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Dispersion self-energy of the electron
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Electron mass renormalization and the Lamb shift have been investigated using the dispersion

self-energy formalism. If shifts of both the electromagnetic field and quantum-mechanical transi-

tions frequencies are considered, absorption from the electromagnetic field is canceled by emission

due to atomic fluctuations. The frequencies of all modes are obtained from the self-consistency con-
dition that the field seen by the electron is the same as the field produced by the expectation value of
current. The radiation present can thus be viewed as arising from emission and subsequent reab-

sorption by matter. As developed here, the numerical predictions of dispersion theory are identical
to those of quantum electrodynamics. The physical picture implied by dispersion theory is dis-

cussed in the context of semiclassical theories and quantum electrodynamics.

I. INTRODUCTION

There are several reasons for critical analysis of
theories that treat charged particles quantum mechani-
cally and the electromagnetic field classically according
to Maxwell's equations. Such semiclassical theories have
proved extremely useful where they give correct results, '

and it is important to know their limitations. Semiclassi-
cal models, especially Jaynes's neoclassical theory
(NCT), have stimulated examination of the foundations
of quantum electrodynamics (QED) and motivated some
very fundamental experiments. While QED is undeni-
ably very successful in its quantitative predictions, it is
conceptually and mathematically difficult. In NCT,
spontaneous emission is attributed to the radiation reac-
tion, and there is no need to introduce vacuum Auctua-
tions. Jaynes has estimated that the energy Aux per
square centimeter in vacuum fluctuations for modes only
down to the Compton wavelength is greater than the to-
tal Aux from our sun. However, field modes down to
this wavelength are required to explain the Lamb shift,
and it is important to establish whether or not these vac-
uum fluctuations are physically real.

The high accuracy of the predictions of QED implies
that a quantitatively correct theory will give the same re-
sults as QED in the situations tested experimentally to
date, but the conceptual problems still remain. It is im-

portant to know the limitations of semiclassical theories
so that they can be applied to those problems where they
give correct results. Of more fundamental importance is
the possibility that quantization of the electromagnetic
field is redundant once the charged particles are de-
scribed quantum mechanically. While experiments on
nonlocal eff'ects seem to exclude all semiclassical
theories, it is di%cult to completely discredit a theory un-

til its exact nature is known.
There are several formulations that describe the in-

teraction of quantum particles with a classical elec-
tromagnetic field. Jaynes has discussed theories that jus-
tify use of the semiclassical approach for large assemblies

of atoms or molecules with a well-defined dipole moment
to serve as the source of the field. In his own NCT he as-
sumes that the charge currents of an individual atom are
the source of a classical electromagnetic field. Crisp and
Jaynes substituted the vector potential derived from the
current back into the Schrodinger equation to obtain a
system of nonlinear equations for probability amplitudes
in the presence of the electron's self-field. They conclud-
ed that spontaneous emission and the Lamb shift can re-
sult from the radiation reaction field of the atom itself.
Recently, Barut and co-workers have developed a self-
energy formulation ' that gives similar predictions to
QED. They eliminate the field, as does Jaynes, and ob-
tain an action integral that involves only the wave func-
tion. From this the interaction energy is obtained. They
apply their theory to a wide variety of problems, includ-
ing the Lamb shift and spontaneous emission.

There is another semiclassical formulation that appears
to be closely related to theories mentioned above. Rath-
er than eliminating the electromagnetic field, the particle
wave function is eliminated. The condition for the ex-
istence of self-consistent solutions gives an equation for
the frequency shifts of the field modes. The interaction
energy is then obtained from the sum of these frequency
shifts. While equating the interacting energy to the
zero-point-energy change of the field may seem to identi-
fy this method with QED, the use of the semiclassical ap-
proach results in considerable simplification in the
mathematics. As discussed by Boyer, ' the use of the
zero-point energy may not imply the same conceptual
basis as that of QED. This approach has been extensively
applied to dispersion forces, including retarded and
nonretarded van der Waals interactions between atoms
and macroscopic bodies, and is in good agreement with
experiment. It will be referred to here as dispersion
theory. Using dispersion theory, Mahanty calculated the
Lamb shift, " and obtained Welton's semiclassical re-
sult. ' His objective was to develop a recipe for a semi-
quantitative estimation of radiative eff'ects in a system for
which rigorous QED calculations cannot easily be made.
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He concluded that, with the size of the atom taken into
account, the dispersion self-energy formalism is
mathematically similar to NCT. His equations are based
on the dipole approximation, and he attributes the energy
splitting to shifts in the electromagnetic frequencies.

