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We study a stochastic model of an interface moving through a random medium. This model
differs from the standard Kardar-Parisi-Zhang equation by the fact that the fluctuations are
quenched random variables. We find an intermediate scaling regime with roughness exponent ap-
proximately equal to 0.75; this compares favorably with recent experiments [M. A. Rubio, C. A.
Edwards, A. Dougherty, and J. P. Gollub, Phys. Rev. Lett. 63, 1685 (1989)] on multiphase flow

through a bead pack.

There has been much recent interest in the scaling be-
havior of nonequilibrium interfaces broadened by noise.
Progress has occurred on both the theoretical and simula-
tional fronts towards understanding the various scaling re-
gimes as functions of the substrate dimensionality and the
strength and correlation properties of the noise. In this
context, a recent experiment on the displacement of one
fluid by another in a porous medium!' is worth noting.
Specifically, the observed roughness exponent of the two-
fluid interface does not correspond to any known theoreti-
cal model. In this paper, we propose a simple model that
reproduces the qualitative features of the experiment and
shows the observed unusual scaling, w ~L*® with a~0.73,
over some range of length scales. We shall argue, though,
that the true asymptotic scaling behavior is however
not anomalous, and is that of the Kardar-Parisi-Zhang2
(KPZ) equation (or equivalently, ballistic aggregation? or
the Eden model*) in 1+ 1 dimensions.

The KPZ equation is the simplest continuum descrip-
tion of a stable nonequilibrium interface roughened by
noise. The equation governs the time development of the
height y(x,z) of a surface above a d-dimensional sub-
strate,

y(x) =DV?y+A|Vy|*+1nkpz , (1)

where the noise ngpz is 8-function correlated in substrate
position and time:

(nkpz(x,)nkpz(x',1')) =889 (x —x)6(t —1¢"). (2)

The interface width, averaged over a region of linear di-
mension L,

w(L,))=(p)—y)2)12, 3)

saturates at long times to a value which scales as a power
law in L:

w(L,t— o) ~L". 4)

The exponent a depends on the dimension d, but is in-
dependent of the coupling constants (at least over some
finite range). This scaling behavior has been shown to
agree with that observed for a number of other interface
models, most notably the Eden and ballistic aggregation
models. In the case of d =1 the exponent «a is exactly % .
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The physics of the experiment differs from that embo-
died in the KPZ equation in two regards. First, the noise
is quenched, as the irregularities of the bead pack consti-
tuting the porous medium are fixed during any particular
experiment. This is in contrast to the noise in the KPZ
equation, which is uncorrelated in time. This effect should
serve to broaden the interface; if the interface encounters
a point where it becomes temporarily pinned, it will tend
to experience that particular (large) value of the random
force for a relatively long time, in fact until it becomes
depinned. This is clearly different than being subject to a
noise field which is completely uncorrelated in time. The
second major difference is the nonlocal nature of the flow
field. The result of this is a relative stabilization of the in-
terface. This can be seen in the linear stability of the pla-
nar interface where the decay rate of a perturbation is
proportional to the magnitude of the wave vector of the
perturbation, as opposed to the square magnitude of the
wave vector in the KPZ case. This effect would tend to
make the interface less broad, decreasing the exponent.
This can be seen explicitly in a simulation of the interface
width using a time-reversed diffusion-limited aggregation®
(DLA) algorithm. Since we are interested in understand-
ing how the exponent can be larger than the KPZ value of
+, we shall concentrate in this paper on the first mecha-
nism, namely the effect of the quenched noise.

