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Coagulation reaction in a one-dimensional gas
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An extension of previous work on the ballistic annihilation reaction A + A ~0 to the coagulation
reaction A+ A ~ A is presented. Three possible velocities c (with probability p), —c (with proba-
bility q}, and zero are considered. %'hile the long-time behavior is controlled by moving particles
when p =q, it is controlled by the stationary particles when pWq. The comparison of the coagula-
tion reaction with the annihilation reaction shows that the long-time results are essentially the same
except for a rescaling of the time. In addition, the time dependences of the decay in the ballistic
coagulation reaction when p =q and the diffusion-limited coagulation reaction are also identical,
but for different physical reasons. The reason for this becomes transparent by rederiving the ballis-
tic coagulation results using a random-walk formalism, which can perhaps be generalized to more
complicated ballistic reactions.

I. INTRODUCTION

A great deal of attention has recently been devoted to
the anomalous kinetics that frequently occur in
diffusion-limited reactions in low-dimensional systems.
Two models that have been investigated in detail are the
binary annihilation reaction A + A ~0 (Refs. 1—9) and
the coagulation reaction A + A ~ A. ' The former
model has also been considered in the case of particles
undergoing ballistic rather than diffusive motion. " Re-
sults formally similar to those for diffusion-limited reac-
tions are obtained for the rate of reaction, even though
the physical interpretation of the results is quite different.

In this paper, we extend the study of Ref. 11 to the
ballistic analog of the coagulation reaction A + A ~ A.
In Ref. 11 a dichotomic distribution of velocities t." and
—c is used to model the ballistic A + A —+0 reaction; the
analysis of the A + A ~A ballistic reaction requires that
we consider a distribution with three possible velocities,
c, —c, and zero. The particles with velocity c, —c, and
zero will be denoted by X, Y, and Z, respectively. These
particles are initially mutually independent and occur
with probability p, q, and r =1—p —q, respectively. Ob-
serving momentum conservation allows us to divide the
A + A —+ A reaction scheme into the following three re-
actions:

Z +X~X,
Z+Y~ Y,
X+Y—+Z . (3)

Thus an A moving to the right (left) can react with sta-
tionary A to produce an A that continues to move to the
right (left). Two A's that move towards each other can
react to produce a stationary A. Our purpose is to calcu-
late the survival probability of each "species" and of their
sum (i.e., of all A' s) as a function of time.

We present two methods of solution. The first is a
direct extension of the technique used in Ref. 11 and is
presented in Sec. II. The second approach, presented in

Sec. III, relates the survival probability to the first-
passage-time (FPT) statistics of a nearest-neighbor ran-
dom walk.

II. DIRECT CALCULATION OF THE SURVIVAL
PROBABILITY

The reaction scheme (1)—(3) is most easily considered
by first analyzing the modified scheme wherein in place of
Eq. (3) we have

X+Y~O . (4)

We henceforth assume with no loss of generality that
p —q.

A. Reaction scheme (1), (2), and (4)

We start by considering the survival probability of the
X particles. The situation is very similar to the
A + A ~0 case except that the presence of the stationary
Z particles has to be taken into account. Let a&+, be the
probability that a given X particle will annihilate with the
(k + 1)th particle to its right, and let bk be the probabili-
ty that the moving particles located between X and its
collision partner are all annihilated, with bo ——1. Since
the reaction partner of X must move with velocity —c,
aj, +& is equal to bkq. Note that due to the existence of Z
particles, k is not necessarily even. When k =1, to con-
tribute to b, the particle between X and its annihilation
partner had better be a Z particle (otherwise it would an-
nihilate either the given X or its supposed annihilation
partner). Therefore, b, =r. When k =2 there are two
particles between the given annihilation partners. To
contribute to b2 they must either both be Z particles or
the first particle is an X and the second a Y. Clearly we
cannot have one stationary and one moving (these will
not annihilate) nor can the first be a Y and the second an
X (or they would each annihilate one of the supposed
partners). Continuing this reasoning and noting that the
first particle after the given X must be either an X or a Z
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gives the recursion relation for bI, for k ~ 2,
k —2

bi, =rbr i+— X pqI bk

Introducing the generating function

(5)

and one can explicitly perform the inverse Laplace trans-
form of (9) to obtain for the survival probability at time t

Sx(t)=1—(q/p)' f e '' "' 'I, (4co.&pq r) d—t,

8(s)= g bks
Ic =0

and using it in (5) in the standard way yields

8(s)= (1 —rs) —[(1—rs) 4s pq]—'

2s pq

(6)
where I„(n =0, 1,2, . . . ) denotes a modified Bessel func-
tion. When r =0 we recover the results of Ref. 11. For
the case p =q, the integration can be done exactly and
yields

Sx(t) =e ' '' ""[Io[2ccr(1—r)t]+Ii [2co (1—r)t]J .

