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Generalized commutation relations for a single-mode oscillator
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A generalized commutation relation of a single-mode oscillator is proposed. Bose-Einstein,
Fermi-Dirac, and Greenberg s infinite statistics are shown to be special cases of this commutation
relation. The Fock states, coherent states, and analogs of squeezed coherent states for this com-
mutation relation are constructed. Finally, the quantization of a free infinite-statistics field is dis-
cussed using the Umezawa-Takahashi procedure [H. Umezawa and Y. Takahashi, Prog. Theor.
Phys. 9, 14 (1953); Nucl. Phys. 51, 193 (1964)].

Recently Greenberg ' constructed an example of infinite
statistics in which all the representations of the symmetric
group can occur. Unlike its counterparts, namely Bose-
Einstein (BE) and Fermi-Dirac (FD) statistics or para-
statistics, the number operator in this case is not bilinear
in a and a~ but an infinite series. In this paper, we show
that we can write down a generalized commutation rela-
tion (CR), in the quantum-mechanical context, for a sin-
gle mode for which the number operator is again an
infinite series and contains BE, FD, and Greenberg's
infinite statistics (IS) as special cases. We construct the
Fock states, coherent states, and analogs of familiar bo-
sonic squeezed states and show that they reduce in the
appropriate limits to the known results for BE and FD
commutation relations. We calculate the uncertainty
products for these states in the case of infinite statistics.
Finally we discuss the quantization of free fields with
infinite statistics following the procedure of Umezawa and
Takahashi.

GENERALIZED COMMUTATIONS RELATIONS,
NUMBER OPERATOR, AND FOCK STATES

Consider the commutation relation

aa —qa~a =1. (1)
By taking the Hermitian conjugate of this expression it is
easily seen that q must be real. Starting with (1) it is
readily verified that the number operator N which satisfies

[a,N] =a, (2)
[a',N] = —a', (3)

is

The normalized Fock states for the CR of (1) are

a
[0&, a'[0), ' „,[0&,1/2

a
, , )0&, . . .

[(1+q)(1+q+q')] 'I'

For q =1, the number operator terminates after the first
term and we recover both CR's and the number operator
of BE statistics. Also the Fock states turn into the well-
known Fock states of BE statistics, namely, (a )"/Jn! (0).
For q

= —1, Eq. (1) turns into the anticommutator of FD
statistics. Further, with the additional requirement a
=a =0, the expression in (4) reduces to the known re-
sult and for Fock states one obtains the two states ~0) and
a ~0). For q =0, we obtain from (4)

Nts= g at"a"
n 1

which is the result due to Greenberg for a single mode
obeying aat=I. The normalized Fock states in this are
~0),a t~0), a t ~0), . . . . We note that the expression for N
given here has been obtained purely algebraically by only
making use of the commutation relations (1) and has the
virtue of reducing to the expression given by Greenberg in
the q =0 limit. Other constructions of N which have been
considered in the literature that rely on bosonic Fock
states do not have this property and lead to a singular ex-
pression in the q =0 limit.

DISPLACEMENT OPERATOR

a t"a"(1 )n.=i (1 —q")
r

= ata+ q a~2a2
1+q

+ (1 )n —
1

a tllall +
1+q+ . +q" (4)

For the CR of (1), we now construct a generator A t for
displacements satisfying

[a,W'] = 1 . (7)

It is easily checked that the A given by

1— (1 — )'=a 1+ a a+ a~a +
1+q 1+q+q'
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&'=~'(Nis+1) =N, s&' (lo)

satisfies (7) for all q except q = —1. From (7), it follows
that

exp(A ta) a exp( —A ta) =a —a .

For q =1,A t reduces to a t. For q =0, we get

are given by

&; =a; +osaka; a k+gaka~ a;a~ak+ .
k k, l

One, however, has

[~,~J]~o.

(2o)

For q = —1, with a =at =0, 2 t reduces to at. In this
case, as noted above, although (7) is no longer valid, (9)
still holds with a regarded as a Grassmann number an-
ticommuting with a and a t.

The construction of the coherent states in many mode case
is immediate.

