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Electron component of a plasma in a homogeneous electric field
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We investigate spatially homogeneous stationary solutions of the Boltzmann equation describing
the electron component of a gas plasma in a homogeneous electric field. We consider both elastic
and weakly inelastic collisions of electrons with the neutral-particle plasma component as well as
the Coulomb interaction between charged particles, described by Landau s collision integral. The
Boltzmann equation for the electron swarm is linearized around a Maxwellian with some unknown
temperature. For some important cases the problem reduces to a single-parameter system of two
integrodiAerential equations. Its solution allows us to treat plasmas under a variety of conditions in

a rather simple way. We solve this system with the help of the spline-collocation method, and find

the first two corrections to the Maxwellian corresponding to symmetrical and flow components of
the velocity distribution function. The equation for the electron temperature then comes from the

energy balance condition and from the requirement that the solution of the kinetic equation be
unique. The electron temperature and energy absorption are described by curves with hysteresis as
functions of the electric-field intensity. The conductivity versus electron temperature has a single
maximum. Its rising slope corresponds to Spitzer's well-known formula, when the electron temper-
ature is not very high and electron —neutral-particle collisions are unimportant. All numerical re-
sults are obtained under the assumption that the cross section for electron —neutral-particle col-
lisions is independent of electron energy but generalizations are possible, since the analytical solu-

tion of the problem is far advanced.

INTRODUCTION

In this work, we carry out a theoretical investigation of
plasma properties in a homogeneous electric field based
on a solution of the Boltzmann equation. The following
assumptions are made.

(i) The plasma is spatially homogeneous and stationary.
(ii) The velocity distribution functions of the plasma

neutral-particle component and of the positive ions are
Maxwellians with some known temperature.

(iii) All of the kinetic processes that involve electrons
are determined by the external field and electron-electron
(e-e), electron-ion (e-i), and electron —neutral-particle (e-
n) pair collisions. The interaction between charged parti-
cles is described by the Landau collision integral, and the
collisions between the electrons and neutral particles are
assumed to be elastic or "almost elastic. "'

(iv) The concentration of charged particles is not very
small, so the e-e collisions cause the electron distribution
function to be, in zero order, a Maxwellian with some
temperature T(E) depending on the electric-field intensi-
ty E.

(v) Corrections of order higher than the first can be
neglected. This requires some restrictions for the
electric-field intensity, which will be specified later, and
allows us to linearize the collision e-e integral and there-
fore our problem around the zeroth approximation of the
distribution function in a way similar to the one present-
ed in Ref. 2.

No calculations of the electron distribution function f '
and the temperature T(E) in this setting are known to
the author. Previous calculations of this kind, carried

out by many authors; for example, Refs. 3—6, either ig-
nored one of the interactions e-e, e-i, e-n or used some
other approximations that enabled them to consider both
direct and alternating electric fields, inelastic collisions,
and the possibility of nonstationary solutions of the kinet-
ic equation (see the review of this problem in Ref. 7). The
method described in the article does not require any addi-
tional approximations or simplifications to the ones listed
(except for trivial ones) and permits a natural extension
to the case of a plasma in a constant homogeneous mag-
netic field and an alternating electric field. The idea of
our method is very transparent: the linearization of the
problem and the direct solving of the integrodifferential
equations for the angular harmonics of the distribution
function. Validity and generalization of the procedure
are given serious attention.

The steady-state kinetic equation for the electrons un-
der the above-mentioned conditions can be written down
in the form

V,f'=C f'.

According to the accepted assumptions

M;U; f"=C„exp
l

f '= C;exp
2kT,

Here, e is the charge, m is the mass, v is the velocity of
the electron, E is the vector of the electric field intensity,
and the right-hand side of the equation is the collision in-
tegral

~f'=«f'f')+«f', f')+«f'f") .
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where k is Boltzmann's constant and the meaning of in-
dices is obvious. The electron swarm distribution func-
tion is now given by a first-order perturbed Maxwellian
distribution, as it was done in Ref. 8,

V(f',fJ}=—V s/m, jAn,
a~~ a~'

s =+2'(ee )2L I f' " fj-
p BPp BPp

f'=C, [e " ~'" +f(v)]=C, [@(u)+f(v)],
(4)

8'iv, —v, ix
+ +

d p
Uja U~p

where the first term substantially exceeds the second one
(the verification of this inequality will be discussed), but
in (4) the Maxwellian does not correspond to the unper-
turbed state of the plasma, when E =0, and therefore
T.=T =T'

The normalization coefficients C (j =e, i, n} must be
determined from the equations

fJd PJ=NJ,

where p. =I U is the impulse of a j-kind particle, N
(j =e, i, n) are the concentrations of the corresponding
particles.

Coulomb's collisions between electrons and charged
particles of the j kind are given according to Landau '
by

Here the Greek indices correspond to coordinates x,y, z
of the three-dimensional space, and LJ. is the Coulomb
logarithm for collisions of electrons with the j-kind
charged particles. According to Ref. 7, L, =L; and be-
cause of its very weak dependence on plasma parameters
L, is supposed to be constant (near 10).

