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Numerical and analytical solutions of the electron Boltzmann equation in two-temperature
steady-state helium plasma are studied in a broad range of conditions (5000 K ~ T, 20000 K,
10000 K T, 20000 K; 10' cm ~ X, ~ 10"cm ). The WKB analytical solution is found to be
satisfactory in most situations. The deviation of the electron distribution from Maxwellian and a
possibility of raising of the tail of the distribution is also discussed.

INTRODUCTION

He(2 S, )+He(2 S, )—+e(s)+He(1'So)

+He+( 1 S~r2 )

the associative ionization:

He(2 S, )+He(2 S, )~e(E)+He&+(X X„+,U), (2)

and the electron-impact deexcitation of the He(2 S&)
atoms:

e( ss&2)+He(2 S& )~e (E)+He(1 'So), (3)

where c. is the electron energy and c.&2 is the energy gap
between the ground state and the first excited level of the
helium atom. It is obvious then, that a possibility of rais-
ing the tail of the electron distribution above the Maxwel-
lian tail is quite realistic in helium plasmas with a large
number of metastable atoms. Such situations occur,
for example, in some afterglow plasmas where the num-
ber of metastable atoms produced during the transient
phase of the discharge can be quite large. In general, the
populations and the energy (translational and internal)
distributions of particles in the beginning of the steady-
state phase (following the transient phase) depend on the
way in which energy is supplied to the gas in the tran-

It is well known' that deviation of the electron ener-

gy distribution from the Maxwellian distribution can be
significant in weakly ionized gases where one, or more, of
the lowest excited levels of neutral species are strongly
radiative and where the radiation produced by these lev-
els is poorly reabsorbed in the gas. Then, the energy lost
by fast electrons to excite the levels cannot be regained by
electrons and the number of the fast electrons in the plas-
ma is greatly reduced. (Since in such a case the electron
distribution differs from Maxwellian distribution only at
energies c ))kT„one can still use the concept of temper-
ature. )

The first two excited levels in helium atoms are meta-
stable, and the populations of these levels can be relative-
ly large in some situations (see below). Consequently, the
following atom-impact processes in helium can directly
produce fast electrons, overpopulating the tail of the elec-
tron distribution; the Penning ionization:

e (E)+He(1 'SD)~~e (E+E&2)+He(2 S& ), (4)

the electron-impact ionization and three-body recom-
bination:

e (s )+He(1 'S ~~~e (E')+ e (Et, )+He (1 S, rz ),

the electron-impact ionization and three-body recom-
bination:

e(E)+He(2 S&)~~e(E')+e(st, )+He+(1 S&&2), (6)

the radiative recombination producing He(1 'So ) atoms:

sient phase. The relaxation time for electron energy is
usually much shorter than the relaxation times for the en-
ergies (internal and translational) of atomic species.
Therefore a stationary electron distribution can be estab-
lished (after the end of the transient phase) and be main-
tained for a meaningful period of time during which pa-
rameters T„T,N„N„and N2 remain constant. Conse-
quently, the ratios H„=N, /N, and B2 =N2/N2 [N,

max

.and N~ are populations of electrons and the metastable
He(2 S, ) atoms, respectively, in local thermal equilibri-
um (LTE)] in the beginning of the steady state can differ
from case to case by orders of magnitude. We study in
this work the properties of the stationary Boltzmann
equation for electrons as a function of T„T„N, ( T, and
N, are atomic temperature and density, respectively),0„,and 82 existing at the end of the transient phase

max

(i.e., at the beginning of the steady-state phase).
The three-level electronic energy structure (the ground

state, the first excited state, and continuum) assumed for
helium is numbered sequentially, with i = 1 for the
ground state, i =2 for the first excited level, and c for con-
tinuum (the ground-state ion). The positive ions are con-
sidered to be singly ionized and in the ground states.
Such energy structure is a sufficient representation of the
atomic properties for acceptable predictions of the main
features of the electron distribution in the plasmas con-
sidered in this work (see Ref. 6 and discussion below).

The following processes, important for direct and in-
direct population of the fast electrons in the plasma, are
taken into account in addition to the processes (1)—(3):
the electron-impact excitation and deexcitation:
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e(E)+He+(1 S&&2)~He(1 'So)+hv, (7)

and the atom-impact ionization of He(2 S& ) atoms:

He(1 'So )+He(2 S, ) ~He( 1 'So )

+He+(1 S,zz)+e(E),

where conservation of energy requires that in the process-
es (5) and (6)

c = U;+ c'+ Eb,

and the processes (7) and (8)

hv=E+ U; . (12)

Here, U, is the ionization potential for the ith atomic lev-
el, c' is the energy of the incident electron after collision,
and cb is the energy of the ejected electron. Since we
consider both electron-atom and atom-atom inelastic col-
lisions, we use a two-temperature model in which the
electron temperature T, can diff'er from the atomic tem-
perature T„' the energy distribution of atoms is assumed
to be a Maxwellian distribution.

The electron energy distribution is obtained from the
stationary Boltzmann equation,

v. (N f)+ . (N f)= (N f)—F 8 6
(13)

where v is the electron velocity, r is the spatial coordi-
nate, F/m, is the external force (per unit mass) acting on
the electron, and the term on the right-hand side is the
collision term. We consider below physical conditions
for which the left-hand side of Eq. (13) is small compared
with the collision terms on the right-hand side. Then,
Eq. (13) becomes

5(N, f)
5t

o(N, f) +
5t

6(N, f) =0,
6t

where the subscripts el and in relate to elastic and inelas-
tic collisions, respectively, and the distribution f is iso-
tropic in the phase space and depends only parametrical-
ly on position. The normalization condition for the elec-
tron distribution is

the radiative recombination producing He(2 S, ) atoms:

e(E)+He+(1 S&&2)~He(2 S& )+h v,
the atom-impact ionization of He(1 'So ) atoms:

He(1 'So)+He(1 'So)-~He(l 'So)+He(1 S,&2)+e (E),

rate coefficient for an electron-impact binary collision is
1/2

C= 2 Sec, dc (17)

where Q (E) is the cross section for the process.

