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Hydrodynamic description of electron flow to an absorbing anode
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A theory is presented of the nonequilibrium space-time development of a stream of electrons
moving through a background medium under the inhuence of a strong electric field. Nonequilibri-
um processes are treated by supplementing the usual continuity moment equation with equations
describing the velocity and energy moments of the electron distribution. It is shown that the theory
is able to reproduce many of the important nonequilibrium eQ'ects occurring as an electron stream
approaches an absorbing anode, although comparison with detailed solutions of the Boltzmann
equation does reveal certain limitations apparently inherent in theories based on moment equations.

I. INTRODUCTION II. MOMENT EQUATIONS

The phenomena of drift and diffusion through gases
and solids of electrons in the presence of an electric field
have been studied extensively. ' Most investigations as-
sume that the electron distribution function is close to
the "equilibrium" form that would obtain for a steady,
uniform Aow of electrons through an infinite, homogene-
ous background medium subject to a constant electric
field. Techniques such as the density gradient expan-
sion ' have provided a theoretical description of such
Rows in terms of a continuity equation involving trans-
port coefficients (drift velocity, diffusion tensor, ioniza-
tion coefficients, etc. ) which depend only on properties of
the background medium and the value of the reduced
electric field, E/X. This description is found to be very
accurate in experiments set up to satisfy closely the re-
quirements of homogeneity and unboundedness.

The presence of large spatial gradients or rapid time
changes in the electron number density, the density of the
background medium, or the electric field will tend to pro-
duce departures from equilibrium, and hence tend to in-
validate the use of the usual continuity equation. Tech-
niques that have been introduced to describe electron
motion in circumstances where "nonequilibrium" effects
are present include analytic or numerical ' solutions of
Boltzmann's equation, Monte Carlo simulation, the use
of a "memory kernel, " generalizations of the continuity
equation, ' ' "and the use of momentum and energy equa-
tions to supplement the continuity equation. ' '

This paper discusses the use of momentum and energy
conservation equations to describe the Aow of electrons
to an absorbing anode. As shown in Ref. 6 the steep den-
sity gradients that occur in this situation lead to
significant departures from equilibrium which may be
characterized by a spatial variation of the drift velocity
and mean energy of the electrons. It is shown here that
momentum and energy conservation equations provide a
convenient and reasonably accurate description of non-
equilibrium effects in this problem. It is suggested that
similar equations can be used to provide some insight
into nonequilibrium effects in other problems.

It is assumed that the velocity distribution function of
the electrons, f (c, r, t), satisfies Boltzmann's equation '
t) t) eE
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Here, E is the impressed electric field, F(V) the veloci-
ty distribution function of the background medium, g the
initial relative velocity, g the scattering angle, and 0 the
differential scattering cross section. Primes denote in-
verse encounters. ' By multiplying Eq. (1) by any func-
tion P of the velocity c and integrating over all velocities
c, we may obtain an equation describing the space-time
evolution of the quantity

(q) =—y1((c)f(c)dc,

where n (r, t) is the electron density. The evolution equa-
tion is

a
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In particular, using /=1, mc, and —,'mc in turn, we ob-
tain the evolution equations
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C=c v (10)

The various moments appearing in these equations are
defined by density

n= Jydc,
mean velocity

v=(c),
random velocity

2 Uo 2 Uo
D =— =— p

mV 3 e
(20)

provided the spatial dependence of u and U is ignored. '

It is convenient to use these expressions for the equilibri-
um transport properties to normalize Eqs. (14)—(16). Us-
ing the transformations

where po is the mobility. It is assumed for convenience
that Tg =0. From Eq. (15) it is possible to deduce that
the diffusion coefficient is

pressure tensor

p=nm(cc),
mean energy

U =—'m (c ) = trP+ —'mu1

2/f
(12)

n'=n/no, v'=v/uo, U'= U/Uo,

v ' =v( U) /v( Uo), x ' =uox /Do,
and a rnomenturn transfer cross section of the form

