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The method of intertwining is used to construct transformations between one-dimensional
electric potentials or one-dimensional external scalar fields for which the Dirac equation is ex-
actly solvable. The transformations are analogous to the Darboux transformations between
Schrodinger potentials. It is shown that a class of exactly solvable Dirac potentials corre-
sponds to soliton solutions of the modified Korteweg —deVries (MKdV) equation, just as certain
Schrodinger potentials are solitons of the Korteweg —deVries equation. It is also shown that the
intertwining transformations are related to Backlund transformations for MKdV. The structure
of the intertwining relations is shown to be described by an N = 4 superalgebra, generalizing
supersymmetric quantum mechanics to the Dirac case.

I. INTRODUCTION

In recent years, much attention has been focused on
exactly solvable problems in quantum mechanics. These
problems transcend the usual boundaries between dis-
ciplines, finding application in essentially all areas of
physics. It is a truism that one hears grumbled in gradu-
ate schools that everything soluble in physics is just the
harmonic oscillator in disguise. This may not be far from
the truth, though it might be more accurate to say that
everything soluble is just the free particle. The method
of intertwining gives a unified approach to construct-
ing transformations between solvable problems, and one
finds that most (if not all) exactly solvable potentials can
be constructed by intertwining operator transformations.

Two operators Lo and L~ are said to be intertwined
by an operator D if

LgD = Dro.

If the eigenfunctions Pp of Lp are known, then the inter-
twining relation gives the (unnormalized) eigenfunctions
of I,i as Pi ——Dgp. The object of the method of inter-
twining is to construct the operator D, which performs
an intertwining between operators L of a given form.

The results of the application of intertwining to the
Schrodinger equation are well known, though they are
not generally recognized as such. For example, if one
makes the Ansatz that D is a first-order differential oper-
ator intertwining between two Hamiltonian operators of
potential form —|92+V(z), one finds (see below) that D is
what is commonly known as a Darboux transformation.
From this, one recovers the factorization method of In-
feld and Hull, which generalizes the notion of raising
and lowering operators to equations other than that of
the harmonic oscillator. One also finds supersymmetric

quantum mechanics, which is essentially the same thing
but in fancier language.

If one makes the Ansatz that D is an integral operator,
one finds equations familiar from the theory of inverse
scattering. 5 It is well known from inverse scattering that
the soliton solutions of the nonlinear Korteweg —deVries
(KdV) equation form a class of solvable Schrodinger po-
tentials. These soliton solutions can be constructed by
Darboux transformations as well as with the integral op-
erators of inverse scattering. '

There has been a recent resurgence of interest in ex-
actly solvable Dirac equations with one-dimensional elec-
tric potential. —xo A closely related problem, with impor-
tant application to solitons in conducting polymers, is the
solution of the Dirac equation in a one-dimensional exter-
nal scalar field. This paper will give the intertwin-

ing construction of the exactly solvable Dirac potentials
in these two problems, emphasizing the parallels with re-
sults obtained by intertwining for Schrodinger potentials.

The equations considered here will be 2x2 matrix dif-
ferential equations in one variable z. They can be re-
garded as time-independent (I+I) Dirac equations or
as reductions from the four-dimensional Dirac equation.
These equations have the Ablowitz-Kaup-Newell-Segur

(AKNS) form of the I ax eigenvalue equation for the
modified Korteweg —deVries (MKdV) equation. This is

analogous to the observation that the time-independent
Schrodinger equation is the Lax eigenvalue equation for
Kdv.

It is well known that MKdV can be solved by inverse
scattering, is and indeed Campbell and Bishop ~ use in-
verse scattering to construct the kink and polaron so-
lutions for conducting polymers. However, just as the
soliton solutions of KdV can be constructed using differ-

ential operators, or Darboux transformations, so too can
the soliton solutions of MKdV. This will be derived by
the method of intertwining.

43 4602 1991 The American Physica1 Society



43 INTERTWINING OF EXACTLY SOLVABLE DIRAC EQUATIONS. . . 4603

II. INTERTWINING
OF SCHRODINGER POTENTIALS

For background and completeness, the treatment of
intertwining between solvable Schrodinger potentials will
be reviewed. Suppose that Hp ——Dz + Vp and Hi ——

—8 + Vi are Hamiltonian operators in one dimension
and that Hp is exactly solvable. (N.B. It is not necessary
that Hp be solvable for there to be intertwining. It does
increase the usefulness of having an intertwining. ) Hi
and Hp are said to be intertwined if there is an operator
D for which

Hga = DHp. (2)
Given such a D, the (unnormalized) eigenfunctions Pi of
Hi are given in terms of the known eigenfunctions Pp of
Hp by

4i = Ddo.