The model we study in this paper is

%=DV2y+F+n(x,y), (5)

where n(x,y) represents the quenched noise with (n) =0
and the correlation function (n(x,y)n(x’,y"))=g?8(x
—x')8(y —y'). F is the pushing force, and D is the sur-
face tension parameter. This model is exactly the KPZ
equation, except for the nature of the noise and the ab-
sence of the nonlinear A term. The latter term is, in fact,
induced automatically in a renormalization-group sense
since the noise is a nonlinear function of the interface po-
sition, y. The above model has, in fact, been written down
previously in two different contexts, domain walls in mag-
netic systems® and segregating fluids in porous media.” In
both of those studies, the emphasis was on the pinning-
depinning transition. Let us first analyze the model in two
different limits:
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(1) The strong pushing regime, where F>>(n2!/2,
Here we can write: y =Ft+y, and the equation becomes
approximately

%f— =DV +n(x,Ft).
In this limit the model reduces to the case of uncorrelated
noise, so that
Gk,o)nk,o)
VF

with G(k,0) =(Gw—Dk?) .
the noise, it is obvious that

ko) =

Given the correlation of

2
Vsl 1)) B | — x| Q=)
Fx,0)p,t)) Dle x'| )

Also, the width, for d=1, satisfies w(L)~ (g%
DF)2L V2 which is the same result as that given by a

more sophisticated calculation.® The prefactor is propor-
|
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tional to 1/~/F, which coincides with the observed experi-
mental behavior.! However, the L exponent a equals +
and hence is too small when compared with the experi-
mentally observed 0.73.

(2) The static regime, when the interface gets pinned.
Here the problem reduces to the one considered by Grin-
stein and Ma® in the magnetic domain problem, where

one can write down the Hamiltonian:
_(,a.D 2 d. 7 4., '
H fd x> vyl +fd xj; dy'n(x,y') .

For interface width w, the energy is estimated to be
E/LY~Dw?/L*+gw'?L =4/, Minimizing it, one gets
w~L% D3 Thus in the case d=1, w~L. Grinstein
and Ma argued that this is the critical dimension and
below this dimension, the system is unstable against the
formation of magnetic droplets.

To study the scaling behavior in the intermediate re-
gime we turn to computer simulation of the equation. We
discretize the equation (5) in x direction

yit+A) =y, )+ Atlyi 1) +yi-1 @) =2y, )+ F+nG,ly: (D}, i=1,2,...,N 6)

with free boundary conditions: yo(z)=y(¢) and
yn+1@)=yn(t), [y;(t)] represents the nearest integer
smaller than y;(¢). The noise n(i,;) is defined on a two-
dimensional lattice; according to Eq. (6), the noise is
correlated over the distance of a lattice spacing, which
thus should correspond to the size of the glass bead in the
experiment.

Before turning to the simulation results, we would like
to point out several interesting features in Fig. 1 of Ref. 1.
First, the interface has a macroscopic structure of several
parabolas, each with a typical length ~2-4 cm, which is
about the same length scale at which the scaling behavior
saturates. Second, the correlation between subsequent
images is extremely high. These qualitative features are]

Cano® =( G+ 0 =5+ DIy ) —7O1ar )

We found that within the experiment measuring time
Cauto(r) was finite, which means that all the time slices
being averaged over were in fact correlated; this is just
what occurs in the experimental data. This correlation
forces us to do an ensemble average over different noise
realizations to obtain more reliable results. After averag-
ing over ten samples with the same initial condition and
parameters, but different seeds of the random-number
generator, we obtained the data presented in Fig. 1 for
p=0.1, A=1.1, D=5.0, and F=0.4. There is a region
extending slightly over one decade of length where we see
a power-law behavior best fit by w(L) ~L%73£002 3 re.
sult which agrees very well with the experiment. In Fig. 2
we show a typical time evolution of the model interface,
which has the same large scale structure as seen in the ex-
periment, although ours is somewhat noisier at small
scales.

A more detailed examination of Fig. 1 reveals that the
effective exponent (the slope of the curve on the log-log

[
indicative of a fairly broad Gaussian distribution, ar-
ranged so that there will be on average a small number of
tightly pinned sites.