It is the purpose of the present paper to further devel-
op the predictions of semiclassical dispersion theory and
compare it to NCT and other semiclassical theories, and
to QED. In Sec. II a formulation of dispersion theory
will be derived that includes a11 multipoles and both the
quantum-mechanical transition frequencies and the natu-
ral frequencies of the medium. To provide a simple ex-
ample, it will be applied to the polaron in Sec. III. Re-
normalization of electron mass and the Lamb shift will be
considered in Sec. IV. In the final section, dispersion
theory will be compared with semiclassical theories and
with QED.

II. DISPERSION SELF-ENERGY QF AN ELECTRON

An electron in a medium interacts with its self-field.
The electric and magnetic fields will be thought of as real
and c1assical, while the electron is quantum mechanical
and is described by its Schrodinger equation. It will be
assumed that the system is at zero temperature. The
self-field will be treated as a time-dependent perturbation.
Four-vector current J and vector potential 3 will be
defined for conciseness. The first three components are
the three-vector Schrodinger current j and vector poten-
tial A and the four-vectors are J=(j,icp) and
A =( A, i P/c) Here p .is charge density, P is electric po-
tential, c is the speed of light, and i =&—1. In SI
(Systeme Internationale) units and the Lorentz gauge, the
self-field contribution to the potential, 3, , satisfies

8 A, (r, t)
V A, (r, t) —

z z
= —pJ (r, t),

where p is magnetic permeability. The equation for the
potential can be integrated, and the retarded solution is

The potential can also be written formally as

A (r, t ) =g A ke
'"' cos(cokt +yk) + A 0 ( r, t ),

k

which is real provided A k
= Ak. The term 3 o is due to

any external field that may be present.
The Hamiltonian that describes the electron in an elec-

trornagnetic field is

2

V — (V A+A V)+ A —eP.
2m 2m 2m

The zero-order Hamiltonian, Ho, will be taken to include
all contributions except the self-field terms. Its eigen-
functions 4„(r, t ) and eigenvalues E„satisfy

Ho+„=E„%„.The remainder of the Hamiltonian is

w( )$eH'= — (V A +A V)
2m S S

2

+ (A, +2AO A, ) —ep, .
2m

The linear terms in A can be expressed in terms of the
Schrodinger current by integrating by parts or using the
Hermitian properties of the momentum operator

f d r(%'„* A.V%„+4„*V A%„,)

=f d r A (W„*V+„—+„Vql„*)

where

. ('P„*VV„—V„V%'„*),
(4)

The above form is useful for the physical interpretation,
since it clearly represents the field due to current density
at all points r'. If the mode of wave vector k has frequen-
cy cok and phase yk, the solution can also be written in
Fourier expanded form as

if the A terms are neglected. The angular brackets
denote integration over three-dimensional space. The
electron wave function can be expanded as

n'

X f d r'J (r', co„)e '"' e'"' (2)

where n denotes the ground state. If the expansion
coefficients are evaluated using second-order perturbation
theory, with the interaction turned on at t = —(x) using a
factor e" that is set equal to unity after integrating, one
obtains

