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We derive the kinetic equation governing the evolution of the action density of a wave propagat-
ing in a weakly nonuniform, nonstationary medium characterized by fluctuations that are small in
magnitude (but need not be slowly varying). The method of derivation is based on the Weyl rep-
resentation of a general linear wave equation, which leads to a natural definition of the wave-action
density and an analysis rooted in the ray phase space. The result is thus a classical toute derivation
of the radiation transport equation for a general scalar wave equation. We illustrate our derivation
with three example wave equations governing propagation in fluctuating media.

I. INTRODUCTION

The action density of a wave propagating in a medium
is a concept that is central to the analysis of a variety of
linear and nonlinear wave processes. For example, the
action density J(k) for a plane wave with wave vector k
and frequency u(k) in a uniform, stationary medium is
the wave analogy of the action defined for a classical har-
monic oscillator: J(k) is the energy density V(k) divided
by the frequency J(k) = U(k)/co(k). The action density
is also the classical wave limit of the occupation num-
ber nk concept of field-theoretic treatments of wave pro-
cesses. In a weakly nonuniform, nonstationary medium,
the action density J(x,k;t) properly becomes a density
on the (x, k) phase space and its evolution is governed
by the wave kinetic equation (WKE)

will extend that technique to the case where the medium
is characterized by turbulent fluctuations which are small
in magnitude but not necessarily slowly varying. We de-
rive the kinetic equation for the ensemble-averaged wave
action density, for which the right-hand side of (1) be-
comes

Z(x, k;t) =— 1

2' 3 rf k'E( xt;k, k')

x [J(x,k; t) —J(x, k'; t)] (2)

in the absence of other sources and dissipation. The local
scattering cross section F(x, t;k, k ) is given in terms of
the local spectral density of the turbulence S(x, t, k, u)
and the local dispersion function Do(x, t, k, io) by

S(x, t, k —k', A(x, k;t) —Q(x, k', t))
(BDo/R))(x, k; t) (BDo/R))(x, k'; t)

'

Here, the curly brackets denote the Poisson bracket of
classical mechanics, and B(x,k; t) is the local dispersion
relation [obtained by requiring the local dispersion func-
tion Do(x, t, k, io) to vanish, Do ——0 ~ ~ = Q(x, k; t)].
Thus, (1) states that the wave action density is convected
along rays in the (x, k) phase space; the rays are gener-
ated by Hamilton's equations, with the local dispersion
relation playing the role of the Hamiltonian. In the ab-
sence of sources E(x, k;g) (which includes the effects of
dissipation), the action density is conserved along these
ray trajectories. In particular, we see that it is the ac-
tion density (not the energy density) of the wave that is
conserved in a weakly nonstationary medium.

We have derived (I) in previous work for the gen-
eral case of electromagnetic waves in a space- and time-
varying medium. The method of derivation was based on
the Weyl transforms of a general, linear wave equation,
allowing for sources and dissipation; this procedure leads
to a natural definition of the wave-action density and a
treatment rooted in the ray phase space where w and k
are considered as independent variables. In this paper we

ih ' + V @ —[Vo(x)+ 6V(x, t)]g = 0 .0$(x, t)
Bt 2m (4)

The equation for high-frequency electromagnetic waves
in a plasma, with fluctuations in the plasma density
n(x, t) = no + bn(x, t):

Thus, our method provides a classical nave derivation of
the radiation transport equation for a general class of lin-

ear, scalar wave equations. The extension of our deriva-
tion to vector waves can be achieved with the techniques
used by McDonald and Kaufman.

Other derivations of this equation have been given
in the past for particular wave equations by appealing
to a detailed analysis of multiple scattering, assump-
tions about the correlation properties of the fluctuations
(Markov), or field-theoretic concepts. We will illustrate
our general results by applying them to three example
wave equations for which derivations have been given
elsewhere.

The Schrodinger equation, with a randomly fluctuating
component in the potential V(x, t) = Vo(x) + bV(x, t):
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———
~
[1+bN(», t)] + T A = 0 .1 8 ( 20A

cz gt Ot
(6)

For cases (5) and (6) we shall also show how the parax-
ial (or parabolic, or small angle) approximation can be
implemented at the level of the wave kinetic equation;
this corresponds to the conversion of equations like (5)
and (6) into an equation similar to (4) for waves propa-
gating primarily in a single direction, with a transverse
profile of finit e extent .

II. THE WEE IN A FLUCTUATING MEDIUM

In this section we shall derive the wave kinetic equation
(WKE) for a wave propagating in a fluctuating medium
(such as a medium with turbulent fluctuations). We
will allow the mean medium (without fluctuations) to
be weakly nonuniform and nonstationary, in the sense
that the wave under consideration has a short wavelength
compared to the scale length of variation of the medium
and a high frequency compared to the rate of variation
of the medium. There will be no such restrictions placed
on the variation of the turbulent fluctuations present in
the medium, although they will be assumed to be small in
magnitude. We shall also allow t;he medium to be weakly
dissipative, and we permit the existence of weak source
(or driving) terms in the underlying wave equation. The
method we shall use is based on the Weyl transform, or
Weyl representation of the wave equation; the details of

1 O'A, ~„'(x,&) 47r .+7'A — " '
A = — j(x t),c2 Bg~ cz c

where A is one component of the vector potential of the
electromagnetic field, the electron plasma frequency is

~r (x, t) = (4ne /m, )[np + 6n(x, t)], and j(x, t) is a cur-
rent source.

The equation governing waves in a medium with a fluc-
tuating index of refraction N(x, t) = 1 + bÃ(x, t) (such
as electromagnetic waves in a dielectric medium):

this technique can be found in earlier work, 4 where the
effects of nonuniformity, dissipation, and sources have
been considered. In this paper we shall therefore con-
centrate on the treatment of the fluctuations in the Weyl
formalism.

We consider a general, linear wave equation for a scalar
wave g which in operator form can be written

(Dp+ Di)@ = g . (7)

DpW = G(Dp) + (DiDp Di) W

+D() W (Dt(Dt) Dt) (Dt)
+(D, WD', ) (D,')- ', (9)

where the source term is G = (gg*) (which is assumed to
be deterministic).

The Weyl representation of the operator equation (9) is
formed by replacing the abstract operators by their Weyl
representations, and replacing the operator products by
the Weyl product. For example, the Weyl representation
of the zeroth-order dispersion operator Do is formed from
its space-time kernel Dp(x, t; x', t') by

Here, the zeroth-order dispersion operator Do governs
the propagation of the wave in the mean (nonfluctuating)
medium, and is allowed to be non-Hermitian (to account
for dissipation). The first-order dispersion operator Di
represents the fluctuations. We assume that (Di) = 0,
where the angular brackets denote the ensemble average
over realizations of the fluctuations. The right-hand side
of (7) is the source field g.