Calculation of V(f ',f ') ='V;;

To reduce the length of formulas we denote

Bf (vj) 8 j (vJ)—J a7 ~ ~ J ap& Ve =V, V) ll
Usa uU oU p

Considering for the sake of simplicity only one kind of
single-charged ion we obtain from (6) the relationship

2vre L;M, g fIi(u) . fj3(v)f '(v )
—f '(u) d u

m pBU 1
I BQ BQp

2~e L,M,

a, p

—1 f' (u)f&(v)+ ' f'( u)f'&(v) —f'(v)f'&( u) d u .
Pl O'LL ad@ p

It transforms after integration by parts into

7Te
1 2 j U

To get this result we use (3), the identity"

Jd u ~u
—

v~ 'bV(u)= 4~9(v)—

3
m vVf.+ g f j3(v)h &(u) 1 — — j(u) . .

for twice differentiable functions P(u), and the obvious equality

b, iu —vi =2/iu —vi

(b, is the Laplacian). We also introduce temporarily the functions

j(v) =M; I u f '(u)du
0

and

h (v)= If'(u)iu —
vied u .

%'e will neglect the small value m /M, in the last sum. Since

h
&
—— j(v)(u 5 &

—v u&)u
4m

M,

we can get an expression for T, , in the final form

7;,=16 L, C, u j(u) 4&+
2 BV M; M U BU

+j(v)v Lf(v) . ,

where we have used the angular momentum operator
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L=g (v 6 p
—v vs)

The Legendre polynomials P&(g) are the eigenfunctions of the operator L:

LPi(g) = —l (l + 1)Pi(g),

where l is the order of the polynomial, g= cos(v, a), and a is some arbitrary fixed vector.

Calculation of V'( f ',f ') =—V;,
After the substitution of (4) into (6) we throw away all terms involving squares of f (v) according to the starting as-

sumption and reach the linearization of Boltzmann s equation (1). The e ecoll-ision integral is given by

7;,=2rre L,mC, g f tf (u)@ p(v)+C&(u)f r3(v) —4(v)f p(u) —f (v)N p(u)] d u .
a, P aupaup

From here by using identity (7) and integration by parts we get

az Bz7;,=2rre L, C, m 16m&(v)f (v)+g f &(v) f 4(u)~u —v~d u+4 &(v) f f(u)~u —v~d u
av. av, av. ave

It is easy to show the validity of the identity

BV(v) dPB& 2 dPB& 1 dP
aP " + + L v

av. av, d. qv'
+

v~ dv av
+ .3 dv

(12)

where V(v), A'(v) are arbitrary twice differentiable functions, and to write V', , in the form

@( )f( )+d G r) f+ 2 dG r)f d 4 Bg 2 d@Bg 1 dG
dv Bv v dv i)v dv tv v dv Bv v3 dv v3 dv

(13)

where we have introduced the following notation:

G(v)= f 4(u)~u —v d u, g(v)= f f(u)~u —v~d u .

Thus we get

zd v m &+ kT dC
dv l (v) M„M v dv

The function G (v) and its derivatives can be expressed by
means of the error function. Relationships (13) and (14)
are useful for possible generalization and changing of the
zeroth-order approximation.

Calculation of 'T( f ',f")—:T, „

M, f u f"(u)du =N„/4' .
0

(15)

A simple way to obtain the collision integral of elastic
scattering on neutral particles with mass M, &&m is to
remember that the Coulomb transport cross section s,';
of electrons on ions is given by

s,'; =4~e L, /m v

Now we must do the following: (i) take this value in (9)
and replace it by the transport cross section of e-n
scattering s,' „=1/%„1(v), and (ii) use (5) to replace the
value j(v) (8) by

+ Lf(v)
2l v)

(16)

where l (v) is the mean free path of electrons between col-
lisions with neutral particles of the plasma.

The approximate equality (15) is incorrect for only a
very small number of electrons Mt', whose velocities are
less than or comparable to average ion velocities,

3/2
m T~

M, T

but even this difFerence is suppressed by the term v. We
must retain j (v ) in (9) to prevent the divergence of 'T, , at
the point v =0. The importance of this step and the role
of j ( v ) will be seen later.

The collision integral (16) can be used for elastic col-
lisions only, but we can generalize it according to Refs. 1

and 12 by the replacement
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2m/M„~y(v) . (17)

Here, y(u)((1 is the fraction of the electron energy,
which is lost in one "almost elastic" collision. The mag-
nitude y was studied by many authors. Its nonequality to
2m/M means the approximate treatment of nonelastic
collisions. It was found to be very small not only for no-
ble gases, if the electron energy c. does not exceed a few
eV. For example, g &0.04 in oxygen in the case c ~4
eV. Finally

—1C-n 2 e
1 d u g(u) "Tn d4&

v2 dv l(v) mu dv

+ Lf (v)
l v

(18)

SOLVING THE KINETIC EQUATION

After we substitute (4) and the partial collision in-
tegrals (9), (13), and (18), Eq. (1) can be written down as

eE d2G
V, [C&(V)+f (v)]=2vre mL, C, 16'@(u)f(v)+I du

2 dGr)f dC& Bg 2 d@Bg 1 dG dN
du Bu dv gu v dv Bv v3 du du

kT,+16~ e4m L; u
2 d m .

( ) ~ + (

dU M; mU dU
+ j(v)Lf (v) .

2U

1 d
dV

v y(v) @
kTn d4

l (v) mu du
+ Lf(v) .

2l u
(19)

E d@ ~ 1 —~ c

m dv Bu u Bg'
(20)

Using the axial symmetry of our problem we expand f (v )
in terms of the Legendre polynomials'

f(v)= g f, (v)P, (g)
1=0

and from (14) and (21) we obtain

(21)

g(v) = g g, (v)P, (g)/(21 —1),
1=0

where

I+4
gI(v)= f fi(u)

0 2( +3 l+1
I+2

2l —1
dQ

I+2
+ f ft(u)

1 U
I

2I —1 ul 3

Let vector E be directed along the z axis and
cos(E,v)=(=P, (g). The right-hand side of (19) can be
written in the form

l(l+1)
2l + 1

' —' '+'
l P l+1

21+1 ' 2l +1
and after the substitution of (21) into (20). The
coefficients fI(v) in the series (21) and Eq. (4) determine
the distribution function of electrons if the electron tem-
perature T, =T(E) is known. The calculation of T and
f&(u) is our direct task.