1 g aJa eik r

a„.(t)= g f d r
k

A a ya ik.r—i(co s+y ~ kJn'nek k)+
~n'n +~k

e

The current in Eq. (1) is approximately, from Eq. (5),

J =J„„+g[a„*(t)J„„+a„(t)J„„].
n'
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For self-consistency, the potential that acts on the electron should be the same as the potential produced by it. Sub-
stitution of Eqs. (4), (6), and (7) into Eq. (2) then gives an expression for the amplitudes of the self-field modes A k, with
the coefficients a„. eliminated. Equating this to Eq. (3) and replacing Ak with A k and then k' with —Ic' in the a„*
terms gives

( ik r 'J/'3 ) (
—ik rJa ) (

—ik' r'Ja ) ( eik rJP )~A 5 .5
A'V(k c —cok) COnrn +COk

For any given k, only the two transverse components of A and a third component, say i y/c, are independent.
While the form of Eq. (1) suggests that J should be thought of as a real current and charge distribution producing a

real classical vector and scalar potential, it is not necessary to adopt this interpretation. Consistency with the generally
accepted version of the quantum mechanics requires that this must be thought of only as a self-consistency requirement.
It is not necessary to reinterpret quantum mechanics as is done in NCT to write these equations, although this possibili-
ty is not excluded. However, nothing introduced so far implies that A and ~)// give other than real classical fields.

Approximate solutions to Eq. (8) can be found by setting the frequency equal to kc or co„„and k'=k and combining
terms with the same frequency; for example, the two components of the transverse modes. A11 terms that do not con-
tain the inverse of the difference between cok and the selected frequency are small by comparison. The resulting expres-
sion is exact for a free electron where modes with different wave vectors are not coupled. The equation for the frequen-
cies ~ that satisfy the self-consistency condition is then

r 1/2
co = —k c +co„„+ (k c —co„„)+ g( tuc„o„/V)(e'"'J„„)(e '"'J„„)

2

The sum is over modes with the same zero-order frequen-
cy. This looks like a system of coupled classical oscilla-
tors. Field modes are pushed aside when new modes are
inserted. If kc is not too close to m„„, the frequency
shifts are

frequencies of the electromagnetic field kc.
In dispersion theory, the interaction energy is ex-

pressed in terms of a sum of frequency shifts as

b.E = g i/ib, cok i[n(cok i, T)+ —,'],
k, l

2
O'C y ( e

—ik r'Ja ) ( eik.rJa )nn n'n
n', a

X [(kc) —co„.„] kc
(9b)

where n is usually interpreted as number of bosons
[e px(fi /cok& T) 1] . It is co—nventional in dispersion
theory to write this interaction energy in terms of a con-
tour integral, giving at zero temperature

2
I y (e —ik.r'Ja )(eikrJa )nn Vg

nn' n'n
k, a

b.E= . g fdcoco ln
fz d

4~t k(

dt's

(cok, /+ b'cok, / )

CO COk (

X [(kc) —co„„] (9c)

Equation (8) has a solution only if the corresponding
determinant is zero, and manipulation of this deter-
minant can be used to determine the frequencies ~k &

re-
quired for self-consistency. The subscript k refers to the
fact that these frequencies are wave-number dependent,
while the subscript I indicates that more than one solu-
tion is possible for each k. These frequencies are approxi-
mately its quantum-mechanical frequencies cu „and the

I

. g |t)dcoln
4m k I

( cok, /
+ b cok, / )

CO COk I

after integrating by parts. Equation (8) is of the form

5; j+G; ~. ~
=0, which can be diagonalized to give

5; J(co —co;~
—bco; J )/(co —co; J )~ =0. The sum of the al-

lowed frequencies shifts may be obtained from the loga-
rithm of the trace of the matrix G as
—(fi/4iri)gdco gP (1/r) Tr( —G)" or

1 ( ik r J/3 ')'( —ik rJa )
AE= . % — dm Tr +4+i, r fiV(k —co /c ) COnrn + CO

(
—ik' r'Ja ) ( ik.rJ/3 )

COn n
—

CO

(10)