Our starting point will be to derive from (7) an equa-
tion for the mean spectral operator W = ((g@')). Our
derivation follows that of Karal and Keller, who derive
the equation for the mean field (g) when Di is small:

(Do —(Di Dp 'Di)) ('It') = g .

As shown in Appendix A, the corresponding equation for
is

Ds(~t, k, ~) = f 1 sdr , Ds(x+ ss, t+ 'r;» —-'s, t—-'r) s '"'+' '-. (10)

and that of the mean spectral operator R' is

W( xt, kur) = d sdr (@(x+ 2s, t+ ~ir)g'(x —~s, t ——,'~)) e '"'+'

We observe that the Weyl representation of an operator is a function on the eight-dimensional extended phase space
z = (z, k) = (x, t, k, ~). With these definitions, the Weyl representation of (9) is

Dp(z) e&' & W(z) = G(z) e~' & (D ) (z) + (Di Dp Di)(z) e&'~2&+ W(z)

+Dp(z) e~' l W(z) (D (D ) D )(z) e(' ~ (D ) (z) + (DiWD )(z) e~' ~ (D ) (z) .
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We shall analyze this equation in the short-wavelength,
high-frequency limit with a treatment consistent with
the usual eikonal (or WEB, or semiclassical) method.
VVith the details and justification given in McDonald and
Kaufman, we expand the exponentiated operator in its
power series and order the terms as

Dp(z) W(z) - O(1) (14)

Dp(z)Z W(z) Dp'(z) W(z)- G(z) - D, (z)W(z) - O(e),
where Dp and Dpl are the real (Hermitian) and imaginary
(anti-Hermitian) parts of Dp(z).

The Weyl product is the action of the exponentiated,
bidirectional difFerential operator 8 defined as

~=K'elk —K'cl~+KA cubi K .

be zero everywhere in the (x, t, k, cu) phase space except
on the surface where the real part of the dispersion func-
tion Dp(x, t, k, io) vanishes. This dispersion surface is
that region on which the waves obey the local dispersion
relation

D'p( x, t, k, ~o) = 0 w ~ = Q(x, k; t) .

In general, (17) may only be an implicit definition for
the dispersion relation Q(x, k; t) and there may be many
branches, or solutions, to D'p( xt, k, u) = 0; for simplic-
1ty, we assume that there is only one branch. On this dis-
persian surface, (16) allows W(x, t, k, ur) to be nonzero;
thus we have defined the action density J(x, k;t) to be
the "density" of R' on this surface. For simplicity of no-
tation, we shall henceforth denote the real part of the
dispersion function by Do, and explicitly refer to the
imaginary part as Do'.

Integrating (16) with respect to Dp we have

Dp(z) W(z) = 0

A. The Q(l) equation

m W(x, t, k, ~) = 2' J(x, k;t) b(Dp{x, t, k, ~)) .

J(x, k;t) = 1

27r

1

27r

dDp W(x, t, k, ~o)

BDp
d~ ( xt, k, i)oW( x, t, k~) . (18)

(16)

At lowest order we see that W(x, t, k, u) is required to

Since by (16) W(x, t, k, )cdis singularly defined on the
surface Dp —0 [or io = Q(x, k;t)], and since the integra-
tion over id is transverse to this surface, (18) becomes

cjDp(x, k, t, A(x, k;t)) 1

041 2'
ODp(x, k; t) 1

DCd 270

ODp(x, k; t)
Bid

ODp(x, k; t)—
W x, k;t

d~W(x, t, k, cu)

d s (g(x ~ 2is, t)g'(x —-'s, t)) e '"'
d sdr {@{x+2s, t + —'r)g*(x —-'s, t —-'7.)) e ' '+'"'

Here W(x, k; t) is just the ensemble-averaged spatial
Wigner functions corresponding to the wave @(x,t).

To see that J(x, k;t) defined by (16) indeed corre-
sponds to the usual definition of wave-action density, con-
sider the case of a plane wave (with wave vector kp and
frequency idp) in a uniform medium. For this example we

have

@( t) y»o ~—~~o&

(x k t)
BDp(k, Q(k)) W(, k; t)

ODp(kp, Q(kp)) 2z g b k —kp)

V(kp)
n(kp) (21)

and (20)

Dp(x, t, k, ~) = Dp(k, ~) = o ~ ~ = ~(k)

for which (16) requires that up —Q(kp), just as in the
usual treatment of waves in a uniform medium. Now (19)
ls

showing that in this case, the action density reduces to
(except for a proportionality constant) the wave energy
density U(kp) divided by the frequency imp

——Q(kp). The
definition (16) is simply the appropriate extension of the
concept of wave-action density to the more general case
of a weakly nonuniform and non-stationary medium.

The relation (21) between the wave energy density and
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the wave-action density implies that Dp(z) be defined in
such a way that the dimensions of the action density [de-
fined by (18)] are correct. Indeed, depending on the form
and interpretation of the particular wave equation under

study, one must ensure that the dispersion kernel (and
even the wave field itself) has been identified correctly on
a physical basis. This will be illustrated in the examples
of Sec. III.

B. The O(s) equation

Dp(z) (i/2)l: W(z) = —iDp'(z)W(z) + G(z)(Dp) (z) + (DiDp Di)(z)W(z)
+D.( )W( )(D'(D') 'D')( )(D') '( )+(D WD')( )(D') '( ) (22)

Here we have included all the terms from the right-hand side of (12) with the exponentiated differential operator
exp[(i/2)l: ] replaced by unity, as well as the contribution due to the imaginary (anti-Hermitian) part Dp' of the
zeroth-order dispersion function Do., all other occurances of Do in this expression are understood to be the real
(Hermitian) part of Dp.

Before proceeding, we must compute the Weyl representation of the ensemble-averaged triple products in this
expression. The details are given in Appendix 8 and the results are

1
(D, Dp 'Di)(x, t, k, ur) =

2~ 4 d k'dw'Si(x, t, k —k', w —w') Dp (x, t, k', w'),

1
(Dt(Dtp) Dti)(x, t, k, ur) = d k'd~'S, (x, t, k —k', ~ —~') (Dp ) '(x, t, k', ~'),

(DiWD, )(x, t, k, cu) = d k'd~'S (xi, t, k —k', ~ —cu') W(x, t, k', ~') .2' 4

In Appendix B1, we have assumed that the random operator D~ represents a term in the wave equation which, in the
z-space representation of (7), would contain no spatial or time derivatives. Thus, Di is assumed to have an z-space
kernel of the form

Di(x, t;x', t') = di(x, t) b(x —x') b(t —t'), (24)

where di(x, t) represents the fiuctuations in the medium (assumed to be a real-valued field). Such a form is obtained
if Di represents fiuctuations as in the example wave equations (4) and (5) in Sec. I; the form in (6), which includes
the action of time derivatives, will be treated in Sec. III C and Appendix B2. The local spectral density Si of the
fiuctuations di(x, t) is defined as

Si (x, t, k, cu) —= d sd7. (di(x+ 2s, t+ ~i7)di(x —~is, t —~7)) e '"'+' ' (25)

The expressions in (23) involve the Weyl representations of the operators Dp and (Dpf) as well as the spectral
density of the wave W and the spectral density Si of the fluctuations di(x, t) These expre. ssions allow the fluctuations
to have arbitrary spatial and temporal variation (i.e. , not necessarily slow like the mean medium).