The operator D has transformed one integrable problem
into another.

By proposing an Ansatz for D and solving the consis-
tency conditions obtained from the intertwining relation

(2) by equating like powers of derivatives, transforma-
tions between exactly solvable potentials are constructed.
The Ansatz that D is a first-order differential operator

leads to the consistency conditions

As an example of intertwining, suppose Vp
—0, so that

Hp — 0—. Taking

@o
—coshkz

as an eigenfunction of Hp, one finds

g = —k tanhkx

and, therefore,

Vi —2g' = —2k sech kz.

This is one of the Poschl-Teller potentials.
The eigenfunctions of Hi are obtained by applying

I

D = cI — o = 8 —k tanhkz (12)
0o

to the eigenfunctions of Hp. The eigenfunction gp that
generates the intertwining is annihilated by this transfor-
mation, so the eigenfunction Qi of Hi that corresponds
to it must be reconstructed separately. Since Hp is sec-
ond order, there are two independent eigenfunctions for
each eigenvalue. Given one, say vPo, the independent one
is

40 =Oaf
OD'«.

In this example, one finds Pp ——sinh kz as one would
expect. The intertwining transformation generated by
gp applied to Pp gives

2y' = Vj —Vp,

—g'+g' = V, +~,

( ' l@o=
0 0

(14)

where c is a constant and the prime indicates differenti-
ation with respect to z.

Equation (6) is a Riccati equation which is linearized
by the substitution

Using this in (13) to get the independent solution @i, one
finds

gp dz.

to give

—@"+ Vpg = —cg.

Thus g must be an eigenfunction of Hp. This is the first
important conclusion: every eigenfunction of Hp (with-
out regard to boundary conditions or normalizability)
generates a transformation to a new solvable Hamilto-
nian Hi where the change in the potential is given by
(5). Such a first-order differential intertwining is known
as a Darboux transformation.

Sometimes one reads that only nonvanishing eigen-
functions cari be used to generate transforrnatiorjs. The
reason given is that otherwise singularities will be intro-
duced into the potential. While certainly true, this is not
cause for concern, and it can be important in practical
applications. There is absolutely no restriction on the
eigenfunctions used to generate intertwining transforma-
tions.

g'+g'= V, +~. (16)

From this, one infers that the adjoint of D,

Dt = —a. +g, (17)

intertwines in the other direction, taking solutions of H1

This is the eigenfunction of Hi corresponding to gp.
Clearly, not all intertwinings have the simple form of

the Ansatz (4), but the intertwining procedure can be
iterated to give higher-order differential operators. One
can prove that every second-order differential intertwin-
ing operator can be factored into a product of first-order
intertwining operators. It is likely that this extends
to the statement that all finite-order differential inter-
twining operators can be factored as a product of first-
order differential intertwining operators. So, for many
purposes, it is su%cient to consider first-order opera-
tors. The case of intertwining with integral operators
is planned to be discussed in a separate publication. 5

Adding (5) to (6), one obtains a third equation,
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»' = (~* + g)(-~-+ g) = H +
DtD =(—0 + g)(0 + g) = Hp+ c. (2o)

to those of Ho

4o = &tA

Furthermore, one sees that D and Dt give a factoriza-
tion of Hy and Ho

and choosing the y matrices to be Pauli matrices, go ——

o~, p~ ——io2, the equation takes the form of a time-
independent 2x 2 matrix equation

(26)

This is the AKNS form of the Lax eigenvalue equation
for the modified Korteweg —deVries equation ~

m —6m m +u) =0.2

This observation fundamentally links diA'erential inter-
twining to the factorization method of Infeld and Hull.
The link to supersymmetric quantum mechanics~ is made
by defining the supercharge

(N.B. The time parameter r in this equation is not the
same as that in the time-dependent Dirac equation. )

The four-dimensional Dirac equation with one-
dimensional electric potential Ao(z) is

=(") (21) [i p"0„—y Ao(z) + m]4' = 0.