The subscript k has been dropped on co, since the contour
integral automatically selects a wave-vector-dependent
frequency. The frequencies are positive, and thus the
contour integral should enclose the positive but not the
negative ~ axis. Using the Lorentz gauge condition
V. A+ c By/Bt =0, the longitudinal component A k

can be eliminated. The charge-current density continu-

ity equation then implies that J„,Jn. n +J„"„J„",
= [1—(co/kc) ]J~„J~.„, which eliminates the pole at
co=kc for the longitudinal modes. This gives exactly
what would have been obtained using the Coulomb
gauge, since in this case the y part of the solution is not
retarded, so that k —~ /c is replaced by k, and the
longitudinal field modes are generated entirely from cp.
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III. LONGITUDINAL MODES
AND THE FROHLICH POLARON

The interaction of an electron with the longitudinal-
optical modes of a polar crystal is a good test of the for-
mulation developed here. To quote Frohlich, "this case
provides a very simple example for a nonrelativistic field
theory, and in view of its simplicity it might be expected
to lead to the discovery of a number of new features of
such fields and to the development of new methods. "'

Since this interaction is longitudinal, only the fourth
component in Eq. (10), that is, the p part, contributes.
The lattice is taken into account as a frequency-
dependent dielectric function:

e( co ) = E'p( ct) coLo ) /( co coTo )

Here coLQ and coTQ are the longitudinal- and transverse-
optical frequencies, and e0 is the high-frequency dielectric
function and is identified with the permittivity of vacuum
for simplicity. If only the r = 1 term is taken in Eq. (10),

fi e ~ ~To, (nle'"" In' &(n'Ie '"'In ) &nle '""'In'&&n'le'"'In )
4mi +0 Q) Q) LQ CO~~~ +CO CO~ n CO

e co co
I

Lo ~To + +, 1 (nle ln )(n Ie ln ) + e + +, 1

2 Ve0COLQ k „k ~n'n +~LQ 2 V@0

The first term is due to the electron-lattice interaction,
while the second term in Eq. (11) is the longitudinal self-
energy of an electron in vacuum.

The electron-lattice interaction will be considered first.
For a free electron, integration over plane-wave states

ik .r
e " /+V gives k„,=k„+k, and the sum can be con-
verted to an integral and evaluated to give

bE = —aA'coLo arcsin( r~ k„)l(r~ k„),
where r~ = (fi/2m coLo) ' is the polaron radius and
a=[e /(8mr~)][1/ep I/e(0)]—/ficoLo is the Frohlich
coupling constant. This result, in precise agreement with
the second quantized Frohlich theory, was obtained only
after considering both the longitudinal-optical modes and
the modes associated with the transition frequencies
co„„.' If either of these frequencies is omitted, the term
proportional to (co„„+coLo) ' is wrong by a factor of 2
and an "emission" term, proportional to (co„„—co„o)
contributes even at zero temperature. The emission term
drops out only because the divergent contribution to the
energy change associated with the electron modes is ex-
actly compensated by a contribution of opposite sign
from the lattice modes.

The self-consistency condition, Eq. (8), does not direct-
ly determine the amplitude of the field modes, but only
their frequencies. However, if the above result is to be
consistent with the perturbation theory for the elec-
tron, the energy must be of the form AE
=Pi ' g'„H„'„H„'.„/(co„„+rp). The potential that would
give this energy shift is

y(r, t) = [A'(coLo —coTo)/2VepcoLo]'~

X g (e'"'lk)exp[ i (coqt+tpk)] .—

This has the same amplitude as the potential in the usual
Frohlich Hamiltonian. The absence of a divergent term
due to absorption of energy from the field at zero temper-
ature is due to the cancellation of the contributions gf the
electron self-energy at frequency co„.„with those of the

l

perturbation due to the lattice field at coLQ. The potential
is of the form of a dipole potential, being proportional to
k ', and is due to dipoles that are polarized by the elec-
tron and act back on the electron.