By substitution of relations (20) —(23) into (19) and us-
ing the orthogonality of the Legendre polynomials

f PI(g)P (g)dan=25( l(2l +1)

we obtain the system of equations for the functions fi(v).
It is solved in the Lorentz approximation, i.e., by neglect-
ing all fI( v) with l ~ 2:

f(v)=fo(u)+gf, (v) .

Let us set up the dimensionless variables and parame-
ters

x =u&m/kT, l(u)=lok(x), y(v)=e(x)2m/M„,

+ X Pi(k)
da1 —1

dU

l+1
21+3

dal +1 +
dU V

by virtue of the known' formulas

The right-hand side of (19) is given by

a
U

al +1

(23) ~i m

T '
M„

T.
T

(kT)
4~e "L,N, I0

QM, . TlmT,
1 j2

f '
y exp( —y /2)dy .

7T 0

Ip= 1—
M,

(24)
s =4rre (L,N, lk TE), R =

a(x)= j(v)=4~ .

Equation (19) reduces to a system of the two
integrodifferential equations for fI(u) =a&(x) (l=0, 1):
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1/2
2—e

s
—x /2 —2 x 2/2 X y — '/22ai(x)e +x (aix ')" e ~ ~y dy+x(aix ')' 1+ e ~ ~ dy

0 x

2 X+ e "~ f 'a, (y) dy+ f "a, (y)dy ——e f a, (y) 3 dy+ f "a, (y)dy
5 0 X 3 0 X

Rx + a(x)
A,(x)

(25)

d(x a, )

3sx

1 d
Ie ' ~ [pa(x)+Rv6(x)x /A(x)]I

dx

—x /2 —2 x 2 2/2 X — '/22ao(x)e ~ +x ao'(x) — y e ~ ~ dy+ao(x) 1 — e ~ dy

4

+ e ' ~ f ao(y) 3 dy+ f ao(y)y dy
3 0 X

—e a0 y dy+ a0 yydy

Here and in further notation a' and a" mean derivatives of the first and the second order, respectively. The first equa-
tion (25) does not contain ao(x) and determines a i (x) in principle; the second one (26) is the equation for the symmetri-
cal correction to the distribution function.

We will look for solutions in the class of twice dift'erentiable functions with exponential decay at infinity (0 ~ x ( ~ ).
As the result of some transformations we find the first integral for (26)

„e(x)a, (x)=e ' pa(x)+R vx"
3s A, (x)

1/2
2+

2

(ao+ao/x) f y e ~ dy —e
"' f ao(y)y

3—1 dy+ a0 yydy
3 x

(27)

The following replacement of unknown functions

xao(x)=pe " P(x), a, (x)= ——e ~ y(x) (28)

simplifies system (25) and (27):

3

x 'f y e dy+ f g(y) —1 y e ~dy+ f g(y)ye ~ ~dy=Q(x),
dx 0 0 3 3 x

(29)

1/2

a(x ) + (p(x )—Zx4
X(x)

2

x'q'e "+
q
"+ q' f y'e ' "dy

x 0

X 2 — /2 x y y 2/2 x'
+2 yy —«px y e ~ dy+ +2 e ~ y'ydy+

0 0 5 3 5
cp'y e dy =x

3 x
(30)

where
1/2

a(x)+R x —,y(x) . (31)
v6(x) 4 x
pA, x 3pg

Equation (29) for the symmetrical correction can be
solved analytically. After integration by parts it turns
into

f y e ~ ~dy+ —,'f hatt'(y)y e ~ ~dy
X 0 0

3

+ f g'(y)e ~ ~ dy =Q(x) .
3 x

We differentiate this relation and use the temporary nota-
tion dg/dx =xco. Thus we obtain
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= —f 0, '(x)e ' dx f y e ~ ~ dy .
0

The left-hand sides of this equation and (32) are the same,
therefore

f 0'(x)e dx =0 .
0

We can find co'(x) from (32) and subsequently g(x):

g(x ) =A, +A ~x

2 — 2X

0 2

0'te ' dt
0

te ' dt
0

dy,

(34)
where A, and A2 are arbitrary constants for the time be-
ing.

It is not difficult to show that Eq. (33) with definition
(31) is the energy balance condition for electrons. It is
just the equation that determines the electron tempera-
ture T and so deserves to be written once more in the
form

oo B(x) z x y(x)
e " px+Rv x — dx =0 .

0 A, (x) 3g

—co'(x) f "y e dy+x f co'(y)e ~ dy =0'(x) .
0 X

Let us multiply this equation by e / and integrate the
product from 0 to t,

f co'(x)e ~dx= f Q'(x)e " dx f y e ~ dy .
0 0

(32)
If we integrate from t to ~, the result is given by

~'x e x "dx

therefore

dc d mv = —ev E.
dt dt 2

The specific absorption capacity equations

kv /2 '" E'
P(E)= —ff '(v )ev-E d p = — W(R ),3e'I.,

(36)

where

W(R)= f x p(x)e 'dx .
0

(37)

It is very easy to show that the first two terms in (35)
describe the energy being transferred from electrons to
ions and neutral particles of plasma, respectively. We
will return to relationship (35) for the electron tempera-
ture and to formulas (34) and (28) for the symmetrical
correction to the distribution function.