(21)

(22)

heat Aux

Q= —,'nm(C C) . (13)

d—(nv)=0,
X

(14)

G
( —'nU+ 'nmu )— enE= nm—vv, —

8x
(15)

Equations (5)—(7) may be used to investigate the evolution
of the density, momentum, and energy of the electrons
provided that the quantities P, Q, and (J ) can be ex-
pressed in terms of n, v, and U. In the present study of
steady Aow to an absorbing plane anode, the vector equa-
tions are reduced to an approximate and closed one-
dirnensional system as follows

Gf (nU+5nu ) n= ——U'+'
GX

G
( —'U —5u )

—1= nU'+—
8x

(24)

(25)

with 5=m/M. Equation (23) implies that the product nu
is a constant and we have chosen the density normaliza-
tion so that the nu=1. The velocity u may now be elim-
inated from (24) and (25), and first-order coupled
differential equations may be obtained for n and U:

we obtain the normalized equations (now omitting the
primes)

d
(nu) =0,

GfX

[nv( ', U —
—,'m—u )] envE= —2 —n(U ——', kTo)V .

dn (3n —5Us+1/2+2n2Us+3/2)

8x 5 U —96/n
(26)

(16)

In passing from Eqs. (5)—(7) to Eqs. (14)—(16) it has been
assumed' that P is an isotropic, diagonal tensor and that
Q=O. On the right-hand side of Eqs. (14)—(16), the quan-
tities M and TG are the particle mass and temperature,
respectively, of the background rnediurn: the algebraic
forms follow from Refs. 15 and 16, with the additional as-
sumption that m «M. We may obtain an approxima-
tion to the mean collision frequency v by adopting
momentum-transfer theory, ' which assumes that

1/2

o (U), (17)

MevoE =
—,'Mu o,

2m vo
(19)

where X is the background particle density and o (s) is
the momentum transfer cross section at an energy c,.

Equations (15) and (16) imply that in the absence of
spatial gradients the "equilibrium" velocity and energy
are

eEvo= =POF- ~

mvo

d U 2
1 Us+3/2

dx 5

(3 5 Us+I/2+2 2Us+3/2)—2
n 5 U 95/n— (27)

III. RESULTS

dU =2U
QPl

s+3/2

5Us+1/2+2 2Us+3/2 (2g)

Figure 1 shows the level curves of Eq. (28) in the (n, U)
plane, for the case s=0. These curves represent the rnan-
ifold of solutions of Eqs. (26) and (27) for various bound-
ary conditions. The solution to the absorbing mode prob-

The coupled ordinary diff'erential equations (26) and
(27) have been solved numerically to yield the spatial
variation of the density n (x) and mean energy U(x) for
several model cross sections. The results have been ob-
tained for a mass ratio 5=0. ' The method of solution
can be illustrated by considering first the level curves of
the equation obtained by eliminating the independent
variable x from (26) and (27):
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1.5 TABLE I. Comparison between the normalized energy at the
anode predicted by (a) the current theory and (b) Ref. 6. The
value in equilibrium is 1.0.

Ch
L

LU

0.5
—3

4

U(0)/U( ~ )

(this paper)

1.284
1.300
1.389

U/U( ~ )

(Ref. 6)

1.78
1.75
1.47

0.0
0.0 0.5

Density

1.0 1.5

FICx. 1. Level curves of Eq. (28) in the (n, U) plane. Dashed
curves show the loci dU/dn =0 and dn/dU=O. Distance from
the anode is a parameter along each level curve, increasing to
the right for curves emanating from n=0. The solution we seek
lies in the top left quadrant, and passes through the equilibrium
point (n, U) ='(1,1).
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FIG. 2. The variation of normalized energy (upper six
curves) and normalized density (lower six curves) with normal-
ized distance from the anode. Dashed curves are drafted from
Ref. 6, while the solid curves are solutions to Eqs. (26) and (27).
The curves are labeled by the index s used in the collision
model.

lem is the curve which begins at x = —~ (far from the
anode) with the equilibrium solution (n, U)=(1,1) and
moves in the positive x direction towards the condition
n=O at x=O. This curve meets the axis n=O at a point
U = U(0), where U(0) is an unknown non-zero number
corresponding to the mean energy at the anode.