COLLISION TERMS

Electron-e1ectron collisions

The common electron-electron collision term is based,
at all energies, on the Fokker-Planck formalism. How-
ever, it was shown by Peyraud' ' that in plasmas with
very high density of metastable atoms, this representation
can be inaccurate for description of the high-energy tail
of the electron distribution. It was suggested that in such
plasmas the Balescu-Lenard formalism' should be used
in the high-energy range. The difhculty can be seen in
the behavior of the function C ( e ) [Eq. (57)], particularly
through the term with f (v. —E&2). This term represents
the contribution of fast electrons produced by process (3)
and it dominates the other terms in Eq. (57) at energies
E ~ 8,2 if the relative population of the metastable atoms
is very large. As a result, unrealistic periodic "humps"
occur on the tail of the distribution at =En Ez (where
gg

& 2). If the Balescu-Lenard collision term is used in the
Boltzmann equation these "humps" are smeared out. '

To avoid the difticulties associated with the complexity
of the Balescu-Lenard formalism, we use the Fokker-
Planck collision term in all situations, including the
high-energy region in plasmas with very large population
of the metastable atoms. Then, the high-energy tail of
the electron distribution can be taken, in the first-order
approximation, as f*(c,—e&2). A numerical analysis
shows that such a procedure is appropriate to obtain
reasonable estimates of the rate coefficients even for
electron-impact ionization of the ground state in plasmas
with relatively large population of the metastable atoms.
This is because in such a case the production of electrons
is dominated not by the ground-state ionization, but by
processes (1) and (2) that involve metastable atoms and
which are controlled by the medium-energy part of the
electron distribution (see discussion below).

The Fokker-Planck collision term for the electron-
electron scattering is

The collision terms of Eq. (14) multiplied by
4nu du =4m(2E)' m, dE give the rates per unit
volume at which electrons enter the energy range.
[E, E+dE] as a result of elastic or inelastic collisions.
The terms are derived below using the formulations of
Shkarofsky, Johnston, and Bachynski, Viegas, '

Mitchner and Kruger, "and Shoub.

F E: dC —1
0

so that the Maxwellian distribution is given by

= 2 1 —c/kT,*(E)=
&~ (kr, )'" e

(15)

(16)

=N, (2E/m, )
1

dc

X a, (E) +b, (E)f (E)
df (E)

(the asterisk denotes the thermal equilibrium) and the where
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a, (E)=2(kT, ) Q, , f E ~ f (E)dE+E ~ f ™f(E)dE
0 C

b, (e)=3(kT, ) Q, ,f c'f.(E)dE,
0

Q, , =6~(e l3kT, ) lnA, (21)

6t e-a
=N, (2 e/m, )

]/2 1

E dE

X a, (e) kT, +f (E)df (E)

=N, (2Elm, )
1

E, dc

(23)

and where k and e are Boltzmann's constant and electron
charge, respectively, lnA is the Coulomb logarithm, and

Q, , is the averaged Coulomb cross section calculated
with an impact parameter cutoff at the Debye length.

It should be emphasized that in some situations T,
does not represent the electron average energy given by
(c, ) =3/2kT, . In such cases, T, is just a parameter
describing the shape of the electron distribution at low
electron energies where f (E) is close to Maxwellian (see
below). Therefore the parameter T„called in the present
work "electron temperature, " appears only in collision
integral for the electron-electron scattering. Using T, for
this purpose is justified because the electron-electron col-
lisions are the most effective at low energies where the
electron distribution is always close to Maxwellian.

Electron-heavy-particle elastic collisions

X a+(E) kT+ +f (E)df (E)
(24)

2Pl, +1
a, (E)= '

Q, ,(E)E',I,N,

2m, N)a+(E)= Q, +(E)e
m+ g+

(25)

(26)

I, and m+ are masses of the helium atom and the
ground-state ion, respectively, X& and N+ are atomic
and ionic ground-state densities, respectively, Q, , is the
electron-atom momentum transfer cross section' and

Q, + is the electron-ion momentum transfer cross sec-
tion,

Q, +(E)= lnA .
E,

We assume throughout this work that the ionic tempera-
ture T+ =T, .

The collision term for the electron —heavy-particle in-
teractions is a sum of the terms for electron-atom and
electron-ion collisions,

Electron-impact excitation

Since we consider three-level atoms this collision term
takes into account only 1~~2 electron-impact transitions.
Using the principle of detailed balance,

where

e-h e-a

of
6t

(22)
~+~&2

Q~)(E)= Qi~(8+&i»
gp E

the excitation collision term is

exc

(E+e»)= —(2E/m, )' N, Q, 2(E) f (e) f (E —E—,2) +Q,2(e+E,z) f (e)—f (E+8,z)
E,

(29)

where Q&z(E) is the excitation cross section for the 1~2 transition and N, and g, are density and statistical weight of
the ith level, respectively.

Electron-impact ionization

We introduce differential ionization cross section o;, ( E, e, Eb ) and differential recombination cross section
o.„(E,E~, E) defined in the following way: a;, (E,E, Eb ) is the differential cross section for the ionization of an atom from
the ith level by an electron of energy E, resulting in an ejected electron of energy Eb and o „(e,Eb, E) is the differential
cross section for the reverse process. Then, the number of ionizations per unit volume and unit time produced by elec-
trons with energies in the range [E, E+dE] such that after the collision the two outgoing electrons have energies in the
ranges [e', E'+dE'] and [eb, Eb+dEb], respectively, is

NN, (2elm, )' f(e)o-;, (e, e', Eb)dEdE'dE&,

and the number of the corresponding three-body recombinations per unit volume and unit time is

N+N, (2E'/m, )'~ (2eb/m, )'~ f (c.')f (Eb)cr„(E',E&, E)dc'del, de . .