One finds that Q2 = 0 as required and that the super-
Hamiltonian is

& = (Q, Qt) = diag(Hi + c, Ho + c). (22)

The intertwining relation can be captured diagrammati-
cally as

Using the p matrix representation,0, & . o
i'Yo —

J 0 I i%i —
0

t'IO . (O~,iP~=
I 0 1, its= I&0 1 ~~. O

(29)

D
Ho . Hi. (23)

III. MATRIX INTERTWININC
OF DIRAC POTENTIALS

The equation for a two-dimensional fermion in an ex-
ternal scalar field iv(z) has the form

[ip"8„+iv(z)]4 = 0. (24)

Assuming that the fermion has energy k,

The diagram may be read as beginning with an eigenfunc-
tion of Ho, action by D takes it into an eigenfunction of
H~. In this diagram, the adjoint operator would act in
the reverse direction. This diagrammatic structure will
be useful below in describing the structure of intertwining
for the Dirac equation.

From the perspective of the Korteweg —deVries equa-
tion, the condition (6) is the Miura transformation. It is
one of two equations defining the Backlund transforma-
tion from solutions of KdV to MKdV. The condition
(5) can be used to find the first of two equations defining
the auto-Backlund transformation between solutions of
KdV. The second equation of the Backlund transforma-
tion in each case carries information about how the time
dependence of the nonlinear solutions transform. This
time dependence does not enter the Schrodinger equa-
tion because the Schrodinger potential is a solution of
the KdV equation evaluated at a fixed parameter time
and is not sensitive to the time dependence of the nonlin-
ear equation. Similar correspondences between Backlund
transformations and intertwining will be found below for
MKdV and the two-dimensional Dirac equation.

Percoco and Villalba~ show that for a fermion of en-
ergy E, and transverse momenta p& and p, , the four-
dimensional equation reduces to the bispinor equation

(ops —o', v)4 = —kk,

where v = E —Ao(z), k2 = p~ + p2 + m2, and

(30)

(im+ py - )k-p. ' exp[i(p„y + p, z —Et)]. (31)

A similarity transformation makes this

(crsB~+ o.iv)C = —k@,

where

4 = (o2 + o.s)4.
'2

2
V7 + 65 V~ + Vm~~: 0.

Under the change of variables x ~ ix, 7- ~ —i7, one
MKdV equation (34) becomes the other (27). Also, the
matrix equation (32) becomes (26). This means that it
is su%cient to consider intertwining of one of the ma-
trix equations: the results for the other will follow upon
changing z ~ iz.

A word of caution is in order. Intertwining works in
the complex domain. For physical reasons, one is inter-
ested only in real potentials in both Dirac equations. The
substitution x —+ ix will not in general take real poten-
tials into real potentials, so one cannot simply make the
substitution in the physical potentials to change from one

This is the AKNS form of the I,ax eigenvalue equation of
the MKdV equation
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MQ —osl9~ + o] vQ ~ (35)

equation to the other. The substitution is made in the
intertwining formulas relating potentials, and then real
potentials are constructed.

To emphasize the connection to the MKdV equation
(34), the Dirac equation in an electric potential will be
considered first. Let

Mp = osMpo's —o'sc)& —o'l vl. (4S)

Other choices of Q2 do not appear to give anything new.
To solve the intertwining consistency conditions, it is

convenient to define

The effect has been to change the sign of vl. This is
explained by noting that D = cr3D and, therefore,

An operator D intertwines Mp with Ml with potential
vl when

G+ ——g+ ih,

G =g —ih
(49)

M1D = DMp.

Make the Ansatz for D

t ale~ + gl blO~ + hl l
I, b»~+ h2 a~&. + g2 y

(36)
Straightforward manipulation gives the equations

2G+ = 2vp + Vo —Zvl —vl)

2G = —Xvp + Vp + 'Evl —5l,

(50)

Imposing the matrix intertwining relation (36), and
equating like numbers of derivatives, one finds the equa-
tions

and

2G —G = —cvp —xvl.+ (52)
bl ——O=b2,

l l
Ql =O=Q2,

I
g] + vlh2 —voh1 )

2hl + vla2 ——vpQ1,
C Ihl + vlg2 —vpQ1 + vpgl)

vlQl = 2h2+ voQ2

vlgl h2 vpQ2 + ~pg2)
Ivlhl —g2

—voh

(38)

A fourth equation

G +G = —v —v +2c,

—h = Vl + (Vp —vl)g. (54)

where c is a constant, is also found, but the computation
is more subtle, so it will be given.

