.

Roughly speaking, one needs to add 2—-3 more diffuse
basis functions to the energy-optimized basis set to obtain
1% accuracy for the linear polarizability. Approximate-
ly, 14 (9s5p), 27 (1359p5d), and 31 (17s9p5d) basis func-
tions are needed for He, Ne, and Ar, respectively. It is
possible to find a small yet arbitrary basis set which gives
a good value for the linear polarizability but a poor value
for the total energy. Such a basis set usually gives a poor
description of the exact wave functions. To construct a
minimal basis set for the linear polarizability calculation,
the approximate wave functions formed by the basis set
need to have maximal overlap with the exact wave func-
tions. 12
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IV. SUMMARY

The modified TDLDA calculation of the linear polari-
zability of the rare-gas atoms involves introducing the
scissors operator to approximate the self-energy operator
of a GW calculation. The energy shift in the scissors
operator is first estimated by the single oscillator model
and then determined such that the modified TDLDA
with this energy shift reproduces the experimental value
of the static linear polarizability. The frequency depen-
dence of the linear polarizability, da(w)/d(w?), of the
modified TDLDA has a better overall agreement with the
experiment than of the TDLDA. Curiously, the results
given by the single-oscillator model are in better agree-
ment with the experiment than the modified TDLDA.

For simplicity, we applied the scissors operator at only
the most primitive level, i.e., we shift all the energy
differences of the occupied and unoccupied orbitals by a
constant A which ignores any energy dependence of the
energy shift. We found that our modified TDLDA calcu-
lation overcorrects the TDLDA results. The applicabili-
ty of using the scissors operator to take the self-energy
into account for the atom is based on the results of the
GW calculations for solids and also from the fact that the
scissors operator works well in some solids.® So far there
has not been an atomic GW calculation to our
knowledge. We believe the remaining errors in the exci-
tation energies contribute most of the discrepancies in
our modified TDLDA calculation. From the fact that
the TDLDA predicts the photoabsorption cross section?
and asymmetry parameters>> well, we conclude that the
wave functions themselves from the LDA calculation
probably are adequate.

The convergence study shows that the energy-
optimized basis set needs to be augmented with a few
diffuse basis functions to produce a converged calculation
of the linear polarizability.
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