(30)

(31)
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Using the Fowler relationship, '

16~m,
g;co;~(c,c, cb ) = 3 g+ c cbo'~;(c, cb, c)

h

and summing over all energies c. one obtains the following collision term for the electron-impact ionization and three-
body recombination:

10Il

2 c—
U,.= —(2c/m, )'~ g N, Q,,(c)f(c) N, N—+ o;,(c,cb)f(cb)f(c —U; —cb)dcb

2 0
(33)

where

2
' 3/2

h

2&geg + 2P7l e

(34)

and Q,„the electron-impact ionization cross section for
an atom excited to the ith level, is related to the
differential cross section cr;, ( ,ccb) through the following
relationship:

fpI(c) C [(cpI) ..—c]'"
with the normalization constant

(39)

range 0~ c, ~ 15.05 eV. The probability per unit interval
of energy of producing these electrons with energy
[c., c+dc] was found' to be proportional to
c'~ [(cp,),„—c] ~ . Then, the normalized energy distri-
bution of the ejected electrons is

—
U,.

Q,, (c, )=—,
' I o.;,(c,cb)dcb .

0
(35)

16
~( cpI )max

(40)

Photoionization

The collisional term associated with photoionization
can be written

of

Taking the above into account, the collision term for
the Penning ionization can be written as

Sp, (T, )N2

2N,
fp, (c), 0~ c~ 15.05 eV

of
6t

ph

N, 4~ o,, (v)

i e

f (c) 2hv
N; f*(c) c2

where Spt( T, ) is the corresponding rate coefficient.

Associative ionization

(41)

—IlV /1&T
Xe ' —J (36)

The electrons produced in process (2) will have an en-
ergy distribution that depends on the distribution of vi-

N =N, N+
h

+ 2~m, kT,
(37)exp(U;/kT, ) .

where o,,(v) is the photoionization cross section for the
ith level, J is the mean intensity of radiation,
h v= 8+ U, , and N,

* is given by the Saha equation,
3/'2

10'

Radiative recombination

In this case the collisional term is 10

of 2

=(2c/m, )'i g N+ f (c)o.„(c), (38)

where o „(c) is the radiative recombination cross section
for the c ~i transition.

Penning ionization

The maximum energy of the electrons produced in pro-
cess (1) is the diff'erence between twice the energy c.,2 and
the atomic ionization energy U, . This diff'erence,

(cp, ),„, is 15.05 eV. Since process (1) produces three
particles, the ejected electron can have energy in the

10-2 I I I I I I I I

14.7 14.8 14.9 15.0 15.1 15.2 15.3 15.4 15.5 15.6

energy (eV)

FIG. 1. The ejected electron energy distribution for the asso-
ciative ionization in helium.
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brational and rotational levels of the molecular ions. For
the impact energy of 0.03 eV, Garrison et al. ' have
shown that the energy of the electrons ranges from 14.7
to 15.6 eV and that the resultant molecular ions are high-
ly vibrationally excited. Using the energy distribution
f«(E) proposed in Ref. 19 (see Fig. 1), the collision term
for the associative ionization is

f S«(T» fA, (s), 14.7 ~ E ~ 15.6 eV
6t

Aq 2N,

(42)

the ratio of the electron-ion scattering term to the
electron-electron scattering term is equal to about
m, /m+ and the former term can be neglected.

We include in our analysis the collision term for the
electron-atom elastic scattering because this term is of
some importance in dense, weakly ionized helium plas-
mas [the momentum transfer cross section for the e-He
scattering is almost constant up to v =20 eV and is rela-
tively large' (about 6 X 10 ' cm )]. Taking this into ac-
count, the collision term for the electron —heavy-particle
interactions can be given by its electron-atom part,

where S«( T, ) is the rate coefficient for the process.

Atom-impact ionization

6t
=N, (2E/m, )']/2 1 d

dE

X a, (c.) kT, +f (E)df (E)
(48)

Production of electrons through the atom-impact pro-
cesses (9) and (10) can be significant in plasmas of high T,
and low ionization degree. However, (1) lack of data on
the ionizing collisions of the metastable atoms, (2) uncer-
tainty associated with the threshold behavior of the ion-
ization cross sections for collisions of the ground-state
atoms, ' and (3) lack of data on the energy distribution of
the ejected electrons ' do not allow for a reliable estimate
of the contribution of processes (9) and (10) to the pro-
duction of plasma electrons.

Diffusion term

The diffusion loss of the electrons is taken into account
by including the following diffusion term:

Electron-impact ionization

The electron distribution has very small values when
the electron energy exceeds the ionization potential U,
by more than several kT, . In addition, the energies c.b of
the secondary electrons ejected during the 1~c ioniza-
tion are much smaller (order of kT, ) than U&.
Therefore one can assume that

f(eb)=f*(sb) .

The postcollision energies of the incident electrons are
also relatively small and their distribution can be approx-
imated by

6t diffusion

(43) f*(eq )f"(E'=E—U( —Eb) =(2/3/m)(kT, )

X exp( U, /kT, )f*(E) . (50)

r2

5. 8D (E)
(44)

where r is the radius of the tube, the electron diffusion
coefficient D is

D(E)= 2c
3m, v, , (E)

(45)

and v, , (c.) is the electron-atom elastic collision frequen-
cy,

v, , (E)= 2E,

me

' 1/2

N, Q, , ( ).e

SIMPLIFICATION OF THE COLLISION TERMS

Electron-heavy-particle elastic collisions

Since

where ~D is the electron diffusion time. Assuming "free"
diffusion and that the reAection coefficients of the fast
electrons at the wall are zero, the diffusion time of the
electrons to the wall in a cylindrical tube is

Using the above, one can write the collision term for the
electron-impact ionization of the ground-state atoms,

(&)6f = —(2E/m, )'
6t

X N, Q„( )fe(E)

N, N+ C, Q„(E—)

2f *(E)exp( U, /kT, )
X

)3/2
(51)

X NzQz, (e)f (E)

N, N+ C2Q~, (E)—

and for the electron-impact ionization of the He(2 S& )

atoms,

(2)6f = —(2E/m )'~
6t

2
kT;

2 c
(47)

2f *(E)exp( U~/kT, )
X

&~(kT, )'" (52)
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Photoionization

The ratio of the photoionization collision term to the
Coulomb scattering term is of orders of magnitude small-
er than one so that the photoionization collision term
can be neglected in all realistic situations.