First, note that by subtracting the derivative of (40)
from (42) one has

(where the prime indicates differentiation with respect
to z). Setting al —1 is a choice of normalization. Tak-
ing Q2 ——1 as well simplifies the equations considerably,
giving

Eliminating vp from this using (40) gives

—(vl + h)' = 2gh.

Eliminating vp from (41) and multiplying by g gives

hl ———h2,

g1 = g2)

gg' = 2gh(v, + h),

(39) and one fnds

g2 = —(vl + h) + cl. (57)
and, dropping the subscripts on h and g,

2h = vo —vl)

g —(5Q + vl)h)
h' = vp + (vp —vl)g.

(40)

(41)
(42)

Repeating this, eliminating vl from (41) and (42), gives

g = —(Vp —h) + Cp.

Averaging these, one has

Thus D has the form

+g h
(43)

If one had taken aq ——1 instead, one would find the
form

Cp + Cl
g —h = —-v ——v+0 2 (59)

but this is just (G2+ + G )/2, giving (53).
The consistency conditions in terms of G+ and G can

be rearranged into

where

h —8 —g) ' (44)
2 I 2—G+ + G+ ——'l Vp

—
Vp + C,

G+G:2vpvp+c&2 I 2

2h = vp+vl)
g' = (vp —vl)h,
Il '= Vp + (Vp + Vl)g.

(45)
(46)
(47)

G+ + G+: —Rvl —5l + C)
2 ~ I 2

G' + G = iv', —v, + c.

These are Riccati equations analogous to (6) and (16)
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in the Schrodinger case. The analogy is closer than one

might expect. Applying a similarity transformation to
return to the original equation (30) of Percoco and Vil-
lalba, one has

The adjoint operators act in the reverse direction.
One also observes that

DDt = —Mi + cr (71)

Mp ——cr20~ —o ivp.

The eigenfunctions C of Mp are rotated to

(61) and

DtD= —M,'+ I, (72)

1
C = (o2+ os)C.

2
(62)

The intertwining operator is also transformed by the sim-
ilarity transformation and simply becomes

where I is the 2x2 identity matrix. This is the manifes-
tation of factorization in the Dirac case.

Requiring that the diagram (70) commute gives the
consistency relations,

.DgD = D+Dp
(0 +G+ 0

0 8+G
Squaring Mp, one has

(63)

DpD~ = D+tD~. (74)

D~+ xvp+ vp
p 0

0
8 —2vp + Vp

(64)

Since the intertwining relation holds for the squared op-
erators

M~D = DMp,

one sees that the intertwining consistency conditions are
necessarily those for Schrodinger Hamiltonian operators.

A diagram expressing the full intertwining structure
can be drawn. Let

Using the Ansa/ze for D+ and D and equating like pow-
ers of derivatives in these equations, one finds equations
that are equivalent to (40)—(42). This means that the di-
agram carries the same information as the original matrix
intertwining relation (36).

Solving the consistency conditions proceeds as in the
Schrodinger case. First, the Riccati equations based on
vp are converted to linear form by the substitutions

(75)

Mp —diag(1&p+, Kp ),

M,' = diag(Z'i+, Ii;).

and

22

G 2 (76)

0
Mp ——

i

~ —Vp

iB —vp 'l f —0 Dp
)'='iD.' o

(67)

The eigenvalue condition MpC = —k4 is simply the two
equations (3) and (18). Note that the adjoint Dpt is found
by integration by parts and does not include a complex
conjugation. Similarly, M& is composed of the intertwin-
ing operators that relate the diagonal elements of My,

0Mi— —28 —222

) (
0 Dl

) (68)

The (non-Hermitian) Hamiltonians on the diagonal of
Mp are themselves related by intertwining, and Mp is
composed of the intertwining operators

One finds that Pi and Pq are the components of a spinor
eigenfunction of Mp . However, not every eigenfunction
of Mp~ can be used. It is necessary that the M&2 truly be
the square of an Mi. Since the diagram (70) is equiva-
lent to the intertwining relation (36), it is clear that the
components of the spinor eigenfunction must be related
by the intertwining that factors Mp .