Substituting the lowest-order solution (16) and the expressions (23) into (22) we have

(i/2) Dp(x, t, k, cu) 2 [2m J(x, k; t) b(Dp(x, t, k, u)))]

d I-'d~'Si(x) t, k —k') cu —~') Dp '(x, t, k', cu')

= —i Dp( xt, k, ~)[2 riJ(x, k;t) b(Dp)]+ G(x, t, k, cu)(Dpt) '(x, t, k, cu)

1
+27r J(x, k; t) b(Dp) 2~ ~

+ 2n. J(x, k;t) b(Dp) Dp(x, t, k, ~) (Dpt) '(x, t, k, ~)
1

x d k' ~d' S(ix, t, k —k', ~ —~')(Dp) '(x, t, k', ~')

+(Dpt) (x, t, k, ~)
1

2~ 4 d k'd~'S, (», t, k —k', cu —~') [2~J(x, k';t) b(Dp(x, t, k', ~'))] . (26)
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In view of the definition (13) of the operator
the left-hand side of this equation is just the Poisson
bracket in the extended phase space (x, t, k, m); since
this is a linear diA'erential operator on the product
J(x, k;t) b(Dp(x, t, k, w)), this results in two terms. The
Poisson bracket of Dp with b(Dp) vanishes due to the
asymmetry in L so that the left-hand side becomes

(i/2)Dp(x, t, k, w) 8 [2n J(x, k; t) b(Dp)]

= i n.b (Dp) [Dp 2 J(x, k; t)]

= in.b(Dp)
~

+ (Dp, J) ~

t'BDp BJ

to the imaginary part of the dispersion function, is

—2%i dDQ Do 3c f k 4) cf I: k' S b Do

= —2n iDp(x, k; t)J(x, k; t) . (29)

Here, Dp'(x, k; t) = Dp'(x, t, k, u = Q(x, k; t)) means that
Do' is to be evaluated on the dispersion surface Do ——0;
we will use this notation for all quantities which are to
be evaluated as such.

In the remaining four terms, the Weyl representations
of the inverse operators Dp and (Dpt) i need to be com-
puted. It is easily shown that in the lowest approximation
(required here) we have simply

Here, the braces (, j denote the usual Poisson bracket
in the (x, k) phase space. Since this expression will be
evaluated on the dispersion surface when the integration
over Do is performed, we use the usual relations which
hold where Dp(x, t, k, u) = 0:

1
(Dp ')(z) = lim

1
(30)

|'BDp l
q B" &D, =o
(BDpl
(BkyD 0

f'BDp ) BA &

4B~) i~ Bx)kg
BDp i '('Mi

BCd 9 i ~ JBkp

Thus, the second term on the right-hand side of (26) is
integrated over Do by standard methods to give

dDp G( xt, k, ~)( Dpt) '(x, t, k, ~)
With these, (27) becomes

(i/2) Dp (x, t, k, cu) 8 [2n J(x, k; t) b(Dp (x, t, k, cu))]
lim~II O0

G(x, t, k, (u)dD

( )
BDp dJ
B4J dt

(28)

which defines the usual total time derivative of the action
density in phase space.

Having converted the left-hand side of (26) to (28), we
next integrate over Do. This removes the b function from
the left-hand side (28), while the terms on the right-hand
side can be transformed as follows. The first term, due

= i Gn( xt, k, ~ = A(x, k;t))

—= in.G(x, k;t) .

Integration of the third term on the right-hand side of
(26) with respect to Dp simply removes the b function
and thereby forces evaluation on the dispersion surface
u -+ Q(x, k;t). The remaining integral in that term is
therefore

1

(2n. )
4 d k'd~'Si(x, t, k —k', A(x, k; t) —~') Dp '(x, t, k', cu')

1= 2x
(2n)4

, Si(x, t, k —k', Q(x, k; t) —~')
Do+ iDo'

1

(2n )s
s, Si(x, t, k —k', Q(x, k; t) —A(x, k'; t))

(BDp/B~)(x, k', t)
(32)

Due to the presence of a factor of Dpb(Dp) in the fourth term on the right-hand side of (26), integration of this
term gives zero. Finally, the fifth and last term integrated over Do requires

dDp(Dp) ' (x, t, k, ~)Si(x, t, k —k', ~ —~') = in Si(x, t, k —k', Q(x, k; t) —~')
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so that the remaining integral can be computed to give

dsk'dcu'Si(x, t, k —k', Q(x, k; t) —cu') J(x, k'; t) b(DO(x, t, k', cu'))

1

(2x)s
s, Si(x, t, k —k', Q(x, k;t) —Q(x, k';t)) (, ) ( )

(ODo/Ocu) (x, k'; t)

Collecting (28), (29), (31), (32), and (34), the wave kinetic equation is finally

dJ(x) k) t) 'OJ

dt t'
1= 2y(x, k;t) J(x, k;t)+1(x, k;t) — d I,"F( xt;k, k')[J( xk;t) —J(x, k';t)] . (35)

Here we have defined the usual linear growth rate
p(x, k;t) as

Do'(x, k; t)
(ODO/Ocu) (x, k; t) (36)

G(x, k;t)
(ODD/Ocu)(», k;t)

' (37)

The effect of the fluctuations [represented by Di in the
wave equation (7)] is a scattering term which is defined
in terms of the local scattering cross section

Si(x, t, k —k', Q(x, k; t) —Q(x, k'; t))
(ODO jOcu)(x, k; t) (ODO(Ocu)(x, k', t)

{38)

where Si(x, t, k, cu) is the local spectral density of the
turbulent fluctuations. As it appears in the wave ki-
netic equation, the effect of the fluctuations is to cause
a conversion of wave action at wave vector k [and fre-
quency cu = Q(x, k;t)] into the wave action at wave vec-
tor k' [and frequency cu' = Q(x, k', t)], provided that
there are fluctuations in the medium at the difference
wave vector k —k' and difFerence frequency u —u'.
By the same token, there is an increase of wave action
J(x, k; t) due to scattering from J(x, k';t). The form
(38) of the scattering cross section is symmetric in k and
k' [S (ixt, k, c)u= Si(x, t, —k, —cu) for real fluctuating
fields di(x, t), by (25)]; therefore, it is easy to show that
the scattering term in (35) conserves the total action [the
integral of J(x, k;t) over all phase space].