Radiative recombination

It was shown by Shaw, Mitchner, and Kruger that the
radiative recombination terms are negligib1e, when com-
pared to other terms, in all practical situations.

INELASTIC CROSS SECTIONS
AND RATE COEFFICIENTS

Electron-impact excitation

The cross section for the 1~2 electron-impact excita-
tion is taken from the work of Scott and McDowell.
Since the electron energy distribution may deviate
significantly from the Maxwellian, the corresponding rate
coefficient C]2 is calculated directly from Eq. (17).

state are taken from the work of Janev et al. The cor-
responding ionization rate coefficients are calculated
from Eq. (17).

Penning and associative ionization

3/2

S =3 15X10
a

cm'/s . (53)

SOLUTION OF THE BOLTZMANN EQUATION

Taking the above into account the Boltzmann equation
(14) can be written as

The rate coefficients for the Penning and associative
ionizations at high temperatures are unknown. However,
their rates at T, =300 K were estimated as 1.35X10
and 3.15 X 10 cm /s, respectively. We assume that
the rate coefficients for the Penning ionization are con-
stant in the considered range of T, and that the rate for
the associative ionization has the following temperature
dependence:

Electron-impact ionization

The cross sections for the electron-impact ionization of
helium from the ground state and from the first excited

I

with

+ A (c) +8(c)f(c)+C(c)=0
dE dE

(54)

2 (c)= (a'+b, +a, ),1

a(c (55)

1B(c)= b,'+ag — X2(c+c]2)Q]2(c+c]2)—A2cQ2, (c)—A, ]cQ]2(c)—k]cQ], (c)
a c) ' '

g2
(56)

1 I
X](c+c.,2)Q,2(c+ c. ,2)f (c+c„)+

a c) 2E,

1/2
~p]~2cfpi(c)

2

2f *(c)exp( U2/kT, ) m,
+X+ C2Q2, (c) +

&7r(kT, )'"
1/2

~A]~2cfAI(c )

2

2f *(c)exp( U, /kT, )+ ~2cQ]2(c)f (c—c]2)+++C]Q]c(c)
gz &~(kT, )'" (57)

where A, ; =X;/N, and a (c, )=a, (c)+a,(c)kT„and the
boundary conditions are

f(c)=f*(c) when c~kT,

f () f—()f f+(t)C(t)d
0 W(t)

+f+()J f (t)C(t)
W(t)

(61)

and

f (c)~0 as c~ ~ . (59)
where C(t) is given by Eq. (57) and the Wronskian of the
homogeneous equation is

f (c.)=a f (c)+a+f+(c)+f (c), (60)

The general solution of Eq. (54) for c) kT, can be
given by

~(t) =f'+f f+f'—
2 e pxI [X2(t) +Y(t) ] I

&~(kT, )'" a(t) (62)

where f (c) and f+(c) are two linearly independent
solutions of the homogeneous equation (54) with a+
equal to zero since f+(c)~ oo, as c~ ~. The particular
solution, obtained by variation of parameters, is

with X(r) and Y(t) defined in Eq. (70).
The nonlinearity of Eq. (54) associated with the

Fokker-Planck term is weak because the major contribu-
tions of the integrals in a, (c) and b, (c) come from the
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low-energy electrons. Therefore one can use the follow-
1ng approx1matlon:

It

p(c)=
2Q

2a' b, +a, a'+
2Q a 2a

f c'i'f (c)dc+c' ' f f (c)dc
0 E

', kT—, f c'"f*(c)dc,
0

and consequently,

a, (c)=3(kT, ) Q, ,f c' f (*c)dc
0

(63)

and
(64)

b, +a, (X'+ Y') —(X"+ Y")

—(X'+ Y') —8 (c)

and

b, (c.)=3(kT, ) Q, ,f c' f'(c)dc .

Numerical solution

(65)

, b, (t) , a, (t)
X(c)=—

—,
' f dt, Y(c)= —

—,
' f dt .

o a(t) ' ' o a(t) (70)

It should be noted that the function p(c) is positive for
c ~ U2 in plasmas considered here, with the requirement
that

4pp" —5(p') 1 d 1

3 3/2 d 2 1/4
L

«1 .Direct numerical solution of Eq. (54) in the entire
range of energy is not possible due to the presence of the
exponentially growing mode of the solution [f'+(c)]; at
high energy it will dominate and filter out all the other
modes of the solution. Therefore the numerical solution
is divided into two parts. In the low-energy part
(kT, ~ c. ~ U2), the numerical solution of Eq. (54) (with
the boundary condition at kT, ) is obtained by Gear's
method; the fact that Eq. (54) can be stiff has to be taken
into consideration. (One should add that at these ener-
gies both growing and decaying modes of the solution are
probable. ) The low-energy part of the solution is taken as
the starting point for both numerical and WKB solutions
(see below) of Eq. (54) at higher energies (c, ) U2 ). In the
high-energy part, an efficient semianalytical procedure is
used since the growing mode of the solution filters out the
other modes. First, one lets f+(c) be one of the linearly
independent homogeneous solutions obtained by Gear's
method with initial conditions imposed on f+ and
df+/dc at U2. Then, a second linearly independent
homogeneous solution, say f (c), can be obtained from

(71)

The general solutions of Eq. (68) are

h —(c)=p(c) '~ exp +f p(t)' dt (1+5+),
min

(72)

where 6+ are the upper bounds, discussed below, of the
error of the WKB approximation.