It is sufficient that Pi and P2 be the components of
a spinor eigenfunction of Mp. This is not a necessary
condition, however, because the intertwining needs to go
only in one direction: if one of the components happens
to be the generator of the intertwining, it will be annihi-
lated, while the other component will intertwine to give
it. The result is that the spinor is not an eigenfunction
of Mp, but the components are linked by intertwining.
This condition takes the form

The intertwining matrix can be written

D = diag(0 +G+, B +G ) = diag.(D+, D ). (69) (77)

Then, the following diagram expresses the structure of
the intertwining:

The spinor may be termed a "partial eigenfunction. "
From

D+
Y p

t. Dp

Kp

(70)
1

& = —.(G+ —G-)
2g

one has

(78)
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I (42/4i)'
21

(79)
-2k@' +

For simplicity, take c = 0. Using (81), one finds

(89)

Using the similarity transformation, this can be written
in terms of the ratio I' = Pi/P2 of the components of the
corresponding spinor eigenfunction of Mp2 as

h= 1+ r2

This gives the transformation between potentials

vi —vp + 2(arctanF)'.

(80)

(81)

can be solved as two simultaneous equations for vo in
terms of F = Pi/P2. One finds

r'+ 2kr
1+ r2 (83)

This is the analog of the Ricatti equation (6). Using this
in (42), g is found to be

This is the analog of (5). It may be used to find the first
of the two equations defining the auto-Backlund trans-
formation between solutions of the modified Korteweg-
deVries equation.

To find the analog of (6), we must express vp in terms of
I'. This is possible because the components of the spinor
Cl' generating the intertwining are themselves related by
intertwining. In the case that this spinor is an eigenfunc-
tion, the similarity-transformed matrix equation

vq ———2k sech2kz. (90)

1 (P',
v, = —211 = —

I

=' —=' I,
&2J

(92)

one finds

v~
——2k sech2kz. (93)

An important conclusion follows from this second ex-
ample: if one constructs new potentials by starting from
eigenfunctions of the Schrodinger Hamiltonian opera-
tors in Mo, one must consider complex as well as real
eigenfunctions. This is a new feature compared to the
Schrodinger case. There, only real eigenfunctions needed
to be considered because an intertwining based on a com-
plex eigenfunction would produce a complex potential.
Here, a complex Schrodinger potential may correspond
to a real electric potential in the Dirac equation.

This can be checked to be a one-soliton solution of the
MKdv equation (34) at parameter time r = 0.

Alternatively, one could start from a spinor eigenfunc-
tion of Mp . Choosing Pi —coshkz+i sinhkz as an eigen-
function of t92, the second component is found from the
eigenfunction condition Mo C = —kC,

0 Pi ——coshkz —i sinhkz.
k

(91)

From

2kI'2

1+ I'

The intertwining operator takes the final form

(84)
IV. DIRAC EQUATION

IN AN EXTERNAL SCALAR FIELD
2kI'

+r' ' —r'
1+ r2

2kr (85)
The two-dimensional Dirac operator for a fermion in

an external scalar field has the form

I p ——10'sD~ + 0 i ivo. (94)

This agrees with a result given by Flaschka and
McIaughlin in a discussion of Backlund transforma-
tions.

In the case that 4 is a partial eigenfunction, a similar-
ity transformation of (77) with (0'2 + 0's)/~2 gives

k t Pi+iPq 5'
&42 2 &

—1&i + &2)

This can be solved for vo

I" + kI'+ (ik/2)(l —I')
1+ r2

which, in turn, leads to

—k kI'2 + ikr
]+r2

(87)

(88)

To illustrate the use of the intertwining operator, it is
useful to consider an example. Suppose vo ——0. Equation
(83) can be solved for I',

The intertwining relation is I ~D = BIO. As mentioned
above, the change of variables z ~ iz, will convert the
intertwining formulas above to those for the present case.
Making this change, one finds

0 Dp
lip ——10'2 D~ —0'i tvp—

0
(95)

and

( cl~+ ivo+ ivo

diag(Ho+i Ho ).

0
~o+ 10o2 I 2

g +F+ 0 i I'D+ 0
+F r

—
& o D) (97)

where I"+ and I" satisfy the Riccati equations

Dividing out an overall factor of —i, the intertwining op-
erator D takes the form
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—F+ + F+ ——u)0 + u)p + c,/ 2 /

—F +F = —Q)p+ tgp+ c)
/ 2 /

F+ + F+ ——to~ + Q)~ + c)2

F +F:—Q)y + Q)y + c.