We have derived the wave kinetic equation (35) (or ra-
diation transport equation) for a very general class of lin-
ear wave equations [represented in operator form by (7)].
The Weyl technique employed here, beginning with the
representation-free operator equation (9), has the advan-
tage of immediately producing a classical equation in the
extended phase space (x, t, k, cu), where all eight variables
are independent. The systematic, order-by-order analy-

and the source term due to the right-hand side of the
wave equation (7)

sis of that equation then leads directly to the natural
definition of the wave-action density (16), its governing
equation (26) [which is reduced to the result (35)] and
the natural identification of the local spectral density of
the fluctuations as the scattering cross section. In Sec.
III we will apply the general expression (35) to some of
the specific wave equations that have been treated in the
past in order to illustrate our method.

III. APPLICATIONS

In this section we will apply the wave kinetic equation
derived in Sec. II to the example wave equations (4)—(6)
given in Sec. I.

A. The Schrodin0, er equation
with a Quctuating potential

The first step in constructing the wave kinetic equation
for this example is to identify the operators Do and Dp
in (39) so that it can be put in the form (7). Here it is
clear that these operators (in z-space kernel form) are

Do(x, t;x', t') = ihb(x —x')—b(t —t')

h
b(t —t') Ts b(x —x')

2m
—Vp(x) b(x —x') b(t —t'),

Di (x, t; x', t') = —b V(x, t)b(x —x') b(t —t'), {40)

g(x, t) = 0 .

For this case there is no source term g. Furthermore, the
random operator Dp has the form just as we assumed in
(24), so that the form (23) of the operator triple products

Let us take as our first example the Schrodinger equa-
tion with a randomly fluctuating component in the po-
tential

ih ' + V @ —[Vo(x) + bV(x, t)]g = 0 . (39)
Og(x, t) h
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applies.
The Weyl representations of Dp and D~ are con-

structed by (10) to be

tential fluctuations is

Sv(x, t, k, ~) = d sdr {bU(x+ 2s, t+ 2r)

h k~
Dp (x, t, k, ~) = h~ — —Up (x),

27n
(41)

x b V (x ——,
' s, t ——,

' r) )

xe '"'+' '
(47)

Di(x, t, k, ~) = —bV(x, t) .

The local dispersion relation obtained by setting Dp = O

is just the classical H amiltonian

h'k'
Dp(x, k, &u) = 0 w her = hA(x, k) = + Vp(x)

2m

(42)

B. Electromagnetic waves in a Quctuating plasma

Consider Maxwell's equations

1 BB 1 BE 4xV' x 8 = — + 3
c Bt CBt c

in a plasma, where the (cold) electrons (with density n)
carry the current with velocity v by the equation of mo-
tion

if we take the energy E = h~ and momentum p = hk
as usual. The wave-action density J(x, k;t) is therefore
identified as a density on the classical energy surface.
From (19) we have

J(x, k;t) = h, d s (@(x+ —,'s, t)@'(x—2s, t)) e '"'

(43)

Here, we have used (42) to give (BD /pB~){x, k; )t= h.
Since )g~ is usually interpreted as a probability density
on z space, we see that the action density is properly
interpreted in this case to be a probability distribution
in phase space [with correct units of action, as the (x, k)
phase-space volume is dimensionless]. Indeed, multiply-
ing J(x,k;t) in (43) by B(x,k) from (42) we obtain an
expression for the quantum-mechanical energy density on
phase space.

Since there is no dissipation in the Schrodinger equa-
tion (Dp is real) and no sources (g = 0), the wave kinetic
equation {35) is driven only by the Ructuations bV(x, t)
in the potential. Thus we have

+ (J, Q)

BJ hk BJ 1 BVp BJ
Bt m Bx h Bx Bk
BJ . BJ BJ

d O' F(x, t; k, k') [J(x,k; t)
27r s

—J(x, k';t)] .

(44)

(45)

The first three hnes show how the evaluation of the Pois-
son bracket yields the usual classical trajectories in the
(x, k = p/fi) phase space. The scattering cross section
F(x, t; k, k') in the last line is

F(x, t;k, k') = —,S (x, t, k —k', (fi/2m)(k' —k")),
h2

(46)

where the spectral density Sv(x, t, k, w) « the (re») po-

—nev +j E (49)

Here, we have written the current S as the sum of that
d ue to the linear response of the elect rons, as well as a
term j to account for other sources of current . We have
also assumed the perturbed quantities (such as E and
v) to be small [hence the convective term v Tv in the
electron equation of motion (49) has been neglected]. We
now introduce the vector potential A of the electromag-
netic field in the standard way

A8 = V' x A, E
c E

(50)

and use the Coulomb gauge (V' A = 0); Faraday's law

(48) is therefore identically satisfied. Noting that with
(50) substituted for E in the equation of motion (49) we
have v = eA/m, c, Ampere's law becomes

1 B'A
2 ~„' 4~.+ V' A — "A = — jc Bt'c c

where uz —(4n.ne /m, )i~2 is the electron plasma fre-
qu ency.

We now assume that the plasma density is uniform (in
the mean) with small turbulent fluctuations; that is we
take

n = np+bn(x, t) w ~„=~„p+bcu2(x, t) (bcu2 oc bn) .

(52)

1 2

Dp(x, t; x', t') = —b(x —x')—
2 2 b(t —t')

c Bt
+b(t —t') T2b(x —x')

b(x —x') b(t —t'),
c2

b(u 2(x, t)
b(x —x') b(t —t '),Di(x, t;x', t') =—

4x
g(x, t) = — j(x, t) .

This wave equation for each component of A = Aa is
just (5). If the fiuctuations are small, then we have the
form (7) with the identification of the operators (in kernel
form):
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Dp (x, f, k, ~) = (~/c) —k —(~„p/c)',

Di (x, I, , k, (u) = —b~„(x, I)/c (54)

Here, the scalar j in the source term is the component of
that current in the direction a. Furthermore, the form of
the random operator Di is just as we assumed in (24) so
that the form (23) of the operator triple products applies.

The Weyl representation of the operators can be shown
to be simply

this case: [J] = [Dp][W] = [~~/c ][A L 7'] = E L 7'
since the units of A are EI,. We note that the analysis of
this example corrects the treatment beginning with Eq.
(2) of our earlier paper s where the electric field should
be replaced by the vector potential.