Since p(c) has discontinuities around the thresholds
for the inelastic processes, the WKB solution for h —(c) is
given in the following three intervals:

& ~min U2 —~ —~max 12'

h,+(c)=p(c) '~ [KISI(c)], Xi= 1,
h, (c)=p(c) ' [JISI '(c)],
~I JII SI ( c12 )SII ( c12 )

—1

II& Emin ~12 —~ —~max 1 '

h,+, (c)=p(c) ' [K„S„(c)],
+II NISI(c12)SII (c12)

—1

Jn =~mSII( Ui )Siir'( Ui »
III, c,„=U, ~&~ „=2U,

hi+ii(c)=p(c) '"[+IIISIII(c)l

Ir'iii =&IISII( Ui )Sirr'( UI »
[~IIISrn' (c ) ]

(73)

(74)

(66)

(76)

(77)
The &KB solution

In general, an analytical solution of homogeneous
equation (54) can be given by the WKB approximation.
This is done by using

(78)

J
'I/vr(kT, )

exp[X(c)+ Y(c)] h+
&a (c. )

(67)
where

Finally, the particular solution can be constructed from
the two linearly independent homogeneous solutions and
the complete solution can be given by Eq. (60) (with the
boundary condition at c= U2 taken from the low-energy
solution).

to transform the homogeneous part of Eq. (54) into S;(c)=exp f p (t)' dt
min

(79)

d h —p(c)h =0, c) U2,
dE

where, in our case,

(68) and K, and J, are constant parameters imposed to ensure
the continuity in the h —(c) and dh+(c)/dc at each in-
elastic threshold.
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FIG. 2. Comparison of the calculated numerical (solid line)

and WKB (dashed line) electron distributions with measured

(triangles connected with the dotted-dashed line) electron distri-
bution in helium afterglow experiment (I=1.8 A and P=2
Torr) of Blagoev et al. (Ref. 6). The double-dotted line is the
theoretical result of Blagoev et al. (Ref. 6). T, = 1000 K,
T. =400 K, N, =4.8X10", N, =SX10", a d N, =4X10"
cm

FIG. 4. Comparison of the calculated numerical (solid line)

and WKB (dashed line) electron distributions with measured
(triangles connected with the dotted-dgshed line) electron distri-
bution in helium afterglow experiment (I= 1.8 A and P= 1

Torr) of Blagoev et al. (Ref. 6). T, =1000 K, T, =400 K,
N, =2.4X 10', N2 =2.8 X 10",and N, =2 X 10' crn

RESULTS AND DISCUSSION

The reliability of the numerical and WKB solutions ob-
tained in this work was tested by comparing these solu-
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FIG. 3. Comparison of the calculated numerical (solid line)
and WKB (dashed line) electron distributions with measured
(triangles connected with the dotted-dashed line) electron distri-
bution in helium afterglow experiment (I=0.45 A and P=2
Torr) of Blagoev et al. (Ref. 6). T, =1750 K, T, =400 K,
N& =4.8 X 10', N2 =9 X 10'', and N,, = 1 X 10' cm

FIG. 5. Comparison of the calculated numerical (solid line)
and WKB (dashed line) electron distributions with measured
(triangles connected with the dotted-dashed line) electron distri-
bution in helium afterglow experiment (I=0.45 A and P=1
Torr) of Blagoev et al. (Ref. 6). T, =2000 K, T, =400 K,
Nt =2.4X 10', N2 =1X 10', and N, =6 X 10" cm
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tions with existing measurements of electron distributions
in helium afterglow ' (see Figs. 2—5). The comparison
shows quite good agreement between the theory and the
experiments, except at lower electron energies and higher
currents (Figs. 2 and 4). The agreement is in fact better
than it appears to be in the figures; the slight differences
in the location and width of the fast electron sources (the
peaks) result mainly from experimental uncertainties in
these regions; the relatively large amplitude of the
differentiating signal broadens, especially near the peaks,
the measured energy distributions. The discrepancy be-
tween the theory and the higher-current experiments in
the low-energy region results from the following facts.
First, the wall potential in the experiments was not negli-
gible, which retarded the diffusion of the electrons to
the wall. In other words, the real difFusion time for the
electrons in the experiments was longer than the time ob-
tained under assumption of the "free" diffusion. Unfor-
tunately, introducing a more realistic diffusion time in
the treatment of the high-current discharge would limit
the applicability of the present approach to particular
plasma-wall systems. Therefore we use in the present
work the same expression for the electron diffusion in the
entire range of the electron energy. This expression has
the same r and D dependence as the expression (44) for
the "free" diffusion in cylindrical tube but the constant
factor 5.8 is replaced by factor 2. Such a procedure
seems to be realistic in most situations, especially at high
energies. However, it is still inadequate in the high-
current discharges (Figs. and 4) at low electron energies.
In plasmas with lower values of the electric current, the

10O
10' cm 3

10 '—

10

10-'
0 10 20

ener gy (eV)

40

FIG. 7. The calculated (numerical) ratios of the electron dis-
tribution to the corresponding Maxwellian distribution.
T,, =14000 K and T, = 14000 K; the values of (H, , B2), are,

max

when N,, varies from 10' to 10' cm ', (4.5X10 ", 5.2X10 ),
(7.6X10, 6.8X 10 ), (3.6X 10 ", 1.2X 10 '), (1.9X 10
1.7X 10 '), and (1, 1), respectively.

electron diffusion becomes more "free" like.
The electron distribution was studied in a broad range

of conditions: 5000 K ~ T, ~ 20 000 K, 10000
K~ T ~20000 K, and 10' cm X 10' crn . The

10

I I

1{)

10' cm 10'
10'6 cm ~ 10' cm 3

10 '—
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0 20
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30 40 10 '0 10 20

ener gy (eV)
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FIG. 6. The calculated (numerical) ratios of the electron dis-
tribution to the corresponding Maxwellian distribution.
T, =12000 K and T, =12000 K; the values of (H„,B2) are,

max

when N, varies from 10 to 10 ' cm, (5.4 X 10
5.8 X 10 ), (3.4X 10, 1.9X 10 '), (2.2X 10, 4.6X 10 '),
(1.1 X 10 ', 7.2 X 10 ' ), and (1, 1), respectively.