REALIZATION OF tx,pl i

COHERENT STATES

Having constructed A~, the generator for displace-
ments, satisfying (7), the construction of coherent states
for arbitrary q, satisfying

It is interesting to note that by defining

a+A~ a —A~

(2)' (2)' 'i ' (21)

we obtain, by virtue of (7), a realization (albeit non-
Hermitian) of the CR's

aa =aa
is immediate. The normalized states satisfying (11) are
given by

(a& = [e, ((a)')] ' 'exp(A ta) (0& (12)

[x,p] =i.
It is also easy to see that

—,
' (x'+p') =(N+ —,

' ),

(22)

(23)

where

~a&ts=gl —(a) g a"(at)"(0&.
n 0

(14)

eq(x) =g, nq=
n-pn t' 1 —

q

For q =1, we get the usual Sudarshan-Glauber coherent
states. For q = —1, with a regarded as a Grassmann
number, we get the fermionic coherent states of Ohnuki.
For q =0, the constant C is found to be (1 —

~
a ( ) '~ and

the normalized coherent states for the Greenberg CR are
found to be

which is the usual result for harmonic oscillator. The
surprise is that it is valid for all q's (except q = —1) of the
CR proposed here. Further if the canonical density ma-
trix is taken to be e ~ then (N& =(e~ —1) ' for all q ex-
cept q = —1.

SOME SPECIAL STATES

Having constructed the generator A~ of displacement,
it is elementary to construct analogs of the bosonic
squeezed states for the CR equation (1). Using (1) it
follows that

The coherent states for Greenberg CR's can also be de-
rived in an alternate simpler way. Expanding

~
a& in terms

of the number states

b =exp —(a —At ) aexp ——(a —At )
2 2

= (coshz)a+ (sinhz)A t. (24)

I ~&&s = g C„~n&,
n 0

(15) From a ~0& -0 we get

and substituting it into (11), one obtains, using a~n&=
~n

—1&, the following recursion relation

Cn aCn —] s

b~z&=O,

where

(25)

which can easily be solved to yield

Cn =anCp,

and hence

(17)

~z& =exp —(a' —A t') [0&.
2

(26)

The analogs of the Yuen-type squeezed states are given
by

I a&is =Co2 a "In) .
p —( ' —~") p(~' )(0&.

2
(27)

Fixing Co by normalizing ~a&~s to 1 we get the expression
in (14).

In the many mode case of infinite statistics, one finds
that the generators of displacement A;~ satisfying

[a;,Ajt] =8;, ,

It is easily checked that they satisfy

b~z, a& =a[z, a&. (28)

It should be noted that for q = —1, the Fermi case, since
a =a t =0, Yuen-type states do not exist.
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UNCERTAINTY PRODUCTS

If we define a =X+iP, then one finds that for coherent
states of infinite statistics

Let tir(x, r) be expanded as

y(x, r) =gak(r) exp(iit x),
k

(33)

~~P=-,' (I-~a~'). (29)

The product ~AP could, therefore, be made as small as
desired. For the Fock states of infinite statistics

with

also

2
ICOk t k

ak(t) =e " ak, cok =
2EPl

X=O, P=O, X =P =4(2 —8, , ),
and hence

4 for n=0,
AX~P =

for n &O.

QUANTIZATION OF FREE
INFINITE-STATISTICS FIELDS

(3O)

(31)

ak &I ~kl ~

Postulate the Hamiltonian

H =g rok iV k
k

with

iVk akak+Zai ak~akai+ ' ' '

I

One can easily verify that

i y= [y(x, r ),H]

(34)

(3S)

(36)

(37)

i + V' y(x, r) =O.1

Bt 2m
(32)

We now quantize the infinite-statistics field theory pro-
posed by Greenberg using the procedure of Umezawa and
Takahashi. In this procedure the field equations are pos-
tulated. For a given commutation relation of a and a, a
Hamiltonian is postulated, so that the Heisenberg equa-
tions of motion are the same as the postulated field equa-
tions. Such a procedure is noncanonical as a Lagrangian
is not postulated. Consider the quantization of the free
Schrodinger field,

reproduces (32) using (34) and (36). It must be em-
phasized that the Hamiltonian (35) cannot be derived
from the Lagrangian which gives (32), and, therefore, this
theory cannot be quantized within the canonical pro-
cedure.
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