Since the zeroth-order dispersion function Dp is real,
we have Dp ——0; thus y(x, t, k, u) = 0, signifying no dis-
sipation [which is evident from the wave equation (51)].
For the other terms in the wave kinetic equation (35), we
need

G(x, t, k, ~) = 16' (jj*)/c
BDp(x, k;f) M 2 2

~=ri(k)
2/2 +( 2

p

The local dispersion relation, obtained by setting Do = 0,
is therefore the usual one for high-frequency electromag-
netic waves (such as radio waves) in a plasma For example, the source term I'(x, k; f) becomes

(56)

Dp(x, f, k, 4l) = 0 M O(x, k;t) = A(k) = + c~k~ + cdz

(55)

Although this dispersion function yields two branches
(corresponding to positive and negative frequencies), )we

can choose just the positive branch to be governing our
waves. This is because by definition (16) of the wave-
action density J(x, k; t), we can at this point choose J to
be zero on the dispersion surface with negative frequency
and still satisfy the requirements of the lowest-order so-
lution.

In this case of electromagnetic waves, we must ensure
that the definition (19) for the action density gives J with
the correct units. In the system of units (represented
by square brackets) used here, x-space energy density
has the units of U/Is = E (x), where U is energy, L is
length and E is electric field. The units of action density
should therefore be [J] = U/u = UT = E2LsT [which is
the units of action per dimensionless phase-space volume
dsz dsk(2ir) s]. Since our wave equation (51) has been
derived in terms of the vector potential A, the definition
of J by either (16) or (19) involves the spectral density
W of the vector potential. Thus, with the dispersion
function Dp given in (54), the units of j are correct in

Si (x, &, k, ~) = Sg ~ (,.(x, f, k, ur)

(4me' ) '
S (x, t, k, ~),(m, c2)

which gives the scattering cross section

(58)(,)
Si(x) t, , k —k', O(x, k; t) —Q(x, k'; t))
(BDp/Rr)(x, k; f) (ODp/K))(x, k', t)
!'4n ez ) S„(x,t, , k —k', A(k) —A(k'))
q m, ) 40(k)A(k')

Finally, the wave kinetic equation for this case can be
written

G(x, k; t) 2 (jj")(x,k;t)
(ODp/Kr)(x, k; f) A(k)

(57)

The local turbulent scattering cross section
F( xt;k, k') requires the spectral density S( xt, ku) of
the turbulent fluctuations which, from (54), are rep-
resented by fluctuations in the local plasma frequency
h'u2(x, t) In term. s of the spectral density of the local
plasma density fluctuations this is

Oj(x, k;f) c~k Oj 2(jj')(x, k;t) (4xe2 1

Ot A(k) Ox Q(k) ( m, (2x)s
s, S„(x,t, k —k', Q(k) —Q(k'))

40(k) Q(k')

x [J(x,k; f) —J(x, k', t)] . (60)

Here, the Poisson bracket has been explicitly computed given the form (55) for the dispersion relation.
This equation can be simplified somewhat if we specialize to the case where the turbulent fluctuations are time

independent; this can also be thought of as the case where the fluctuations are on a much slower time scale (or
are at much lower frequency) than the time required for the wave to pass through the medium. In this case, with
b~2(x, t) oc bn(x, t) ~ 6n(x), the spectral density of the fluctuations has the form

S„(x,f, , k, cu) = 2~ 6 (~)S„(x,k)

so that (60) becomes
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BJ(x,k;&) c k BJ ~(jj')(x, k;t) 4vre2 n. 1

B& Q(k) Bx A(k) rn, 202(k) (2~)s
+ - =8+ d k'S„(x,k —k')b(Q(k) —A(k'))

x [J(x,k; t) —J(x, k', t)] . (62)

Finally, noting that the dispersion relation (55) yields the expression for the index of refraction

(63)

we see that the fluctuations in the index of refraction in a plasma are given by

(64)

Thus, the spectral density of the refractive index fluctuations is related to the spectral density of the plasma density
fluctuations by

1 (4~e'
S~(x, t, k, ~) = —

~
S (x, t, k, ~) .

4 qm, ~

Therefore, (62) can be expressed in terms of the refractive index fiuctuation spectrum as

(65)

BJ(x k t) c k BJ 2(jj')(x, k t) 2 1

Bt Q(k) Bx A(k) (2~)s
d k'S~(x, k —k')b(A(k) —A(k'))

x [J(x,k; t) —J(x, k', t)] . (66)

Using the local dispersion relation to evaluate the 6 function we have

BJ(x,k;t) c~k BJ 2(jj')(x, k;t)
Bt Q(k) Bx B(k)

1 A4(k) c'k
4~2 c4 Q(k)

d8' S~(x, k —k') [J(x,k; t) —J(x, k', t)], (67)

where the remaining integral is over the solid angle d8 in k' space. When the action transport is stationary (BJjBt = 0)
this becomes

BJ 8, 1 0 (k)
Bx kc~ ' ' 4+2 c4

dO' S~(x, k —k')[J(x, k;t) —J(x, k', t)] . (68)

When the characterisic frequency of the wave is much

larger than the plasma frequency we have A(k) ck so
that (68) in the absence of sources [(jj') = 0] is

1 BB 1 Be(x, t)E
cBt c t (70)

BJ k'
Bx 4~s

d8' S~(x, k —k')

x [J(x,k; t) —J(x, k', t)], (69)

C. Waves in a Quctuating dielectric medium

which is the standard equation for steady-state radiation
transport in a turbulent medium.

1B ( BA)———
I

~(x, t) I+ V'A =0.c2Bt g
' R) (71)

With p = 1, the index of refraction of the medium is
defined as usual to be K~(x, g) = e(x, t). Now suppose
the nonuniformity is due to fluctuations bN(x, t) or

where we have set the permeability p = 1. Again in-
troducing the vector potential A from (50), Ampere's
equation becomes

In Sec. II we assumed that the random operator Dq
was of the special form (24), which represents a term in
the wave equation that operates on the wave @ by simple
multiplication (as in the examples of the two previous
sections). Another common form for the operator Dq
involves operation on g by both multiplication and dif-
ferentiation. Consider, for example, Maxwell's equations
in a nonuniform, time-dependent dielectric medium

N (x, t) = [1+ bN(x, t)] 1+ 26Ã(x, t) .

In this case, (71) becomes

IB~A 2 2B (+V'A ———
~

mV(x, g)
~

=0.
c~ Bt2 c~ Bt ( ' Bt y

The operators Do and D~ are now

(72)
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1 2

Dp(x, t; x', t') = —6(x —x')—
~ ~ 6(t —t')

c~

+6(t —t') 7'6(x —x'), (74)

2 t'
2 10~6N)

Di(x, t, k, ~) = —
i
~ 6N(x, t) +-

c2 g 4 t~ )

(75)

2 0 8
Di (x, t; x', t') = —— 6N(x, t)b(x —x')6(t —t') .

c2 Bt Bt

Thus, we see that the random operator Dy is quite difer-
ent from that considered in Sec. II. Since wave equations
of the form (71) are quite common, we treat this case in
this section.