FIG. 8. The calculated (numerical) ratios of the electron dis-
tribution to the corresponding Maxwellian distribution.
T,, = 16000 K and T, = 16000 K; the values of (H„,Bz ) are,

max

when N, varies from 10 to 10' cm ', (2.0 X 10 ", 3.0 X 10 ),
(5.1 X 10, 5.3 X 10 ), (1.1 X 10, 4.9 X 10 ), (5.8 X 10
6.7X 10 ), and (1, 1), respectively.
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nonequilibrium populations of the electrons and the
metastable states (i=2) are given by, respectively, '

max geg + ~~e k Te

&+ h
exp (80)

&2 az=B2 exp
Ã 'g ' kT,

(81)

with factors H, and Bz varying in the following inter-
max

vals:

10 ' +H„+ 10 and 10 +B2 + 10
max

(82)

where H, is the ratio of the nonequilibrium electron
max

density to the corresponding Saha value and B2 is the ra-
tio of the nonequilibrium population of the first excited
~evel to the corresponding Boltzmann value.

The steady-state helium plasmas are divided into five
categories. The first category includes the cases when
T, = T, . The cases when T, W T, ( T, /T, = 1.5, and 2)
are divided into categories A, B, C, and D as follows:

Case

A
B
C
D

H, &1
max

X
X

H ol B, &1 B2 o1

10'

Examples of the electron distribution when T, =T,
and H„~ 1 and B~ ~ 1 (the cases when T, =T, and

maxH„, B2) 1 are unrealistic) are given in Figs. 6—8. As
max

can be seen there, the lower limit of T, (or T, ) above

which the electron distribution is close to Maxwellian in
the entire range of the considered densities ( 10'
cm SX, 510 cm ) is about 16000 K. As N, in-

creases, the role of electron Coulomb collisions becomes
more prominent, which brings the tail of the distribution
closer to the tail of the Maxwellian distribution. It
should be noted that when H, ~1 and B2 ~1, only

max

lowering of the tail of the distribution is possible. Also,
the solution of the stationary Boltzmann equation for
helium with T, = T, and H, =1 and B2=1 gives, as

expected, the Maxwellian distribution. The situation
when B2 = 1 is common in stationary plasmas with the
lowest excited levels being metastable (for example, in
atomic nitrogen and oxygen '

) but rather uncommon
in plasmas with the lowest levels being strongly radiative
(for example, in atomic argon' and hydrogen ' ).

In case A, H„& 1 and Bz & 1, the tail of the electron
max

distribution can only be lowered. The deviation of the
distribution from Maxwellian is a strong function of the
ionization degree. As the ionization degree decreases
(H, varies from 10 to 10 '; see Figs. 9 and 10), the

max

presence of the fast electron source at c=c&2 becomes
more apparent since fewer electrons are available to
thermalize the fast electrons. Examples of the X& depen-
dence of the electron distribution are shown in Figs. 9—12
and the dependence on temperature can be seen in Figs.
9—11. The deviation of the distribution from Maxwellian
is less significant at higher temperatures where the ioniza-
tion degree and the frequency of electron-electron col-
lisions are much higher. The role of the electron-impact
ionization and three-body recombination [processes (5)]

10'

10
10-'—

10 10

10 10-'—

10-4—
10-4— -14

10

10 6
0 10

energy (eV)

30

10 0 10
I

20

ener gy (eV)

30 40

FIG-. 9. The calculated (numerical, solid lines and WKB,
dashed lines) ratios of the electron distribution to the corre-
sponding Maxwellian distribution. T, =10000 K, T, =5000 K,
N, =10' cm ', and B,=10 (case A).

FIG. 10. The calculated (numerical) ratios of the electron
distribution to the corresponding Maxwellian distribution.
T, =10000 K, T, =5000 K, N, =10' cm, and B2=10
(case A).
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FIG. 11. The calculated (numerical) ratios of the electron
distribution to the corresponding Maxwellian distribution.
T, =15000 K, T, =10000 K, H„=10,and 82=10 (case

max

A).

FIG. 13. The calculated (numerical, solid lines and WKB,
dashed lines) ratios of the electron distribution to the corre-
sponding Maxwellian distribution for T, =10000 K, T, =5000
K, N& =10' cm, and H„=10 (case B).

1O'

and the electron-impact deexcitation [process (3)] in
forming the tail of the distribution can be seen in Fig. 12.

In case B, H, ~ 1 and 82 ~ 1, raising of the tail of
max

the electron distribution above the Maxwellian tail is pos-

10

1O'

10 4
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10 6—
1O4—
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10'—

1O' g

B2 ——103

FIG. 12. The calculated (numerical) ratios of the electron en-

ergy distribution to the corresponding Maxwellian distribution
for T, =10000 K, T, =5000 K, N& =10' cm, H, =10

max

and B,=10 ' (case A). The solid line is the ratio obtained by
including all the elastic and inelastic processes; the dashed line
is the ratio when the electron-impact ionization from the
ground state and the reverse three-body recombination are
neglected; the dotted-dashed line is the ratio when the electron-
impact deexcitation [process (3)] of the metastable atoms is
neglected.
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FIG. 14. The calculated (numerical, solid lines and WKB,
dashed lines) ratios of the electron distribution to the corre-
sponding Maxwellian distribution for T, =10500 K, T, =7000
K, Nl = 10 cm and Hn = 10 (case B).
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FIG. 15. The calculated (numerical) ratios of the electron
distribution to the corresponding Maxwellian distribution for
T, =20000 K, T, =10000 K, N& =10' cm, and H„=10

max

(case 8).

FIG. 17. The calculated {numerical) ratios of the electron
distribution to the corresponding Maxwellian distribution for
T, =10500 K, T, =7000 K, X& =10' cm, and B2=10 (case
B).

sible. Examples of the dependence of the electron distri-
bution on density (B2 ) of the metastable atoms are shown
in Figs. 13—l5. At a given H, , the tail of the distribu-

max

tion rises with increase of Bz which is due to the overpo-

pulation of the metastable levels —sources of the fast elec-
trons [processess (1)—(3)j. At a given (high) B2, the tail of
the electron distribution rises rapidly (Figs. 16 and 17)
with decrease of the ionization degree (i.e., with worsen-
ing of the conditions for electron thermalization). The
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FIG. 16. The calculated (numerical) ratios of the electron
distribution to the corresponding Maxwellian distribution for
T, =10000 K, T, =5000 K, 1V& =10' cm, and B,=10 (case
B).