We must know the function y(x) and hence solve Eq.
(30), which can be rewritten in the form

Here the equality a(0) =0 [see (24)] is used, but a(x) =1
almost for all important values of the electron velocity.
We want to pay attention to the a(x) behavior, because
usually the inequality a(x)+I is ignored for collision in-
tegral calculations. Taking a(x)—:1 would lead to an in-
correct relationship instead of (35).

The last item in (35) is directly proportional to the
power capacity, which is transferred to the electron gas
by the electric field. Indeed, the velocity of an electron
changes between collisions by the low

v(t +dt) =v(t) — dt,eE

1/2

1+ y(x)—
Rx4 2
k(x)

2

x 2+ e
—x /2+ +«+ +I y 2e —P /2dy

X 0

+2f [p(y) y(x)]y e ~'~ —dy + f +2 y'(y)e ~' dy+ — f y'(y)e ~'
dy =x

0 0 5 3 5 3 x
(38)

in order to find the fiow term gf &(u) of the electron dis-
tribution function (3). The factorization of all parameters
in this equation, central for our problem, is an extremely
favorable fact. If the free-Right path with respect to e-n
collisions (or the e ncross sect-ion) can be regarded as a
power function in the most essential domain [see (24)],
Eq. (38) has only one parameter which determines the
function y(x). In the important case, when

l ( u) = lo =const, (39)

this parameter is R and k(x)=1. If the free-fiight time
ro=l(u)/u is constant, the first term in (38) is given by
(1+Qx )y(x) with

Q =i mk T /4vre LNro .

We solve the problem under condition (39), but our ex-
perience in modeling of solutions of Eq. (39) (see below)
suggests some principles of the approximation in more
general cases.

The solution of (38) must be a continuous function
g(x) with acceptable integration properties, which permit
us to determine the physical characteristics of plasma.
The boundary conditions

1
g(x) —const Xx, (p(x) (R %0)

x~0 x —+Qo RX
(40)

can be found from the analysis of (38) in vicinities of x =0
and x = ~. If Eq. (38) has a solution in the above out-
lined class of functions, then conditions (40) make this
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solution unique. We did not succeed in proving the solu-
bility of (38) and (40), in general; nevertheless we are able
to build the family of these solutions for each chosen
value of R constructively with a numerical method.

First of all, let us study the asymptotic behavior of
y(x) more accurately. If x) 5, (38) degenerates into the
second-order differential equation

1 — 2

Sy =y" + y' —(Rx +3)y = —x B—, (41)

where
1/2

oo

is a functional, which depends on the solution y(x) on its
entire domain, but in fact is independent of its asymptotic
behavior.

The general solution of (41) can be written in the form

g =B

asap(x

) + cp& (x ) +Brp2(x )

where

Sy0:0 Sy&: x Scp2: 1

We use the linearity of (41). BD is an arbitrary constant,
and the other constant equals zero because of the diverg-
ing asymptotic behavior of the other homogeneous equa-
tion solution. The particular solutions must not grow
faster than a power function when x~~. If R=O, it is
very easy to show that

x 3x@0(x)-x, (p, (x)- +, &p2(x) —
—,
'

If R) 1, the WBK method' shows that @0(x) is an ex-
tremely quickly decreasing function for large x. So we
can consider @0(x)=—0 in the domain that is of interest to
us now. The asymptotic behavior of g)(x) and pz(x) can
be found directly: g)(x) —1/Rx, yz(x) —1/Rx . When
we solve (38) numerically, the p(x) asymptotic behavior
is given by

x B
@(x)= +, x&5,

D (R )+Rx" 3+Rx
(42)

y(0) =y'(0) =0, (p(X) =rp(X), y'(X) =rp '(X) . (43)

The value B can be expressed in the terms cp„,cp'„ in the
obvious way. We obtain the algebraic system of linear
equations: one-half of them are the collocation condi-
tions [that is to say, Eq. (38) in the grid knots], and the
other half are the equations of continuity for the second
derivative of the solution at the knots

3(9.—)
—0'. +1)+"(V" —)+40"+0"+1)=0 . (44)

The second half of the system matrix has a simple
structure, and it is not too dificult to halve the number of
equations, but this possibility is not realized in our calcu-
lation.

This method of solving Eq. (38) turns out to be steady
and elfective, though the solutions of the corresponding
homogeneous equation are functions @0~e —"""
(x&5) of very fast change. The attempt to solve the
problem as Cauchy's (with the boundary condition at
x=O or x =X) leads to a divergence process in a few
steps.

After the calculation of y„,y', we can find the function
g(x) with the help of numerical integration by formulas
(34) and (31). The relationship

where D ( R ) = 6( 1+490R ) /( 1+1130R ) was obtained as
the result of the preliminary calculation analysis. One
can take a=6 simply, and it causes very slight changes in
the final results because of the calculation procedure sta-
bility.