Observe that

and

DpD = D+Dg. (103)

In the no-tilde basis, the intertwining operator can be
expressed in terms of the ratio of components F = Pq/P2
of the spinor eigenfunction I 04 = —k4 generating the
transformation,

and

DtD = L() + I.

(99)

(100)

(a. —;k+'"",,1+ I'2
r'

I+r

—r'
1+ I'2

2ikI'2
8 —ik+ 1+ I2

In terms of I', the original potential is

iI/ —2kI
1+ r2H+ ': H+

0 ' 1

t' &o

H —:- H
(I ) The new potential is

wy: top —2'l(arcfanI )

Again, this is how factorization makes its appearance in
the Dirac case. The same diagram as above describes the
structure of the intertwining

(104)

(105)

And, again one has the consistency relations

DsD = D+Do (102)
In the case that the intertwining is generated by a par-

tial eigenfunction (77), one has

—i k —2kI'+ ikI'2

2(1+ I')
p/

1+ I2

p/

1+ I"2
—ik —2kI'+ ikI

2(1+ I'2)

(107)

while the original potential is given by

—iI" + kl + (ik/2)(1 —I 2)

1+ I'2 (108)

f @I gl—0 + V() —c =
~

—cl —— 0 (109)

where c is the eigenvalue of g. Using the intertwining be-
tween Schrodinger Hamiltonians generated by this eigen-
function

@I
Dp ——0 (110)

the partner Hamiltonian can be found. The pair form
the diagonal entries of Lp.

Factorization of the Schrodinger equation requires that

and the new potential is given by (106).
The form (96) of LO2shows that there is a correspon-

dence between factorizable Schrodinger potential prob-
lems and two-dimensional Dirac equations in an external
scalar field. This has been remarked before by Cooper,
Khare, Musto, and Wipf, and the correspondence can
be used to produce exactly solvable potentials for the
Dirac equation. Given a solvable Schrodinger equation
with potential, any eigenfunction g can be used to give

a factorization

the eigenvalue be shifted, so the eigenvalues of I 0 are
E —c. This makes the eigenvalues of Lp equal to
+(E —c)~/2. The known eigenfunctions of the initial
Schrodinger equation give one component of the spinor
eigenfunction of Lp and application of the intertwining
operator k(E —c) / D to them gives the other. The
resulting potential in the Dirac equation is wo ——g /g.

This approach is convenient when one has a collection
of solvable Schrodinger equations, as one has, for exam-
ple, in the soliton solutions of the KdV equation. From
the intertwining of Schrodinger potentials, it was found
that one of the consistency conditions was the Miura
transformation, which relates solutions of KdV to solu-
tions of MKdV. Given a KdV soliton, solving this Riccati
equation gives an MKdV soliton, which is then an exactly
solvable Dirac potential.

For example, the trivial Hamiltonian H& ———0 + k
has the solution coshkz, which generates the intertwining
operator Dq —0~ —k tanhkx. Since wq

———k tanhkz
solves the Riccati equation (6), it is a soliton solution
of MKdV at parameter time r = Q and also an exactly
soluble Dirac potential. The partner Hamiltonian oper-
ator is easily shown to be Hz+ = —8 —2k sech kz+ k2.
Starting from the solutions of H&, the intertwining op-
erator Dq gives those of H&+. Together these are (up
to a normalization factor) the components of the spinor
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eigenfunctions of I.q with the potential ~q.
This potential can be also be constructed by intertwin-

ing from Lo with mo ———It;. This is a case where 4 is a
partial eigenfunction of 10. Choosing the spinor

Q s will satisfy anticommutation relations. Two super-
Hamiltonians will appear in the algebra,

'Rl ——1 diag(H0+, H0, Hl+, Hl )

coshkz (»1)
and

'80 ——os C3 diag( —H0+, H0, Hl+, H—, ),
it is easy to see that (77) is satisfied. Performing the
similarity transformation to C', one finds

and two central charges

1+ 2i + e-'~~

i + 2+ ie-~~~ (112)
ci —1 diag(c, c, c, c), (»7)

Using (108), one verifies that ur0 ———k. From (106), one
finds

u)g ———k tanhkx.

c0 ——o'3 diag( —c, c, c, —c), (»8)
where c is the constant shift appearing in (99) and (100).