FIG. 18. The calculated (numerical) ratios of the electron
distribution to the corresponding Maxwellian distribution for
T, =15000 K, T, =10000 K, H„=10,and 8&=10 (case

max

B).
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rise of the distribution above the Maxwellian distribution
is caused by the collisions of the metastable atoms (Pen-
ning and associative ionization), and by the electron-
impact deexcitation of the metastables. At low ionization
degree, the "humps" on the distributions become more
prominent; the hump at c= 15 eV results from the associ-
ative ionization, whereas the hump at c, = c.I2 results from
the electron-impact deexcitation of the metastable atoms.
The temperature dependence of the electron distribution
can be seen in Figs. 13—18. The magnitude of the rise of
the distribution tail is a strong, decreasing function of
temperature. Again, this is due to the lesser role of the
electron-electron collisions at lower ionization degrees.
An interesting example of the X, dependence of the ratio
f (e)lf*(E) at high density of metastable atoms is given
in Fig. 18. With increase of the ground-state density at
given H„and B2, the rise of the electron distribution,

max

resulting from the presence of the fast electrons produced
by processes (1)—(3), becomes very distinctive. At high
densities of the ground and the metastable levels, there is
a narrow range of energy (= 15—20 eV) where the electron
density is very low. Depopulation of the electrons in this
region is caused by the electron-impact ionization of the
metastable atoms. The role of the ionization of the meta-
stable atoms by electrons can be seen clearly in Fig. 19,

10

{10",10'
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10' —
(N, H„) = (10',1), (10',10 ),

(1014,1)

10'

10

10 0 10 20

ener gy (eV)

30 40

FIG. 20. The calculated (numerical) ratios of the electron
distribution to the corresponding Maxwellian distribution for
T, =10000K, T, =5000 K, and B2=10 ' (case C).

10

104—

where the contributions of the associative and Penning
ionizations and process (3) are also shown.

Examples of situations belonging to category C,
H„&1 and B2 &1, are shown in Fig. 20. The two

max
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~ ~C
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FIG. 19. The calculated (numerical) ratios of the electron en-

ergy distribution to the corresponding Maxwellian distribution
foI Te =15000 K& Ta =10000 K, Nl =10 cm ~ Hn =10

max

and B2 =10 (case B). The solid line is the ratio obtained by in-
cluding all the elastic and inelastic processes; the dashed line is
the ratio when the electron-impact ionization from the metasta-
ble levels and the reverse three-body recombination are neglect-
ed; the dotted-dashed line is the ratio when the associative and
the Penning ionization are neglected; the double-dotted-dashed
line is the ratio when the associative ionization, the Penning
ionization, and the electron-impact deexcitation [process (3)] are
neglected.
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ener gy (eV)

40

FIG. 21. The calculated (numerical) ratios of the electron en-

ergy distribution to the corresponding Maxwellian distribution
for T, =10000 Ky Tg:5000 Ky Nl 10 cm y Hyg:1) and

max

B,=10 (case C). The solid line is the ratio obtained by in-
cluding all the elastic and inelastic processes and the dashed line
is the ratio when the electron-impact ionization from the
ground state and the reverse three-body recombination are
neglected.



4422 J. A. KUNC AND W. H. SOON 43

10 10

105

10
10

(10

(1~
104)

1O'—

102

10

(H„,B2) = (10,10 )

10—1

1O'

10 0 10 20

ener gy (eV)

30 40 10 0 10 20

ener gy (eV)

30 40

FIG. 22. The calculated (numerical) ratios of the electron
distribution to the corresponding Maxwellian distributions for
T, =10000 K, T, =5000 K, and N, =10' cm (case D).

FIG. 24. The calculated (numerical) ratios of the electron
distribution to the corresponding Maxwellian distribution for
T, =10000 K, T, =5000 K, and N& =10' cm (case D).

upper curves in the figure are characteristic for the condi-
tions when three-body (electron-electron-ion) recombina-
tion is eAective. This process resupplies the fast electrons
lost in the reverse process of ionization and it is e6'ective
because the density of electrons under such conditions is
very high. The lowest curve in Fig. 20 rejects two
trends. The descending part of the distribution results
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10 — (10,10 ) 1O'
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FIG. 23. The calculated (numerical) ratios of the electron
distribution to the corresponding Maxwellian distribution for
T, = 10000 K, T, =5000 K, and N) = 10' cm (case D).

FIG. 25. The calculated (numerical) ratios of the electron en-

ergy distribution to the corresponding Maxwellian distribution
for T, = 10000 K, T, =5000 K, N~ = 10' crn, H„=1,

B~ = 10 (case D). The solid line is the ratio obtained by includ-
ing all the elastic and inelastic processes; the dashed line is the
ratio when the electron-impact ionization from the ground state
and the reverse three-body recombination are neglected; the
dotted-dashed line is the ratio when process (3) is neglected.
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first-order approximation to the solution to the stationary
electron Boltzmann equation. The reliability of the
WKB approximation in plasmas considered here was also
suggested in some earlier works.

An alternative way of testing the reliability of the
WKB approach is to study the upper bounds of the ap-
proximation error. These bounds can be estimated for
each of the intervals I, II, and III as

H„

10-'
lp

—10

10
—14

0.873
4.226 X 10
4.926 x 10-'

'V lc

0.748
3.330X 10
3.111X 10

'V2c

0.987
0.599

2.058 x 10 '

TABLE I. The ratios y in helium plasma (case A; see Fig. 10)
with T, = 10000 K, T, =5000 K, N1 = 10' cm, and

B,=10-'.

~6+~ ~exp

where

F+(E)
2

F+(E)/2—1&
l F+(—c. )/4

and

r

F+ (e) = 1 d 1
+ &. 1/4 d 2 i/4 (84a)

TABLE II. The ratios y in helium plasma (case A; see Fig.
11) with T, = 15 000 K, T, = 10000 K, H„=10, and

IHax

B,=10-'.

max

z
p dE p

(84b)

The interval (E;„,E,„) can be infinite, provided the in-
tegrals in relationships (84) converge. A typical example
of the upper bound of the WKB error is given in Fig. 29.
This error should be interpreted as the maximum error
for the solution of the homogeneous Boltzmann equation.