The spline-collocation method' is applied for the solu-
tion of Eq. (38). We build the spline approximation of
y(x) in the domain x C: [O,X] with the help of defect 1

cubic splines on a homogeneous grid. The step of the
grid h depends on value R and determines the calculation
precision. It was chosen equal to 0.1 approximately and
reduces to the value about 0.025 when R is large. The
values to be found are y, and cp,

' in knots of the grid,
where we require (38) to hold. Boundary conditions at
the ends of the interval are given by

P( x)=M, +A 2x+
]/2

1+(y — )/2 4R 6(y) (2+yp) 1 f (y, )gp d (t3 )dt d
f ~t&~ ~'&2dt pk(y) 3ps' y dt

0

(45)

is more convenient than (34) and (31). We have here, be-
sides R, other parameters of the problem. The arbitrary
constants in (45) indicate indefiniteness in choosing the
correction to the zeroth-order distribution-function ap-
proximation. In order to maintain the normalization
C, =A;(2wmkT) ~ we demand

vd v=0

and immediately obtain the condition

f e "~P(x)x dx=O.
0

(46)

The calculation of arbitrary constants can be made in one
of the following ways: (i) A, =O, A~ is the root of Eq.
(46), (ii) using (46) and minimizing the maximum devia-
tion from zero of the correction, or (iii) a least-squares
treatment with the minimization of the integral

f x e g(x)dx .
0

If A., O are the constants, we can rewrite (45) in the form
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1/2

P(x)=A, +Ajax + — 4R I, (x)
2 pX

1/2

I2(x)/3ps

where the function I2(x) only depends on R and both of
them can easily be calculated. The assumptions A, = 1 and
0=const are not very important for the possibility of in-
tegration in (45), the more so as the exact calculation of
the symmetrical correction to the distribution function is
not usually of great interest.

If R is small, the value of i'(x) is not large either, and
for R ) 1 we need only consider the asymptotic behavior
of g(x). It can be obtained with the help of the analysis
of the integrals in (45) in the form

RvO 6 xg(x)~ — x +
6pA, 12pRS 2

(47)

This relationship enables us to evaluate the correctness of
the approximation that our method is based on.

According to the outlined scheme we obtain the solu-
tion of (38), the values of I, (x), I2(x), and the integral ex-
pression W(R), given by (37), for the set of parameter
R C [10,10 ] values. The function 8'(R), which plays
the central role, is presented in Table I. We also show
the values of the calculation errors. The point is that the
solution of (38) is given by the set of function y(x) values

'I I
V'n +0'n +1 9'n 0'n +1

"=2 2

1/2

g (q'„)'

are also presented in Table I for all R. Here, K =X/h is
the complete number of knots on the interval [O,X].

TEMPERATURE AND OTHER
ELECTRON GAS CHARACTERISTICS

As a result of solving Eq. (38), all the terms of (35) are
determined, and electron temperature can be calculated.
If 0=const, A, = 1, and T, = T„, relationship (35), with the
help of (37), becomes

M;
1+8R 0

M„
1 W(R)=0,

3ps
(48)

where only p, and R ( T) depend on T. In the case
0&const, we have in (48) the mean value 0, which can be
found from (35) without any difficulties. Now we rewrite
(48) in the form

in the homogeneous grid x =nh knots and by the deriva-
tives q&'(x) of the same function. All these values are ob-
tained as solutions of the linear algebraic equation system
independently. Nevertheless, obviously, the relation

y'(nh +h/2)=[y(nh +h) y—(nh)]/h

should hold. The values of the function

TABLE I. Values 8'(R), R 8'(R), 6(R) (top to bottom, respectively) as functions of R = a X 10".

—3

1 27.929 27.944 27.938 27.876 27.287 22.71 9.4612 1.6477 1.9213X 10 ' 1.9865 X 10 1.9981 X 10 1.9997X 10
0.027 29 0.2271 0.94612 1.6477 1.9213 1.9865 1.9981 1.9997

0.0088 0.0088 0.0089 0.0107 0.0268 0.005 64 0.007 44 0.0187 0.0554 0.179 0.278 0.669

1.4 27.035 21.206 7.6604 1.2221 1.3845 X 10
0.037 85 0.296 88 1.0725 1.7109 1.9396
0.0261 0.004 94 0.008 42 0.0217 0.0656

2 27.928 27.943 27.93

0.0088 0.0088 0.009

27.81 26.667 19.338 6.0032 0.883 81 9.7633 X 10 9.9619X 10
0.053 33 0.386 76 1.2006 1.7676 1.9527 1.9924

0.0135 0.0225 0.048 0.009 64 0.0255 0.0786 0.245

26.081 16.937 4.4516 0.606 84 6.5506 X 10
0.078 24 0.508 11 1 ~ 3355 1.8205 1.9652
0.0165 0.0051 0.0113 0.0308 0.0968

25.526
0.1021
0.0125

15.124 3.5563 0.462 88 4.9304 X 10
0.604 96 1.4225 1.8515 1.9722
0.005 49 0.0127 0.0353 0.112

5 27.944 27.941 27.91 27.611 24.998 13.696 2.9695 0.374 45 3.9532 X 10 3.9929 X 10
0.124 99 0.6848 1.4848 1.8723 1.9766 1.9965

0.0088 0.0088 0.0096 0.0216 0.01 0.005 87 0.0139 0.0393 0.126 0.32

7.5 23.788 11.154 2.1141 0.2538 2.6441 X 10
0.178 41 0.836 55 1.5856 1.9035 1.9831
0.0069 0.006 72 0.0165 0.048 0.155
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M;R~= 1+8 9R (1 —QR, /R )/4RW(R)
n

using the new parameters independent of T,

RP 1 (RW)'
2 8'

M,—8 OR
M„

M„1+8 OR
M;

—2

M, (eElp)R;=R (T;), R~=
12~ 4me "I.,N, l

RE

RE
(R W)'

8'
8M;OR /M„

1+8M;OR /M,

1

2(QR /R; —1)

which shows that Rz (0 if R, (R,-, where

The function Rz(R) is given in Table I, but the inverse
relation R (Rz) and hence the relation T(E) are not sin-
gle valued at all points of their domains owing to non-
monotonicity of Rz(R ).

