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Lattice Boltzmann scheme for two-dimensional magnetohydrodynamics
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It is shown that the lattice Boltzmann equation arising from the basic lattice-gas scheme for
Navier-Stokes equations can be extended in such a way as to include the effects of a two-

dimensional magnetic field. This offers the possibility of developing new computational schemes for
the efficient simulation of incompressible magnetohydrodynamic flows.

Lattice gases (LG's) are a special class of cellular auto-
mata (CA) specifically designed to simulate fiuid fiows by
purely Boolean means. ' Although, to date, the major
focus of LG research has been placed on the simulation
of the Navier-Stokes (NS) equations, it was soon recog-
nized that, with the appropriate modifications, the basic
CA scheme for NS equations can be extended in such a
way as to describe other types of Quid-related applica-
tions. Magnetohydrodynamics (MHD) is such an exten-
sion. The first MHD automaton was proposed by
Montgomery and Doolen. These authors insisted that,
due to the nonlocal nature of the Lorentz force J X8, the
MHD automaton should necessarily be assisted by a
finite-differencing stage, yielding the current in terms of
derivatives of the vector potential. This leads to a sort of
hybrid scheme. However, Chen and Mattheus pointed
out that the nonlocality of the Lorentz force is only ap-
parent, in the sense that, by treating the magnetic field B
on the same footing as the Quid current J, the quantity
J X B can be computed locally along the particle trajecto-
ry, precisely the same way as one does for the nonlinear
term (v.B)v of the NS equation. The need of treating B
on the same footing as J, i.e., like a particle current, leads
to a cellular automaton with (6)(2)= 12 Boolean variables
per node, n;, , with the index i =1,6 referring to the six
possible speeds (we are considering the six-bit Frisch-
Hasslacher-Pomeau two-dimensional CA) and j =1,2 to
J and B, respectively. In this Brief Report we show that
by introducing the kinetic counterpart of Boolean auto-
mata [the lattice Boltzmann (LB) formulation], a suitable
MHD-LB scheme can be found that allows the simula-
tion of two-dimensional MHD Bows at a computational
cost much smaller than the two schemes previously men-
tioned.

The present work is entirely developed within the
framework of the theory of the lattice Boltzmann equa-
tion (LBE). A full account on this theory is given in
Refs. 7 and 8; here we shall content ourselves with a rap-
id survey on the most important issues.

The LBE is a set of explicit finite-difference equations

for the evolution of the mean populations X; associated
with the occupation numbers n; (n; =0, 1) of the corre-
sponding Boolean automaton. In general, we shall refer
to these mean populations as "mesoscopic fields, " in that
they result from an ensemble average over the microscop-
ic dynamics, even though not all of them are necessarily
relevant to the hydrodynamic scale. For the case of the
face-centered-hypercubic (fchc) lattice, the LBE takes
the following form:

SN,:—N, (x+c;,t +1)—N, (x, t ) =0, (N —N'q),

where c;, i =1,24, are the unit vectors along the direc-
tions of the fchc lattice and 0,;. is the collision matrix ex-
pressing the change in the ith population induced by a
unit change in the jth population. Finally, N' represents
the equilibrium distribution function (EDF) resulting
from the underlying lattice-gas dynamics. Under a quite
general set of conditions on the collision operator, the
EDF takes the form

N q=d [1+2c; v +G(p)Q; &v v&]+O(v ),
a, f3=1, . . . , 4, i =1,24 (2)

where d is the average density per velocity state and

Q; i3=c; c;&
—26 tt. A deep insight in the dynamics of

the LBE can be gained by inspecting the spectral proper-
ties of the collision matrix 0; . It is important to note
that the matrix need not be associated with any specific
underlying cellular-automaton dynamics. The prescrip-
tion of A is, in fact, largely free except for constraints of
mass and momentum conservation and the symmetry re-
quirement that Q," only depends on the cosine between c;
and c . Owing to this property, the matrix is symmetric
and cyclic, so that the spectrum and the corresponding
eigenvectors can be computed exactly. One finds four
distinct real eigenvalues (0, k, cr, and r) with multiplici-
ties 5, 9, 8, and 2, respectively. The five null eigenvalues
are associated with the collision invariants, i.e., particle
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number and linear momentum, and the corresponding
eigenvectors are given by 1,- and c; . By projecting the
meso scopic fields X;, to be intended here as a 24-
dimensional vector, over 1; and c;, one generates five hy-
drodynamic fields: p =g, N, and J =g,. N; c, , which
correspond to the fluid density and current density, re-
spectively. As in continuum kinetic theory, the nonzero
eigenvalues are associated with transport properties. The
eigenvalue A. controls the momentum diffusivity v, which
ultimately determines the Reynolds number of the flow
Re=vL/v, v and L being typical velocity and length
scales. The corresponding set of eigenvectors is given by
Q, &, which, in view of the symmetric and traceless na-
ture of Q, &, yields nine independent vectors, in accor-
dance with the multiplicity of A, . The projection over
Q; & yields the stress tensor S &. The eigenvalues o and r
are somehow peculiar to the LBE, in the sense that they
describe the relaxation towards equilibrium of a special
class of mesoscopic fields which have no direct physical
meaning on the hydrodynamic level. In fact, it can be
proved that their activity is confined to the short-scale
dynamics, at wavelengths comparable to the lattice pitch.
At these scales the local Knudsen number is O(1), so
that the Chapman-Enskying expansion is untenable, which
means that these fields take part in the dynamics, but
cannot be promoted from the mesoscopic to the hydro-
dynamical scale; hence we have attached the label "ghost
fields" to them to indicate that their activity is confined
to small, nonhydrodynamic scales. As a result, the ma-
crodynamical behavior of LBE is represented by the fol-
lowing set of equations:

a,p+a~. =o,
a,J.+a.(p/2)+ ay.~+ -,'a~ay. =o, (3)

a,s.,+ -,' [a~,+ay. ,'(a, J—,)n.,]=A(s., s:y )—,
where

S'$ =pg(p) v u&— "5
4 ap (4)

and g(p) is the usual factor resulting from the breaking of
Galilean invariance in a lattice. Furthermore, it can be
proved that, in the adiabatic limit a, /A, ((1, these equa-
tions converge to the NS equations.

The original four-dimensional LBE can be projected
down to three or two dimensions with a possible corre-
sponding increasing reduction of the number of indepen-
dent fields. In three dimensions, by imposing the ap-
propriate degeneracies, one is left with only 18 popula-
tions and J4 =0. It can be shown' that in the absence of
these degeneracies J4 behaves like a passive scalar trans-
ported by the three-dimensional flow. In two dimensions,
one can impose some additional degeneracies, leaving
only nine independent populations and J3=0. We will
now exhibit a 2+ —,

' model (two space coordinates plus
three velocity components) in which the degrees of free-
dom released by relaxing the degeneracies can be exploit-
ed to simulate the presence of a two-dimensional (2D)
magnetic field. To this purpose, the 2D MHD equations
are most conveniently recast in terms of evolution equa-

tions for a pair of stream functions P and g associated
with the magnetic field B=zX ap and the fiow velocity
v=z Xa/, z being the unit vector along the third ignor-
able coordinate:

a,y+(v a)y=Aay,

a, (~y)+(v a)(~q)=(8 a)(~y)+~~(~q) .

Let us now see how these equations can be deduced
from the full set of Eqs. (3). As anticipated, we have only
two spatial coordinates, x and y, but three current com-
ponents. The macrodynamical equations for J„S„and
S, take the following explicit form:

a,J, +O.S„,+O,S„=0,
a,S„,+-,'a.J,=A[S„,—pg(p)u, u, ],
a,S,+—,'a J, =A[S,—pg(p)u v, ],

(7)

The equilibrium stress tensor now takes the following
form:

v2 g2
S'h=pg(p) v u& BB& —6&—

4
(10)

and, consequently, in the adiabatic limit, the equations
for the velocity field become

a, u +(v a)v —(B.a)B =i)bu

where a=x,y. By using the definition of stream function,
we finally obtain Eq. (6) with g=A = —I/3A, . This com-
pletes the proof that by removing the degeneracy along
the z axis and modifying the equilibrium distribution
function, it is possible to model the presence of a 2D
magnetic field. Moreover, it should be noted that the
present scheme can easily be extended to nonunit

where the z derivatives have been systematically dropped;
we have deliberately omitted the propagation viscosity
that results from second-order terms in the expansion of
the streaming operator and which can be included by the
simple rescaling 1/A, —+ 1/k+ —,

' in the transport
coefficients. In the adiabatic limit, by solving Eq. (7) for
S, and S „one obtains

a,J, +(v.a)J, = — b J, .
1

3i,

This is precisely Eq. (5) once Jz is identified with the
stream function p and the diffusivity A' with the
coefficient —1/3A, . We now turn to the equation for b,g.
Here the key observation is that the magnetic tension
(B a)b, p has exactly the same structure (up to a sign ex-
change) as the advection term (v a)b, p. Since in Eqs. (3)
the advection is given by the equilibrium expression of
the stress tensor S'$, it follows that, in order to model
the magnetic tension, it is sufhcient to extend the
definition of the equilibrium distribution function as fol-
lows:

N,'q~N;"q=d[1+2c; u +pG(p)Q, &(v v& BB&)] . —
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"Prandtl" numbers g/g. For this purpose, one only
needs to change the collision matrix by imposing two dis-
tinct eigenvalues A, , and A, 2 to the fields S«&Sxy&Syy and
S„„S„respectively. By doing so, one has, in fact,
y/g =A2/k).