N, (cm )

1p10

1p14

1018

'V12

1.000
0.916

2.3QQX 10

1c

1.000
0.760

9.309 x 10-'

72c

0.995
0.991
0.701

Dependence of the inelastic rate coef5cients
on the electron distribution

TABLE III. The ratios y in helium plasma (case B; see Fig.
14) with Te 10500 Ky Tg:7000 K) N1 10' cm, and

—10
—6

The rate coefficients for the electron-impact excitation
(C&2) and the electron-impact ionization (S&„Sz,) are

10'

B2

10
10'
10'

V 12

5.216x 10'
4.984 x 10'
3.559 x 10'

'V lc

3.782 X ]P'
3.625 X 10
2.527 X 10

'V2e

0. 170
7.948 x 10'
2.959 x 10'

10

1O-'
TABLE IV. The ratios y in helium plasma (case B; see Fig.

18) with T, = 15 000 K, T, = 10000 K, H, = 10, and
max

B2=10

10

10

N, (cm )

10"
1p14

1016

3'12

2.592 X 1Q2

1.583 x 10'
1.812 X 10

71c

5.773 x 1Q

9.328 X 102

9.399x 10'

'V2c

1,060
6.340 x 10'
7.596 X 10'

1O-4
6 20

ener gy {eV)
TABLE V. The ratios L in helium plasma (case B; see Fig.

14) with T, = 10 500 K, T, =7000 K, N, = 10' crn, and
H. =10-'.

FICx. 29. The error upper bound ~5J for WKB homogene-
ous solutions f+ and f, respectively, for T, = 10000 K,
T, =5000 K, N1=10' cm, H, =10 ', and B2=10

max

(case A).

10
10'
10

L2,

1.963 X 10
9.628 X 104

5.117x 10'

LA

3.313X 10
1.569 X 10~

1.015 X 10

LP1

1.600 X 10
7.578 x 10'
4.905 x 10'
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TABLE VI. The ratios L in helium plasma (case B; see Fig.
18) with T, = 15 000 K, T, = 10000 K, H, = 10, and

max

B2=10 H, B2 L2, LA LP1

TABLE VII. The ratios L in helium plasma (case D; see Fig.
24) with T, = 10000 K, T, =5000 K& N, = 10' cm

N1 (cm )

1p10

lp14
lp16

L2c

7.763 x 10'
2.879 X 10
3.414x 10'

LA

2.172 X 10
1.306 x 10'
5.824 X 10

LPI

1.791 x 10'
1.077 x 10'
4.804 x 10"

1

10
1

10'

104
104

10
10

1.039 X 10
4.915x 10'
2.166X 10
5.414x 10'

5.509
7.218 X 10
6.281 x 10'
7.658 x 10'

1.606 X 10
2.105 X 10'
1.832 X 10
2.233 X 10

studied by introducing ratios of these coefficients to their
values when the electron distribution is Maxwellian (C*,z,
S*„,Sz, ),

Ciq Si, Sq,
TiZ, X&c, 72c

12 1c 2c
(85)

Examples of these ratios are given in Tables I—IV. As
can be seen from Tables I and II, the rate coefficients for
the inelastic processes, especially those with large energy
gaps, are smaller in cases A than corresponding values
obtained from the Maxwellian distribution. This is a re-
sult of the fact that the distribution tails are strongly un-
derpopulated in such cases. In cases B (Tables III and
IV), the ratios y are typically much greater than one,
which emphasizes the role of the strong overpopulation
of the tails of the electron distributions in these plasmas.

Role of various ionization processes

Examples of these ratios are given in Tables V—VII. As
can be seen there, there is a broad range of conditions
where the production of electrons by electron-impact ion-
ization of the ground-state atoms is negligible when com-
pared with the associative and Penning ionization and the
electron-impact ionization of the metastable atoms. Thus
in such situations the form of the electron distribution
above 40 eV is not important. This is of great importance
for applicability of the Fokker-Planck formalism (instead
of the Balescuo-Lenard formalism) to determine the
electron-electron collision integrals in helium plasmas
with high density. of the metastable atoms. As mentioned
before, in such plasmas the Fokker-Planck collision in-
tegrals may cause unrealistic, periodic humps on the
high-energy (above 40 eV) tail of the electron distribu-
tion. Since these plasmas are typically in categories B
and D, it is sufficient in such cases to work with the low-

We compare the electron-impact ionization of metasta-
ble atoms and the associative and Penning ionization
with the electron-impact ionization of the ground-state
atoms by introducing the following ratios:

Ne N~S2c N2NpS~i N2N2Spi

N, N, S&,
'

N, N, S„' N, N&Si,
L L

and medium-energy (up to about 40 eV) parts of the elec-
tron distribution based on the Fokker-Planck electron-
electron integrals.

SUMMARY

A stationary electron energy distribution can exist for
a meaningful period of time in the beginning of the
steady-state phase following the transient phase in par-
tially ionized helium. During this period, the densities of
the electrons and the metastable atoms can be much
higher than their LTE values. These densities depend on
the way in which energy is supplied to the plasma in the
transient phase preceding the steady-state phase. In
some situations one has an unusually large, when com-
paring to the Maxwellian distribution, number of fast
electrons (with energies of 5—30 eV) produced mainly by
the associative and Penning ionization and by the
electron-impact deexcitation of the metastable atoms.

In stationary plasmas where the electron and the meta-
stable atom densities are lower than their LTE values, the
tail of the electron distribution is lower than the tail of
the Maxwellian distribution. Also, in such plasmas, the
tail of the distribution does not have to decrease mono-
tonically (as one tends to believe on the basis of the ear-
lier work for gases such as argon or hydrogen) but it may
have humps caused by the electron-impact deexcitation
of the metastable atoms.

The Fokker-Planck collision integrals for electron-
electron interactions can be used instead of the Balescu-
Lenard integrals in the Boltzmann equation when the re-
sulting distribution is to be used for calculating the rate
coefficients for inelastic processes, even those with large
energy gaps. Such a procedure is valid even in cases
when population of the metastable atoms is much higher
than its LTE value.
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