We derive from (49) the relationship

Table II, which is constructed using condition

M;

M„
O=1

(50)

(51)

with the help of the function W(R) values, makes it pos-
sible to calculate the curve R,. (R) (see Fig. 1). Figure 2
presents a few curves Rz(R), built according to formula
(49) under condition (51) for some different values of R.
The positions of points R, and R 2 are determined by cor-
responding points on Fig. 1. The electron temperature
dependence on field intensity T(E) and the function
R (Rz), which is related to T(E) directly, cannot be
found as the result of the symmetrical transposition of
Fig. 2, because of the above-mentioned single-value prob-
lem. The T(E) or R (Rz) behavior is described by a hys-

TABLE II. The functions R ~ W(R) =const Xcr, U(R) =(1/W)[d(R W)/dR], V(R) =8R /
(1+8R), and the function R; =R [1+1/2(U —V)] when U) V. The equality U= V holds at the
point R =9.03 X 10

8.75
6.25
4.5
3.5
2.5
1.7
1.2
0.875
0.625
0.45
0.35
0.25
0.17
0.12
0.0875
0.0625
0.045
0.035
0.025
0.017
0.012
0.008 75
0.006 25
0.0045
0.0035
0.0025
0.0017
0.0012
0.000 75
0.000 35
O.0OO15

R "4W(R)

1.1343
1.2417
1.2935
1.3687
1.4818
1.5676
1.6452
1.7017
1.7867
1.7927
1.822
1.8482
1.8087
1.7454
1.6583
1.5531
1.4079
1.2972
1 ~ 1403
0.954 41
0.796 12
0.665 14
0.542 22
0.438 91
0.3713
0.294 87
0.2248
0.175 12
0.1244
0.070 91
0.037 74

U(R)

0.031 93
0.039 73
0.049 63
0.057 96
0.070 98
0.089 72
0.110 18
0.132 11
0.1586
0.1909
0.2174
0.2579
0.3127
0.3689
0.4252
0.4885
0.5541
0.6042
0.6691
0.739
0.7945
0.8377
0.876
0.9061
0.9247
0.9445
0.9609
0.972
0.9825
0.9916
0.9964

V(R)

0.9859
0.9804
0.973
0.9655
0.9524
0.9315
0.9057
0.875
0.833
0.783
0.737
0.667
0.576
0.49
0.4118
0.3333
0.2647
0.2188
0.1667
0.1197
0.0876
0.0654
0.0476
0.0347
0.0272
0.0196
0.0134
0.0095
0.006
0.0028
0.0012

R; (R)

5.960 X 10
3.507 X 10
6.048 x 10-'
6.632 x 10-'
6.280 X 10
5.204 X 10
4.117X 10
3.224 X 10
2.431 x 10-'
1.817X 10
1.444 X 10
1.053 x 10-'
7.284 X 10
5.197x 10-'
3.280 X 10
1.544 X 10
6.645 X 10
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0.3

(R )
1/4

R

0.2- 3-

0.1

0.0
0.0

I

0.1

I I

0.2 0.3
I

0.4

FIG. l. Values of (R; )'~ and (R,')'~~ [see
the variable R ' . Coordinates of maxima:
when R =3.42X10; R =7.41X10 when

R; (0.1)=Ri ( 24)=0. If R; =5X10
R, =0.08, R, =0.0059, R4 =0.02S3.

I

0.5 0.6
1/4

R

(50) and (54)] vs

R,'=6.64X10-'
R =1.46X10
Rl =1.2X10

-3
6.7 x 10

I

-23R
log~p R

FIG. 2. Family of curves RE(log&OR) for various values R;.
The curves tend towards the asymptotic value RE =R.

teresis curve, which can be built with the help of Fig. 2.
Increasing intensity causes the abrupt change of the elec-
tron temperature from point A to point B (Fig. 3), while
decreasing intensity causes the downturn between C and
D. Our calculation is more accurate and consistent than
the calculations in Ref. 3 and others; the entire depen-
dence T (E) is obtained using a single method.

The increase of 0 means the approximate treatment of
weakly inelastic e-n collisions, which are accompanied by
the excitation of low-energy levels in molecules such as
rotation and oscillation. The analysis of (48) shows that
the growth of 0 raises the curve R, (R ). It leads to an ex-

P(E)=const(E, T)XRzR W(R) . (52)

Temporarily ignoring the hysteresis phenomena given in
Fig. 3, we obtain from (49) and (52)

pansion of the T(E) inversion interval between points R,
and R2 of Fig. 1.

Now we consider the dependence of the specific ab-
sorption capacity on the intensity. By virtue of (36) it is
almost independent of the electron concentration (see
also Ref. 6). It is very convenient here to write P(E) in
the form

dI'
g dE

dRE d &y4 M;
=sgn sgn - R 1+8R g

dR dR M„

1/2
R;

(53)

1

log(OR .

0-

-2-

D

FIG. 3. Values of log»R as a function of R E when
R, =5x10 . R ~RE for large R.