To evaluate the second term in Eq (11),. the summation
over n' can be performed using the completeness proper-
ty of the wave functions corresponding to any zero-order
Hamiltonian. y'„, (nle'"'In')(n'Ie '"'In ) =(nln &,

since the n ' =n terms is zero for nonzero k. The
Coulomb self-energy of the electron is obtained. Equa-
tion (8) implies that only the frequencies approximately
equal to co„.„satisfy the self-consistency condition and
thus that the Coulomb self-energy, if nonzero, is associat-
ed with the atomic fluctuation frequencies.

IV. TRANSVERSE MODES

The interaction energy is —,A multiplied by the sum of
the frequency shifts and should include all wave numbers
and both the electron modes and the field modes. Equa-
tion (9a) is exact for a free electron and b,E, can be ob-
tained from Eq. (9) or (10) and is

1 &e'"'J„.„&,(e
2V ~

~k k co„.„+kc
The subscript t indicates that only transverse modes
should be included. The integrals over current are, after
including a factor sin 0 in the k integral to eliminate lon-
gitudinal modes,

(e' 'J„.„),(e ' 'J„„),=(eA/m) k„.k„5& k +ksin 8 .

Approximately the denominator co„„+kcas kc gives

A k„
dk,

37T 4' E'0 gyes c 0

in agreement with the lowest-order nonrelativistic treat-
ment of electron mass renormalization. '

The Lamb-shift interaction is also identical to the non-
relativistic QED result, since the current integral is pro-
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portional to the momentum integral for transverse
modes,

2 e'A', ~&n~e'"'V'~n'&~'
y

kdk
3' 4~co Pl cd~ ~+kc

from Eq. (9) or (10). There is no term proportional to
~„.„—kc, but it is surprising that this result has been ob-
tained, since it is due solely to the balance between emis-
sion and absorption at both the electron transition fre-
quencies and the field frequencies.

Consistency with perturbation theory for the electron
requires that the amplitude of the potential seen by the
electron is (fige/2Vk)'~ as in QED (Ref. 16) if all of AFt
is attributed to a field at frequency kc. It is a factor &2
smaller if contributions to this energy shift at frequencies
kc and m„.„are considered separately. In the latter case,
contributions at these two frequencies add for the terms
that describe virtual transitions with photon emission and
cancel for the photon absorbing transitions. Only the
photon absorbing transitions can conserve energy, and
thus only these could result in real transitions (if they
were not canceled by the atomic fiuctuations). . The field
is associated only with the interaction, and note that it is
the frequency shift rather than the frequency that was
originally used to determine it. Proportionality to 1/&k
came from the inverse distance dependence with retarda-
tion after inclusion of both the field and transition fre-
quencies. While in NCT the atom is not correlated with
its own radiation field, in dispersion theory this interac-
tion is coherent. In the latter case, the product of vector
potential times current is averaged, whereas in the former
they are averaged separately. This may be the primary
difference between NCT and dispersion theory. The am-
plitude of the field suggests that energy is conserved, for
example, when radiation is emitted or absorbed, in con-
trast to the usual semiclassical picture where a classical
field from a single emission process can stimulate more
than one absorption event. Recently Crisp' concluded
that in NCT "the equations of motion are found to have
a constant of the motion that can be interpreted as stat-
ing that the sum of the atomic energy, energy of interac-
tion, and the energy stored in the electromagnetic field is
constant. "

V. DISCUSSION

The predictions of dispersion theory developed here,
including the Lamb shift and lack of a term proportional
to (kc —co„„) ' that would result in absorption from the
zero-temperature vacuum field, are in agreement with ex-
periment. They are also in agreement with QED. There
is no divergence at kc =m„„, since these frequencies are
shifted away from each other by their interaction. Since
dispersion theory assumes that the electron-medium in-
teraction energy is equal to the sum of the frequency
shifts multiplied by —,A, it is possible that dispersion
theory is completely equivalent to QED to the order cal-
culated and in the situations considered here. If this is
the case, its use is justified by the straightforward
mathematics required and especially by the simplicity
and directness of the physical interpretation that it sug-

gests. It is not possible to be certain at this stage in the
examination of the dispersion-theory formalism whether
it is a true semiclassical theory or an alternate formula-
tion of QED.