The Weyl representation of the operators (74) is

In contrast to the case found in the previous two sec-
tions, the Weyl representation of the opeator Di in this
case involves derivatives of the fluctuating component of
the medium. If the characteristic frequency of the wave
is much larger than the rate of variation of the fluctua-
tions, then it would be appropriate to neglect the second
term in the expression for D~. Even in that case, how-
ever, the presence of the factor of co~ in the first term
would invalidate the derivation given in Appendix 8 l.
Therefore, since we wish to allow for arbitrary rates of
variation in the fI.uctuations, we shall keep both terms in
the form of Di. Consistent with the ordering (15), how-

ever, we shall neglect any terms that arise in the Weyl
representation of the operator triple products that in-
volve spatial derivatives of the "middle" operator [W,
Dp, or (Dp) ]. With this assumption, it is shown in
Appendix B2 that for operators Di of the type in (75),
the Weyl representation of the triple products are

4 1
(DiDp 'Di)(x, t, k, cu) =— d k'd~'8(x, t, k —k', ~ —~') Dp '(x, t, k', cu'),

(Dt(Dpt) 'Dt)(x, t, k, ~) =—4 1 dsk'der'8(x, t, k —k', ~ —~') (Dpt) '(x, t, k', ~'), (76)

4 1
(Di WDti) (x, t, k, ur) =— d k'd~' 8(x, t, k—k', cu —~') W(,xt, k', ~') .

These expressions are similar in form to those given in

(23) for operators Di which act by simple multiplication.
Here however, the spectral density of the fluctuations
S (ix, t, k, ~) has been replaced by an effective spectral
density 8(x, t, k, u) defined by

8(x, t, k —k', ~ —~')

i S~(x, t, k —k', (u —~') . (77)4&t )

4 8(x, t, k —k', Q(k) —A(k'))
c4 (BDp/0~)(k)(BDp/Rr)(k')

= O(k)Q(k') S~(x, t, k —k', Q(k) —Q(k')),
(78)

where we have used (75) for the zeroth-order dispersion
function.

If we now consider the case of stationary Auctuations
(61) the scattering cross section becomes

F(x; k, k') = 2n A (k)S~(x, k —k') 6(Q(k) —Q(k')),
(79)

While this expression allows for arbitrary rates of varia-
tion of the fluctuations [in that the time-derivative term
in (75) has been retained], we can at this point assume
that the rate of variation of the spectral density of the
fluctuations is much less than the characteristic frequency
of the wave; thus, we shall neglect the time-derivative
term in (77).

As in Sec. III B, this wave equation has no dissipa-
tion. Furthermore, we are neglecting sources, since the
treatment of that term in the wave kinetic equation is
no diAerent than in previous sections. The treatment of
the triple products in terms of 8 is now the same as that
given in Sec. II for Si, so that the scattering cross section
in this case becomes

which is precisely the same as that in (66) of Sec. IIIB
(where also the fluctuations were taken to be time in-
dependent, even though the form of Di was different).
Thus, the results in (67)—(69) of that section apply to this
example as well, as does the radiation transport equation
(69).

D. The paraxial approximation

Since the wave kinetic equation is the same for both
of the example wave equations of Secs. III B and III C
(in the case of time-independent, or very slowly varying
fluctuations), we can now consider the paraxial approx-
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imation for both of them simultaneously. It is often the
case for both wave equations that we are interested in
a wave that is propagating primarily in one direction,
with an intensity profile of finite extent transverse to
this direction. Taking the direction of propagation to
be the positive z axis, this means that k, & 0 is the
dominant wave-vector component, much larger than the
components kg = (k, k&) perpendicular to this direc-
tion. In this case, the dispersion relation (55) for the
plasma waves becomes

(80)
while for the waves in the dielectric medium we have

1/2
B(k) = e);, (1+ ~ = ~):, + ~ . ())1)2k,

The turbulent scattering term in (66) and (79) can thus
be written as

2~0 {k)
2)r 3 d O'S)v(x, k —k')b(A(k) —Q(k'))[J(x, k; t) —J{x,k', ),')]

d Ir'S)v(x, k —k')6(ck, —ck,') [J(x,k; t) —J(x, k', t)]

1= cI-,' (2~)2
d2k)~S)v(xg, z, kg —k~, 0)[J(x~,k~, z, I', ;)!)—J(x~, k~, z, k, ; )')] .

BJ k~ c)J
+ 0

Oz Irp Oxg
2 1= —k

(2vr) 2
d k~S)v(xg, z, k~ —k~, 0)

x [J(x~,k~, z) —J(x~, k~; z)],
(84)

where we have defined the carrier wave number ko
up/c. This equation has been derived in various forms
and by various techniques beginning with the paraxial
equation in z-space by Klyatskin and Tatarskii and by
Besieris, who also used the concept of the Weyl trans-
form [although nat in terms af the basic operator equa-
tion (9)]. As we have seen here, however, (84) arises as
just a special case of the more general formalism pre-
sented in Sec. II applied to the particular wave equations
in Secs. IIIB and IIIC.

IV. CQNGLUSIONS

In this paper we have given a concise, classical wave
derivation of the kinetic equation (or radiation transport
equation) which governs the evolution of the wave-action

The argument of zero in the spectral density in the the
last line indicates that it is to be evaluated at k, = 0 due
to the evaluation of the b function that sets k, = k,'. We
consider the propagation of a continuous, monochromatic
beam wave (such as a laser); this is specified by taking

J(x, k; &) = 27rb(k, —(~p/c)) J(xg, kz,.z), (83)
where now we assume steady state (i.e. , J is time-
independent, but evolves along the propagation path z).
Using (82) and (83) in either transport equation (66) or
(79), we integrate over k, and set the source term to be
zero [(jj*)= 0] to abtain

density in a weakly nonuniform, nonstationary medium
in the presence of small space- and time-dependent fluc-
tuations (which are not assumed to be slowly varying
compared with the wave frequency). The method used is
based on the Weyl representation of the underlying lin-
ear wave equation, which has been assumed to have a
very general form (7). This approach has the advantage
that the concept of the ray phase space emerges naturally
(with position x and wave vector k treated as indepen-
dent variables), as does the Hamiltonian structure on the
phase space. Furthermore, the wave-action density is de-
fined in a natural way as the density of t, he wave spectral
density on the dispersion surface (where waves obey the
lacal dispersian relation).

The essential new feature of this derivation is the inclu-
sion of the eAect of fiuctuations on the propagation of the
action density. The new term in the wave kinetic equa-
tion gives the scattering of wave action from one local
mode to another, mediated by fluctuations at the differ-
ence wave vector and difference frequency. The expres-
sion for the scattering cross section in terms of the spec-
tral density of the fIuctuations appears naturally in the
Weyl formalism. Finally, we have illustrated our deriva-
tion by applying it to three wave equations (4)—(6) which
are representative of a wide variety of wave systems char-
acterized by the presence of fluctuations.
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APPENDIX A: THE MEAN SPECTRAL
OPERATOR EQUATION

In this appendix we derive the mean spectral operator
equation

Dpwap (DiDo Di) Wao —DpW (Dl(DO) Di)

W—:(Qg"), G = (gg*) .