The second factor in (53) is negative at the interval point-
ed by the roots of the equation

M;
R; =R 1 —24R t9

M„
M;

3 —8R t9
M„

Basing on (54), we build the dependence R,'(R) at Fig. 1

and show the location of these roots R 3,R4 for some par-
ticular R.=R

&
~ It is very important that the interval

IR3, R~] (see Figs. 2 and 3) is located inside [R„Rz].
Therefore, the electron-gas state under heating changes
from point R

&
to point Rz )Rz (Fig. 3) and from R~ to

RL, &R& under cooling. Changing the second term sign
in (53) does not affect the sign of dR/dE. So P(E) de-
pends monotonically on E with the abrupt change at
E =E(R

&
). The locations of the points R

&
=R~ and Rz

as functions of the variable R are presented in Fig. 4.
The graphs of Rz(R) and the value
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log)o R

log)o RA

log)o R 8

0

CC

CC
II

0.5 0 I I I I I I

-4 -3 -2 -1 0 1

I

2 3

log)o R
I

-3
log)o R;

FIG. 4. The locations of the points R ~ and R&, and q (R; ) as
functions of variable R;.

FIG. 6. The electron conductivity of the plasma as a function
of R (i.e., the electron temperature). The maximum @=1.81 is
located at the point R =0.25.

q(R, )=R~ W(R~) —R„W(R„),

P(E)
E2

e

3(m 1. )'
X,lo

R W(R) . (55)

which characterizes the capacity step of discontinuity,
also are shown in Fig. 4.

According to Fig. 1, R& =9R/4, hence T=3T/2 in
conformity with Ref. 7. If E decreases, P(E) decreases
monotonically too, but the downturn takes place in the
point RC=Rz (see Figs. 1 and 3), therefore the depen-
dence P(E) shown in Fig. 5 has the hysteresis with the
same corner points /I, 8, C, D as the T(E) curve at Fig. 3.
The downturn is not calculated, because of its sign
definiteness in virtue of the monotonic growth of the
function R RW(R) (Fig. 6) at the interval 0(R (0.25
and the location of Rz =R2 &0.1 inside this interval ac-
cording to Fig. 1 ~

We complete this section by writing down the formula
of electron conductivity of plasma

1/2

So Fig. 6 and the first column of Table I represent the
value of conductivity up to a constant factor. The con-
ductivity takes a maximum value at the point R =0.25,
which corresponds to different values of E, depending on
the temperature of plasma heavy components R, .

Let us analyze (55). According to Fig. 6 the conduc-
tivity is almost independent of electron temperature T
and directly proportional to (N, /N), when
005 &R &2. If R) 2, by virtue of Table
1.76 (RW(R) (2, and the conductivity is proportional
to N, /N't/T . For R (0.01, Table I shows that
W(R)=const, therefore the conductivity is almost in-
dependent of N, and iV and increases as T, in accor-
dance with the well-known Spitzer formula.

APPROXIMATION OF THE FUNCTION IP(x)

We obtained many curves describing the function y(x)
that takes up the central place in our calculation. Let us
remark first of all that the usual approximation neglect-
ing e-e collisions explicitly (their role is supposed to cause
the electron distribution function to be Maxwell's) annuls
the item in parentheses. The solution of (38) in this case
can be obtained immediately,

y'(x) =x /(1+Rx") (56)

A

I
'
~

RE

FICx. 5. The absorption capacity vs +Rz (i.e., the electrical
field intensity) when R; =5 X 10

or y'(x)=x [I+Rx /k(x)] ' if A, =1. The calculation
shows that each solution of Eq. (38), similarly to function
(56), has only one maximum, and almost immediately
after the maximum value, it then tends to its asymptotic
behavior (42) and does not change its sign. The latter
fact is obvious as a physical one: y(x) describes the elec-
tron flow, the direction of which depends on the field-
intensity vector direction only and does not depend on
the electron energy.

We consider the function y'(x) and
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TABLE III. The functions 8'(R), 8'&(R), W„(R), 8'»(R) (top to bottom), which were obtained with the help of Eq. (37) and y,
y', y", y', respectively. R =a X10".

1 (X0.1) 2 (X0.01) 3 (X0.001)

27.944
47.996
27.998
27.979

27.938
47.962
27.987
27.972

27.876
47.622
27.871
27.901

27.287
44.672
26.8
27.222

22.71
30.519
20.534
22.25

9.4612
10.083
8.1964
9.2186

1.6477
1.6637
1.5467
1.6418

1.9213
1.926
1.8914
1.9319

1.9865
1.9875
1.9808
1.9873

1.9981
1.9982

1.9995

27.943
47.992

27.978

27.93
47.923

27.964

27.81
47.256

27.823

26.667
42.05
25.781
26.519

19.338
23.846
16.96
18.813

6.0032
6.2142
5.3095
5.894

0.883 81
0.889 33
0.846 28
0.883 13

0.976 33
0.978
0.966 94
0.977 26

0.996 19
0.996 42

0.996 35

0.999 43

0.99943

27.941
47.981
27.993
27.976

27.91
47.81
27.935
27.94

27.611
46.222
27.376
27.593

24.998
36.404
23.359
24.679

13.696
15.33
11.783
13.287

2.9695
3.0172
2.7198
2.944

0.374 45
0.3758
0.365 26
0.374 71

0.395 32
0.3957
0.393 37
0.395 58

0.399 29
0.3993

0.39929

0.399 89

0.399 89

y"(x)=x l(Rx + —", ), y'"(x)=x lID(R)+Rx ],
cp '(x)=x [Rx +(6x +304)/(x +304)]

as the models for the solution of (38); cp
' (x) is obtained

from (42). In Tables III and IV, we present the values of
W(R), the locations and the values of the maxima, and
the values of y at the point x= 10, where it must reach
the asymptotic region if R )0.01. The tables were calcu-
lated with the help of the numerical solution and the
functions (56) and (57), which simulate it.