One of the key issues is why the interaction energy
should be expressible as the sum of the frequency shifts
multiplied by —,'A. There appear to be several alternatives
including the following. (i) All the modes are quantized,
even in vacuum. (ii) Lorentz invariance requires that the
field energy be linear in frequency for a classical or quan-
tum theory, as proved by Boyer in his development of
random electrodynamics. ' (iii) An argument of the form
of the fluctuation dissipation theorem' requires that the
field energy be that of a system of bosons if there is a
well-defined 1inear relationship between current and volt-
age so that impedance can be defined. In dispersion
theory, the frequencies and hence the interaction energy
are obtained from the self-consistency condition that the
field produced by the electron is the field that it sees.
This suggests that the electromagnetic field is the result
of emission by the atom or free electron and does not
necessarily imply a nonzero field in vacuum.

The physical model of the interaction process suggest-
ed by the present formulation of dispersion theory is
different from the model in a second quantized theory.
At each wavelength there are two modes that are impor-
tant in the physics of the electron-medium interaction,
the medium's field frequency and the electron's
quantum-mechanical transition frequency. The former
generates virtual transitions to higher-energy states,
while the latter gives the transverse self-energy. Qualita-
tively and quantitatively correct results are obtained only
if the effects of both these frequencies are taken into ac-
count. There is no need to assume that the atom cannot
absorb energy from the field at zero temperature, since
this effect is canceled by atomic fiuctuations. In QED the
picture is complicated by questions of the ordering of
operators. Milonni has identified the atom source
modes with the transition frequencies and the field modes
with the frequencies kc. In dispersion theory, both are
the result of self-consistent emission and absorption by
the source. Fain ' has pointed out that a ground-state
atom does not undergo spontaneous absorption due to
vacuum field fiuctuations because in this state thy are
exactly canceled by the atomic fluctuations. In the for-
mulation of dispersion theory presented here it is more
natural to suppose that the field fluctuations are also due
to the atom.

Using the conventional line of reasoning in dispersion
theory, where an energy of —,'Ace per mode is assumed, the
amplitude of the field can be obtained by assuming that,
for a consistent theory, the same interaction energy
should result from dispersion theory as from perturbation
theory. By this argument, the electric potential seen by
an electron in a polar crystal is the Frohlich dipole poten-
tial that can be ascribed to polarization of the lattice by
the electron itself. However, it is stripped of the usual
phonon annihilation and creation operators. It is only
after addition of contributions at the quantum-
mechanical transition frequencies that the usual result is
obtained and absorption is eliminated. For an electron in
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vacuum, the field amplitude obtained from the above ar-
gument has the same &k dependence as the amplitude in
QED. However, the amplitude of the field at frequency
kc can differ by a factor &2.

Although it has been assumed in the past that disper-
sion theory is equivalent to Jaynes's NCT, the quantita-
tive predictions of these two formalisms differ. If the fre-
quency shifts in Eq. (9) are compared with Jaynes's fre-
quency shifts, it can be seen that the former shifts do not
contain the probability amplitudes. The difference in the
expressions for the frequency shifts and interaction ener-
gies obtained here and in Barut's theory as compared to
NCT requires explanation. ' In dispersion theory, the
potential seen by the electron is not that of a moving
point charge, but rather its square root. For the polaron,
the physical interpretation is that the electron sees the di-
pole field of the lattice induced by the point charge itself.
In the case of an electron in a vacuum that can support
propagating transverse electromagnetic waves, the elec-

tric field seen by the electron is proportional to &k, and
the electron sees the field of this electromagnetic wave.
In NCT, the fluctuations of the atom are assumed to be
uncorrelated with its own radiation field. As a conse-
quence, the field and the current are averaged separately.
In dispersion theory, the interaction energy, which is the
product of vector potential multiplied by current, is aver-
aged. This implies that the atom interacts coherently
with its radiation field. The expression obtained for the
interaction energy, Eq. (10), is very similar to Barut's.
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