The superalgebra is then given by

Alternatively, one can derive mq by starting with mo ——

—b and solving the Riccati equation (108) for 1.

and

{Q Qpg) = 0,

[Q;, 'H~j = 0,

(119)

(120)

V. SUPERSYMMETRY ALGEBRA
FOR DIRAC INTERTWINING

Q00 = xo2 (esiD+ + e42D ),

Qio = oi (e3»+ —e42D-),

Q01 —&o2 S (e12D0 C34D1)

Ql1 o 1 C3 (C12D0 + C34Di)

(»4)

where the Pauli matrices are tensored on so that all of the

Just as the structure of intertwining for Schrodinger
potentials can be represented by a supersymmetry al-

gebra, so can the structure of transformations between
Dirac potentials captured in the diagram (101). The
algebra given here will be that for the case of an ex-
ternal scalar field. The same algebra holds for the case
of an electric potential with the qualification that the
adjoint does not include complex conjugation. Without
this qualification, the Hamiltonians appearing in Sec. III
mould not be self-adjoint, and the intertwining operators
acting in opposite directions would not be related by the
adj oint.

There are four fundamental intertwining operators Do,
D~, D+, and D involved rather than the single one in
the Schrodinger case. This signfies that the algebra will
be N = 4. The basic requirements behind the algebra are
that the supersymmetry generators be nilpotent and that
the intertwining relations and intertwining consistency
conditions (102) and (103) be reproduced.

A 4x4 matrix representation of the algebra can be con-
structed. Using the notation that e;~ is 1 in the i, jth
entry of the matrix and zero everywhere else, the inter-
twining operators can be assigned to matrix locations as
el2D0, e34Di, esiD+, and e42D . (The adjoint oper-
ators are placed in the matrix adjoint locations. ) Four
supersymmetry generators Q„; can be defined in terms
of these as

(Q~;, Qpt. ) = b~pby'Mi + (—1)~(1 —b p)b;~'80

+b;0b~0[b lb'plcl + (1 —b p)C0]. (121)

(Note that the adjoint does not affect the indices of the
supersymmetry generators. )

VI. CONCLUSIONS

Applying the method of intertwining to 2 x 2 ma-
trix diA'erential operators, transformations between one-
dimensional Dirac potentials have been derived. One-
dimensional electric potentials and one-dimensional ex-
ternal scalar fields in which the Dirac equation is ex-
actly solvable may be constructed by starting from an
electric potential or external scalar field with known so-
lution. In particular, one may begin from the free-field
case. The intertwining transformations are generated by
spinor eigenfunctions of the initial solvable problem or by
certain special spinors which are partly eigenfunctions.

These intertwining transformations are analogous to
the Darboux transforrnations between Schrodinger po-
tentials. Darboux transformations are closely related to
Backlund transformations for the KdV equation and may
be used to construct KdV solitons. The intertwining
transformations constructed here for the Dirac equation
bear a similar relation to Backlund transformations for
the MKdV equation, and they may be used to construct
MKdV solitons.

Though not discussed here, it is well known that se-
quential application of Darboux transformations in the
Schrodinger case can be used to construct potentials
with any desired collection of bound states. The same
is true for the Dirac potentials. The bound-state ener-
gies that are added correspond to the eigenvalues of the
eigenfunctions in the initial potential used in construct-
ing the transformations. This may be useful in applica-
tions where the spectrum is known experimentally, but
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the Dirac potential is not known.
In the Schrodinger case, Darboux transformations may

be understood in terms of the factorization they give
of the intertwined Hamiltonian operators. In the Dirac
case, in an appropriate basis, the square of the Dirac op-
erator takes the form of a diagonal matrix composed of
two Hamiltonian operators, and the Dirac operator itself
is a factorization of them. The intertwining operator and
its adjoint provide a second factorization of the square of
each of the intertwined Dirac operators, shifted by a con-
stant.

The structure of the intertwining relations in the
Schrodinger case is described by an N = I supersymme-
try. It has been shown here that an N = 4 superalgebra
describes the structure of the intertwining relations for
the Dirac case. At present this is only a formal observa-
tion, but perhaps it can be used to give further insight
into the intertwining.

Elsewhere intertwining has been successfully used to
construct exactly solvable potentials for the Schrodinger
equation in two dimensions, and contact was made with
a class of potentials known to be soluble in higher di-
mensions. The present work encourages the hope that
intertwining can also be used to solve the Dirac equation
with higher-dimensional potentials.
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