A few comments on our results are in order. The first
point concerns computational efficiency: The LBE has
been introduced to cope with the problem of statistical
noise, which often affects Boolean LG simulations. To
this concern, it is useful to remember that the Reynolds
number achievable in a LG simulation with N nodes per
dimension is given by

R *M%
&R.= (12)

tCPU
N X,„

V

Here, X, is the number of operations/sitestep and V is
the processing speed of the given computer. For a given
value of the Reynolds number we have

t CPULG

CPULB

hL~
3 r

R LB Xpp

&.p, LB VLB

(14)

where M is the sound Mach number M= U/c„h the
number of lattice sites needed to extract a single hydro-
dynamical variable, and R * a dimensionless figure (of the
order of the inverse mean free path in lattice units) that
only depends on the collision rules. For a given value of
the Reynolds number, the control-processing-unit (CPU)
time needed by an ¹tep-long simulation is given by

Previous numerical experience with both CA and LB
schemes suggests hLo -—O(10) and hLB-O(1), which
shows that the MHD-LB scheme is at least two orders of
magnitude more efficient than the corresponding cellular
automaton. A similar argument holds for computer
storage, with a milder h factor. It is worth remember-
ing, however, that noise elimination is achieved at the ex-
pense of exact Boolean computing, because, by the very
fact of dealing with average quantities, the LBE scheme
has to process rational and not binary numbers.

So much for the comparison between the LB method
and the LG method. To get at least a qualitative appreci-
ation of its absolute efficiency, the LB method should be
compared with other Aoating-point techniques. Al-
though a detailed comparison is beyond the scope of this
paper, previous numerical experience of the authors' in-
dicates that, for the case of two-dimensional incompressi-
ble turbulence, the LB method runs slightly faster than
the pseudospectral method (probably the most well-
established technique for homogeneous incompressible
turbulence). However, independent of any consideration
of actual performances, when put into a long-term per-
spective, two points seem to be definitely in favor of the
LB technique: linear scalability (linear speed-up with the
number of processors) for parallel computing and ease of
implementation of complex boundary conditions.

At this stage, a few comments on the range of applica-
bility of the LB-MHD scheme are appropriate. As is
known, lattice gases need to be operated in a quasi-
incompressible regime, with the sound Mach number
M=U/c, well below 0.2. In a MHD Quid, a further
characteristic speed needs to be considered —that is, the

For a 12-bit automaton, the most efficient implementa-
tion consists of performing the collision step by a single
access of a precoded 2' 12-bit- (6 kbyte) wide table look-
up. The output state is simply read at the address given
by the input state. Assuming that this access can be
completed in the same number of machine cycles re-
quired by a single fioating-point operation (fiop), we can
fix X p LQ 1 and VL& VLB The MHD LB scheme re-
quires of the order of 18 /2-180 Hops/site. However,
since only three distinct parameters occur in the collision
matrix (its nonzero eigenvalues), these operations can be
efFiciently regrouped in such a way as to require no more
than 100 effective fiops. With these assumptions, Eq. (14)
becomes

CPULG

CPULB

hL

~LB

LB 1

100

Now, since the MHD-LB scheme is based upon the four-
dimensional fchc algorithm, while the corresponding
MHD automaton relies upon the two-dimensional FHP
scheme, a ratio RLB/RLz of the order of 5 can be as-
sumed. As a result, we obtain

t CPUL~

CPUL~

A LCr
3

(16)

FIG. 1. Contour plots of the Quid vorticity. The simulation
was performed on a 128 X 128 grid. The presence of elongated
structures is a clear signature of the vortex-stretching mecha-
nism associated with the magnetic field.
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Alfven speed defined as c„=8/&p, i.e., the typical prop-
agation speed of magnetic perturbations. In view of the
second-order expansion in the magnetic field in the ex-
pression of the equilibrium population, it is clear that our
scheme is confined to smail values of the Alfven speed
with respect to the sound speed, or, in terms of the
current MHD terminology, to high values of the "beta"
parameter, namely the ratio of thermal to magnetic pres-
sure P=c, /cz ))1. This is no surprise, since the above
inequality is known to mark the domain where explicit
methods (such as the one presented in this paper) can be
applied. It should be noted that the dependence of the
Aifven speed on the inverse square root of the density is
likely to sharpen the incompressibility constraint beyond
the limits imposed to "conventional" lattice gases. As a
result, the LB-MHD scheme proposed in this paper
seems particularly suited to incompressible MHD Aows
in complex (i.e., porous) geometries.

Interesting applications may equally well be devised in
the field of "conventional Auid dynamics, " for instance in
the study of the statistical properties of 3D turbulence.
In fact, it is known" that the magnetic tension mimics-
in 2D—the e6'ect of the vortex stretching term
(v B)rot(v), which plays a crucial role in the physics of
fully developed turbulence. The presence of such a
vortex-stretching term is clearly visible in Fig. 1, which
shows a vorticity map on a 128 X 128 grid.
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