Expanding (A4) we have

Dowao+ Diwaot+ DpWDit + DiWDt = G .

In the absence of the perturbation D~, let the solution
to (A6) be Wp

—(DiWDI) = G (Al) a.w.at=G~w. =a G(at)-i (A7)

(Do+ Di)0 = g (A2)

following Karal and Keller. The equation was given by
Chen and Soong, ii but we include the derivation here for
completeness. Begin with the wave equation

Now we can write (A6) as

W = Wp —Do (D] WDo + DpWDi + D] WDi)(Do)
= Wp —Do Di W —WDit(aot)

—a a,wa,'(a,')-', (A8

and its adjoint

@*(D,'+ D,') = g (A3)

which can be verified by applying Do from the left and Do
from the right and using (A7) to obtain (A6). Iteration
of this equation means substituting

which combined give

(Dp + Di) W (Dot + Dt) = G,
W = Wo —Dp Di Wo —WoDit{apt)

(A4) into the last three terms of (A8) to find

W = Wo —Do DiWp+ Do DiDo DiWp+ Do Diwoa, (ap)

—Wpai(ao) i + Woai(ap) Di(ap) + Do Diwoa, (ao) ' —Dp Di Woa, (ao) (Alo)

The expectation value (or ensemble average) of this is

(W) = Wp —Do (Di) Wp —Wp(Di)(Do)

+D (a,a D, )w. + w. (DI(a,')-'D', )(D,')-'+ D (D, w.a,')(D,')

The inverse of this to lowest order is

W. = (W)+D. '(D )(W)+(W)(a')(D') '

Finally, substituting this into (All) we obtain

(A12)

(W) = W —D (D )(W) —D (D )D '(D )(W) —D (D )(W)(D, )(D )

-( )( l)(!)-'- ( )( )(',)( .')-'-( )( ')( ')-'( ')( ')-'

+D (a D D )(w)+ (w)(a,'(D.') 'D', )(a.') '+ a-.-'(D (w)a-') (D.')-'

Now, applying Dp from the left and Dot from the right, and using (A7) we have the equation for (W)

Dp (W) Dt = G —(Di) (W) Dpt —Dp (W) (Dit) —(Di) D ' (Di) (W) D!

—Do(w)(al)(ao) (Di) —2ao (Di)(w)(al)(ao) '

+(D,a a, )(w)a', + D.(w)(a', (a,')-'a,') + (a, (w)at) .
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If we assume (Di) = 0, only the last three terms are

present; applying (Do) from the right then yields (Al)
and (9) in the main text (where we have also written W
for (W)).

APPENDIX B:THE WEYL REPRESENTATION
OF TRIPLE PRODUCTS

1. Case 1

Let us specialize to the case where A(z) depends only
on the space-time variables (x, t); this is the case where
the space-time kernel corresponding to A contains no
derivatives and is of the form

A(x, t;x', t') = a(x, t) 6(x—x')b(t —t') m A(z) = a(x, t) .

(ABA)( ) = (A( ) ("'"B( ) ('") A( )), (BI)

where the operator A [and hence its Weyl representation
A(z)] is a ffuctuating quantity. It can be shown that
the order of diff'erentiation indicated in (Bl) is arbitrary;
that is

(ABA)(z) = ([A(z) e('/ ) B(z)]e('/ ) A(z))

(A( ) (i/2)z [B( ) (i/2)c A(z)]) (B2)

In this appendix we compute the VJeyl representation
of an ensemble-averaged operator triple product of the
form

The fiuctuating field a(x, t) is assumed to be real valued.
VVe shall perform the computation in only one spatial
dimension (and no time dependence) since the extrapo-
lation to three dimensions and time is straightforward.
Therefore, in this case (Bl) becomes

(ABA)(z, k) = (a(z) e('/ ) B(z, k)

x.(*/')'a(z))
—(() (/) B( k)

x e
—(s/2)sg 8~

Expressing B(z, k) in terms of its kernel B(z, z') and
using (82) we have

) e(i/2)s s&, B( k)
—(i/2)s&: s a(z) = a(z) e '

ds a(z + -s) e '"'B(z + q s, z —2s) ~
e (' " a(z)

ds &&( +-', sz, z —-', s) e '"') e &'&'&'" '*a(z)

ds a(z) e&'& & "e '"'B(z+ -s, z —-s)) e ' ' *a(z)

ds a(z+ —,'s) B(z+ -'s, —-'s) e '"'e ' " a( )

ds a(z + —,
' s) B(z + 2s, z —

2 s) e '"'a(z —
~ s) . (B5)

In this procedure we have successively moved first the left-hand then the right-hand differentiation inside the integral
over s; since A(z) depends only on z (not k), there is no ambiguity in the grouping for the objects upon which the
exponentiated diff'erential operators act. The action of the exponentiated k derivatives on exp( —iks) is eff'ected in
terms of a Taylor series which, when coupled with the action of the exponentiated z derivatives on a(z), produce the
Taylor series for a(z + 2s). Thus, the ensemble average of (B5) gives

(ABA)(z, k) = ds (a(z + —'s)a(z ——'s)) B(z+ -'s, z —-'s) e

ds C, (z, s) B(z + -'s, z —-'s) e

where we have defined the local correlation function C, (z, s) of the random process a(z) in the usual manner. This
relation can now be expressed in terms of the Weyl representation B(z, k) of B and the local spectral density S (z, k)
of a(z)

1
(ABA)(z, k) = ds e 2'

k'dk'S (z, k') e'" '
27r

d& "&d( &")e*' *)
1

2' dk'S, (z, k —k') B(z, k') . (B7)

This is our result, which in three dimensions and time becomes explicitly

1
( ABA) (x, t, k, ~) = d k'd~'S, (x, t, k —k', ~ —~') B(x, t, k', ~') .
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2. Case 2

Another common form for the random operator A that arises in wave equations is

A(x, t; x', t') = —,[a(x, t)b(x —x')b(t —t')], (80)

where we shall again assume that the fluctuating field a(x, t) is real. The Weyl representation of this operator can be
constructed as follows: from the definition (10), we have

A(x t k, w) = f d s de A(x+ ts t+ te;x —ts t —te) e '"' +'

Changing time variables in (89) from (t, t') to (T, 7.) = (-(t + t'), t —t') we have

(810)

A(x+ —s t+ -r x —-s t — r) = !—-
2 ' 2 ' 2 ' 2 )4gt2

2

[a(»+ 2s, t+ 2ir)b(s)b(r)],r (Bl1)

where we have set T = t. Using this expression in (810) and integrating by parts twice yields