The value of U(0) is found by Newton-Raphson itera-
tion. Beginning with an estimate U(0) = U*, Eqs. (26)
and (27) are integrated towards x = —~ from the point
(n, U)=(O, U*) at the anode x=O, using a fourth-order

Runge-Kutta algorithm. The deviation of the solution
from the desired values (n, U) =(1,1) for large (negative)
values of x (~x~ ) 10) can be reduced by systematically
adjusting the estimate U*. It is found that the algorithm
converges rapidly, and numerical experiments with a
variety of quadrature intervals and initial estimates have
shown that solution with an accuracy of 10 are readily
obtained.

Figure 2 shows the calculated run of number density
n (x) and mean energy U(x) for the three cases6
s = 1,0, —

—,'. The equilibrium solution n (x)=1—e",
U(x)=l is also shown, together with solutions drafted
from Ref. 6, which were obtained from the Boltzmann
equation. Table I compares the values of the mean ener-
gy at the anode computed using the present theory with
values computed in Ref. 6.

The present theory predicts that the mean electron en-
ergy increases towards the absorbing anode. This result
disagrees with predictions based on (invalid) equilibrium
theory, but agrees qualitatively with the result found in
Ref. 6 by solving the Boltzmann equation. The fact that
dU/dn is positive for small n and finite U is evident from
Eq. (28): the physical intepretation of the effect involves
the heating of the electrons by the difFusion current.
Moreover, the present theory predicts that the density
distributions vary with the index s in a manner qualita-
tively similar to the solutions of Ref. 6. In view of the
economy of the present model compared with many of
the alernative methods available for describing non
equilibrium behavior, ' the general agreement between
the departures from equilibrium predicted by it and by
detailed solutions of the Boltzmann equation is very en-
couraging.

However, as shown in Table I and Fig. 2, the moment
equations presented here do not provide an extremely ac-
curate description of nonequilibrium phenomena. The
explanation of this shortcoming lies in the fact that the
moment equations used here have been truncated
("closed" ) by the assumptions Q=O and that P is isotro
pic. These lead to a simple theory, but cannot treat accu-
rately such e6'ects as the extreme anisotropy of the elec-
tron distribution function at the anode (i.e., no inwardly
Rowing electrons). ' I conjecture that a more complete
and accurate theory could be derived by using more com-
plex forms of P and Q, perhaps analogous to the in-
clusion of viscosity and thermal conductivity in conven-
tional hydrodynamics. However, the Chapman-Enskog
or similar methods used to develop higher hydrodynamic
theories are unlikely to be useful in the present problem



HYDRODYNAMIC DESCRIPTION OF ELECTRON FLOW TO AN. . . 4483

where the equilibrium distribution is non-Maxwellian,
and the theory developed in Ref. 10 may provide a clear-
er path to these more complex and accurate equations.

IV. CONCLUDING REMARKS

Moment equations describing the space-time develop-
ment of the number density, mean velocity, and mean en-
ergy of an electron stream moving under the inhuence of
a strong electric field have been presented. Closing the
system of moment equations by the assumptions P is iso-
tropic and Q=0, we find that solutions to the challenging

problem of the absorbing anode are readily found, con-
taining much of the important physics. The simple mo-
ment equations could thus be used to explore, qualitative-
ly, important nonequilibrium processes in many situa-
tions, such as breakdown phenomena, hot electron trans-
port in semiconductors, and high-frequency electric
fields.

The simple moment theory does have shortcomings
which might be overcome by relaxing the above-
mentioned assumptions, using approximations to higher
moments or the interpolation process exhibited in Ref.
10.
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