Table III shows that W(R), calculated with the help of
y'(x), has rather large errors, to 70% if R is small. The
function y'(x) itself can be six times bigger than the
"correct" solution y(x) (R (0.001,x ) 6). So the explicit
consideration of e-e collisions is important for describing

the fast electron behavior. The model function y' (x)
simulates q&(x) quite well according to Tables III and IV
and may be used for approximations. We hope the func-
tion

Rx 6x +304
~(x) x'+304

obtained in the same way as p' (x) for l (v)Wconst, will
be the satisfactory model of the solution to Eq. (38), but it
needs an examination.

CONCLUSION

In conclusion, we consider the conditions of our
method applicability and hence the reliability of reported

TABLE IV. The coordinates of maxima x, y (x ), and the values y'(10) of the function cp(x)—:y (x), which was obtained as the
solution of Fq. (38), and the modeling functions cp (x), y"(x), g '(x), y' (x) (up to down consecutively when k grows) for various
values of R.

10 10 10 10 10 10 10 10' 10' 10 10 104 10'

9.709
7.4
8.468

10.59
11.48

5.617 2.795
4.162 2.34
4.76 2.678
5.421 2.981
5.835 2.29

1.405
1.316
1.506
1.672
1.31

0.7603
0.7401
0.847
0.94
0.74

0.4266
0.4162
0.476
0.5286
0.418

0.2371
0.234
0.268
0.2972
0.234

0.135
0.1316
0.1506
0.1671
0.132

0.080 36
0.074 01
0.084 68
0.093 99
0.0738

cp'(x ) 75.42
101.3
88.56
70.8
64.98

14.8
18.02
15.75
13.84
12.00

2.936
3.205
2.801
2.516
2.883

0.5275
0.5699
0.498
0.4486
0.563

9.471 X 10 1.736 X 10 3.093 X 10 5.599 X 10 1.007 X 10
10.13 X 10 1.802X 10 3.205 X 10 5.699 X 10 1.013X 10
10.89 X 10 1.570 X 10 2.800 X 10 4.980 X 10 8.856 X 10
7.979 X 10 1.419X 10 2.523 X 10 ' 4.487X 10 7.979 X 10

10.12X10 1.802X10 3.205 X10 5.699X10 1.013 X10

cp (10) 175 175 172 156 73.5 10.00 1.01 0.101
999 990 909 500 90.91 9.901 0.999 0.099 99
583 580 551 368 85.37 9.832 0.9983 0.099 98
167 166 165 150 70 44 9 72 0 9974 0 099 97
171 171 168 146 63.08 9.447 0.9942 0.099 94

1.01X10 '
1.00 X 10-'
1.00 X 10-'
1.00 X 10
1.00 X 10-'

1.01 X 10
1.00 X 10
1.00 X 10-'
1.00X10 '
1.00 X 10

1.01 X 10
1.00 X 10
1.00 X 10
1.00 X 10
1.00 X 10

1.01X10 '
1.00 X 10-'
1.00 X 10
1.00X10—'
1.00 X 10
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where rD =[4trN, (e /k)(1/T, +1/T; )] '~ is the Debye
radius, r=N, ' is the mean distance between plasma
charged particles, and A is the typical linear size of the
plasma. These conditions are almost independent of the
electron temperature T, and point out the upper and the
lower restrictions for the charged-particle concentration
N, .

The functions fo(v) and f&(v) should be small in com-
parison with the Maxwellian

&b(v) =exp( —mv /2kT)

at least into the interval of electron velocities, where the
main contribution in the collision integral is formed. It
means, according to (3), (21), (28),

pity(x) «1, —y(x) «1 for x (:[0,5] .
s

(58)

The second inequality (58) with the help of replacing p(x )

by the approximation &p (x) gives

results. The method is based on the condition of plasma
neutrality, the strong mutual correlations in charged-
particle motion, and the absence of plasma-boundary
inhuence. These are the usual conditions for the plasma
problems: '

rD/r )1, / D

the distribution function has to approach Druyvesteyn's
function. ' ' We require that (59) and

Rm Ox' /6M„& 1, x /12pRs' & 1 (60)

hold for x —5. The first inequality (60) gives immediate-
ly the maximum value of R:

R &n/0, (61)

where n is the atomic number of the plasma neutral-
particle component. Equation (61) means, for example,
that 4, 15, and 40 are the maximum values of R, if we
want to our method to be correct for helium, neon, and
argon, respectively.

When R is not small, we have by virtue of (49) and
Table I the relations

R =Rz 'kT =e—El +M„/12m 0, (62)

which ensure the correctness of (59) almost always. The
second inequality (60) can be written in the form

Rs ))50 . (63)

Equations (63), (61), and (62) restrict the electrical field
intensity and the electron temperature from above.
Choosing between them the stronger inequality (63) we
obtain these limits with the help of (62):

E &E,„=e+ l,Vl/9,

s»(R +0.01) (59)
2

kT & kT,„= QlVlM„/3m
2(9

If we consider small R, when R -R;, (59) leads to the in-

equality

E &0. 1e/rD,

The electron temperature can be calculated in a stronger
electrical field by our method with another zeroth ap-
proximation for the velocity distribution function.

which is close to the usual condition of a weak field for
the electrons whose distribution function is almost undis-
turbed. The upper limits of the field intensity and the
electron temperature are much more interesting. To ob-
tain these limits we continue to study (58). If x is small,
g(x) is rather large, but the factor p is very small, there-
fore the evaluation of P(x) for large x with the help of its
asymptotic behavior (47) is sufficient. The symmetrical
correction g(x) rapidly increases in this domain because
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