A(x, t, k, cu) = ~ a(x, t) + 4
a"(x, t), (812)

where a"(x, t) denotes the second time-derivative of a(x, t)
Let us now compute the Weyl representation of the operator triple product (82). For simplicity, we shall discard

all spatial and time derivatives of the "middle" operator B(z); in our application, these triple-product terms occur
at an order where the magnitude of A.2(z)B(z) is already assumed to be small. Since A(z) in (812) has two terms,
there will be four terms altogether in the evaluation of the triple product (82). We first consider

Ti(z)—:cu a(z, t) e('/ ) B(z, t, k, ~) e('/ ) cu a(z, t), (813)

where, as in Appendix 81, we will work in only one spatial dimension but will now explicitly include the (t, w)
variables. First we have

~'a(z, t) e(*/') B(z, t, k, ~) =~'a(z t) e('/')(-" '-+ -) B(z t k ~)

2 / t) (t /2)( s't 8 +—Z )
) ds dr C(z, t; s, r) e '"'+' '

dsdv. a z+ zs, &+ &~ C z, C;s, r e

In the first line we have split the operator 2 into its (t, u) terms and its (z, k) part 8 ~; as stated above, we discard
all space and time derivatives acting on B. In the second line we have expressed B(z, t, k, ~) in terms of its associated
correlation function C(z, t; s, r) = B(z+ 2s, t+ 2 r; z —2s, t —2r). Finally, we have proceeded as in (85) to evaluate
the action of the exponentiated derivatives.

We now consider the remaining part of (813)

Ti(z) = u dsdr a(z+ 2is, t+ 2ir) C(z, t;s, r) e ' '+' 'e('/ )( '+ ) ~ a(z, t) . (814)

This is somewhat more complicated since both t and u derivatives must be considered in both directions. Since it is
clear that the effect of the spatial operator 2 ~ will be the same as in (85) [i.e. , it will produce a(z —2s, t) inside the

+——+
integral], we need only consider the action of the temporal operator 2 i

——F o)i —c)& c) . We have

w a(t + 2r)C(t)e' e('/ ) 'cu a(t) = u a(t + 2r)C(t)e' e(' '(w —iwO~ —4c)i )a(t) .

The action of the remaining exponentiated operator is
tt

2 itd~ (i/2)8 8, ) ~

gtt( 2 t'ddt )g-n! 2)n=o

1 /'i& "~n " fn)
n! q2p

'
)my

iur7
(

2 + g lg i —(1/2)t 8t2M g 4 g jC

Combining these two results we have
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e' a(t+ 2r)C(t) (ur +iuBq —-Oi ) e ~ ~ l' '(u —iuB, —40, ) a(t)

yf—2= e' ' a(t + zr)C(t) (u +iugi —40' ) (ur —iugi —&8, ) a(t —2r)

= e' C(t) ~
u a+a + in (a+a' —a'+a ) + &u (4a+a' —a+a —a+a")+ —w(a+a" —a+a' ) + isa+a"

Here the notation means a+ —Oia(z + 2s, t + 2r). As assumed above, we have discarded time derivatives of the
correlation function C(t) Usi. ng this result in (814) we find

Ti(z) = dsdr e '"'+' C(z, t; s, r) u a+a + iu (a+a' —a+a )

+ i u2(4a+ a' —a+ a —a+ a" ) + —~(a+ a" —a+ a' ) + is a+a" (815)

Now, as in (86) and (87) of the preceding section, we want to reexpress the correlation function C in terms of the
Weyl representation B and introduce the spectral density S, of the fluctuation a(z, t) Howev. er, except for the first
term in large parentheses in (815), the bilinear products of a+ and a involve time derivatives of those quantities.
Thus, let us introduce the spectral density 5 „ofthese quantities as

((& +)(&" -)) =—
1 dk'd~' S „(z,t, k', cu') e'" ' (816)

We shall now show how the spectral density S „can be expressed in terms of the fundamental spectral density S .
Focusing on just the temporal variation of the fluctuating field a(t), we introduce the Fourier transform a(u);

time-derivatives of a(t) can then be expressed as

0, a(t) = 1 d~'( —i~') a(~') e (817)

Therefore, using this in the definition of the spectral density S „[the inverse of (816)] we have

S „(t,u) = dr (OPa(t+ i2r)Oi"a(t —2ir)) e'

14)T

(2~)2
r)m. (

II)n, iur'[t+(i/2)7] ice "[s——(i/2)~l

d, t -(~/2)( '+ ")1d~'d~" (a(~')a*(~"))(—'"') ('"")"' *'"
(2~)~

dv(a(~ + 2 v) a*(~ —
2 v)) [—i(~ +-

2 v)] [i(cu —
2 v)]" e

27r .
—z w+— dv(a(co+ ~v)a*(~ ——,'v)) e

= [—i~+ —,'g, ] [z~+ —,'0,]"S.(t, ~) . (818)

It is straightforward to show that S can be defined in terms of the Fourier transform a(~) as in the last two lines.
Now consider a single ensemble-averaged term in the expression (815) for Ti(z):

de dr e 'i'+' ' C(z, t;s ir)((0, a+)(8,"a ))

—Zk S+'tMT 1

(2~)'
dk'd ' '"' ' 'B(z t k'~')

dk"d~" e'i ' ' '
(—i~" + —,'0, ) '(i~" + ~ B,) S,(z, t, k", ~")

1

(2') 2
dk'd~'{[ —i(~ —~') + 20, ] [i(~ —~') + —,'8,]"S,(z t k —k' ~ —~'))B(z t, k', cu')
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Thus, the ensemble average of the first term (Ti(z)) [defined in (813)]of the triple product is

dk'd~' B(z, t, k', io')

+—,'~[—i(~ —ur')+ 28'] [i(~ —~')+ 28'] ~S,( zt, k —k', io —~o') . (819)

The calculation of the remaining three terms in the triple product follows along the same lines as that used for
(Ti(z)) above. The three terms are

T2(z)—:~o a(z, t) e('~ l B(z, t, k, io) e('l ) 4a"(z, t)

dsdr e '"'+'"'C(z, t;s, r) (~'a+a" +isa+a'" ——,'a+a""),

Ts(z)—:&a"(z, t) e('i & B(z, t, k, ui) e('~ l u a(z, t)

(820)

(821)

Tq(z)—:&a"(z, t) e('l B(z, t, k, ~) e ' &a"(z, t)

ds dr e '"'+' C(z, t; s, r) a+a" (822)

Expressing C in terms of B, introducing the spectral density S, as in (816)—(819) and adding all four terms together
we have our result (now explicitly in three dimensions)

(ABA)(z) = 1 1 2

d k'd~' cu'
~

co + —
~ S,(x, t, k —k', ~ —~') B(x, t, k', ~') . (823)
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