Based on the above, we distributed noise sites randomly
with density p, i.e., n(i,j) is nonzero with probability p.
The pinning forces on these sites were chosen from a
Gaussian distribution with width A. We worked with a
lattice 900 sites long in the x direction, and up to 4000 lat-
tice spacings in the growing direction. The interface
width w(L) averaged over all segments of horizontal
length L, was obtained from 300 time slices from a single
run. We also calculated the time correlation of the inter-
face in one long run
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FIG. 1. Ensemble average of width vs length over ten samples
with parameter values of D=5.0, F=0.4, A=1.1, and p =0.1.
The data are best fitted by w~L* with @ =0.75 £ 0.02.
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FIG. 2. Typical time sequence of interface with the same pa-
rameter as in Fig. 1.

plot) seems to decrease at the largest length scales. To in-
vestigate this more systematically, we have studied the
effect of varying the forcing F. This is due to the simple
observation that Eq. (5) for d =1 can be written as

dyF) _ . d*(yF)
d(tF?) d(xF)?

So, enlarging F by some factor is equivalent to enlarging
the size of the system by the same factor with fixed F.
This allows us to study the dependence of the scaling ex-
ponent on the length scale by just changing the value of F,
which is computationally very convenient. The results of
this study are presented in Fig. 3, where the best fit ex-
ponent is graphed versus the asymptotic velocity (on a
log scale). This asymptotic velocity, defined as veg
=lim,_. «{y (¢)),/t, is a monotonically increasing function
of F. We see that while over a large range of velocities
(approximately half a decade) the exponent is roughly
constant at ~0.76, it falls off at the largest velocities to a
value near +. This behavior is in accord with our expec-
tations for the large F regime. It moreover suggests that
the experimentally observed value of a is not a true
asymptotic exponent. At small velocities, near the pinning
threshold, the exponent seems to be rising. This also is
consistent with our theoretical expectations. The picture

+1+n(xF,yF) .
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FIG. 3. Roughness exponent vs the effective moving velocity.
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FIG. 4. The prefactor of the second to the seventh points
(with exponent range from 0.81 to 0.69) in Fig. 3 vs the effective
moving velocity, the slope is —0.47 £+ 0.03.

that emerges, then, is that the measured exponent should
be a continually varying function of the velocity, with a
fairly large plateau region where the value of the exponent
is ~0.75, roughly halfway between its small and large ve-
locity limits.

Studying the time history of the profile, it appears that
the above crossover is due to the presence of a second
length scale in the problem, namely the distance between
strong pinning centers. On scales shorter than this, the
exponent is close to its pinned value, a=1. On length
scales much larger than this, however, the exponent ap-
propriate to a random moving interface is seen. To put it
another way, it is known that using time-correlated noise
in the KPZ equation can increase the roughness exponent,
if the correlations decay as a power law in time and so ex-
tend over indefinitely long times. The random pinning
forces in our problem, in the presence of finite surface ten-
sion D, are only capable of pinning the interface, and
thereby correlating it, for a finite time.

It is interesting to study the prefactor in the power law,
defined as A=w/L°, where a is the measured best fit ex-
ponent for the particular parameters. This data, summa-
rized in Figs. 4, 5, and 6, indicate that, as a rough esti-
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FIG. 5. Roughness exponent vs the surface tension over one
decade. The average is about 0.76.
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FIG. 6. The prefactor vs the surface tension, the slope is
—1.00 £0.06.

mate, A~ D*v{g, with u=—1.00%£0.06 and v=—0.47
+0.03. This dependence is consistent with the experi-
ment, if we interpret veq as proportional to the capillary
number in the experiment. We should also note that vary-
ing D did not have much effect on either the observed ex-
ponent or on the growth velocity.

In going to the pinning regime, our model exhibited a
surprising feature. In the finite system in which we did
our simulation (which was quite close to the actual size of
the experiment if we relate lattice spacing and bead size),
the pinning-depinning transition is a first-order transition.
In other words, when F is just higher than the threshold,
the interface moves with a finite velocity. In the infinite
volume limit, this transition is probably second order.'°
This might be an interesting point to examine experimen-
tally.

In summary, we have argued in some intermediate pa-
rameter regime, the simple stochastic differential equation
model does produce a 0.75 power-law roughness behavior
over slightly more than one decade of length. But in the
model, we can see a crossover to lower exponents at length
scale L > Ly, where Ly, is the average size of the parabo-
las that make up the interface. It will be interesting to see
what happens if the experiment can be pushed to the two
limits, namely, the static and rapidly moving regimes.
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