S (t)=1—g a„,p(xk, —x «2ct) .
k=0

Assuming that the initial distances xI, +, —xI, between
neighboring particles are identically distributed indepen-
dent random variables with probability density
%'(xk+

&

—xi, ), one finds for the Laplace transform of (8)

Sx(s) = ———g qb„[q( i)]s"+'
I& =0

s s
(9)

where we have used the relation between ak+, and bk
and where B is the generating function (7). For a random
initial distribution of particles with average spacing equal
to o. ', one has

4(s) =
s +2co (10)

This generating function is used subsequently to calculate
the desired quantities.

The survival probability Sx(t) of the chosen X particle
is in turn governed by the probability P(bx «2ct) that
the initial distance Ax between X and its annihilation
partner is smaller than 2ct since the latter is the greatest
distance that the particles can cover as they move toward
each other in the time interval t. Denoting the location
of particle k by x& we can write

(12)

The effect of stationary particles on the survival probabil-
ity of a particle moving with velocity c in the modified re-
action scheme is thus merely a rescaling of time by a fac-
tor (1—r). For the long-time behavior we obtain for

Sx( t) = (2vrc opt ) (13)

while for p & q the long-time behavior is

t
—3/2 —Pt

Sx(t) =
&8irc o (pq) P

(14)

where /3= 2(1 —r —2—&pq )co.
In a similar way or by symmetry, we find the survival

probability Sr(t) for the Y particles to be

Sr(t)=1 —(p/q)' f e " " 'I, (4co&pq r) —dr .

(15)

Finding the survival probability Sz(t) of Z particles is
equivalent to finding the probability that each particle
avoids an encounter with a Y particle from its right [the
factor in the first square brackets in (16)] and with an X
particle from its left [the factor in the second square
brackets in (16)]:

—(& —)Sz(t)= 1 —(q/p)' 'f e " "' 'I, (2co&p rq)
—dr

0
1 —(p/q)'~ f e '' "' 'Ii(2co. &pq r)—dr1

0
(16)

The factor of 2 by which the arguments of the modified
Bessel functions and exponents in (16) differ from those in
(15) and (11) comes from the fact that the relative veloci-
ty of an X-Z or a F-Z pair is c, instead of 2c as in the
case of an X-Y pair. For p =q, the approach of Sz(t) to
the final null state is proportional to t ', which is faster
than the t '~ decay of Sx(t) and Sr(t). When pWq the
situation is reversed: in this case the decay of Sz(t) to
the final state is proportional to t e ~', which is

slower than the r e ~' decay of Sx(t) and Si,(t) [cf.
Eq. (14)]. We do not discuss these results further since
the reaction scheme considered here is merely one set up
for convenience in the analysis of the actual reaction
scheme, which now follows.

B. Reaction scheme (1), (2), and (3)

In this scheme, which is the one of actual interest, the
survival probabilities for X and Y particles are the same
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as in the previous case, (11) and (15), respectively, while
the rate of disappearance of Z has to be modified to in-
clude the production of Z particles due to (3). The decay
of the Z particles that are initially present is given by
(16). On the other hand, the rate of Z-particle creation
between t and t +dt, dZ /dt, is determined from the de-
cay rate of X and Yas follows:

dZ~ dX d Y dSx(t)
dt dt dt dt

(17)

dZ (r)
S, z(r)=rSz(r)+ I Sz(r —r) ' dr,

0 d7-
(18)

which leads to a long-time decay of the form t ' for
p =q and to an exponential decay e ~' when pWq. The
overall survival probability of all the A particles, S,(t), is

In addition, for a Z particle created at time ~ to contrib-
ute to the total survival probability of Z at time r, S, z(t)
[a notation introduced to distinguish this quantity from
the one evaluated in (16)], it has to survive at least until
time t, i.e., its lifetime has to be longer than time t —~.
The probability for this newly created Z particle to have
a lifetime longer than t —~ is in turn determined from the
"initial" distribution of particles at time ~ due to the
renewal property of the system. Therefore, as far as Z
particles are concerned, the process is identical to that of
a trapping problem with a continuous source rate
dZp /dt . ' Since Z particles are created continuously in
time, the contribution of (3) to S, z(t) is through a convo-
lution. Hence'

X X X Y Y Z X

neighbor

FIG. 1. The neighbors of X are mapped onto the distances of
a discrete-time random walk (see text for explanation).

that enter the results.
We do not wish to overemphasize the differences be-

tween the ballistic and diffusion problems: although they
are physically quite different, there is a close formal rela-
tion between them that helps to clarify the reasons for the
similarity in temporal behaviors. In order to exhibit this
forrnal relation, it is useful to re-solve the ballistic coagu-
lation problem using a stochastic first-passage-time ap-
proach. Furthermore, this approach may be more easily
generalized to deal with more complicated ballistic reac-
tions. The stochastic approach is the subject of Sec. III.

S,(t) =pS~(r)+qSr(r)+S, z(t) . (19) III. SURVIVAL PROBABILITY CALCULATED
FROM FIRST PASSAGE TIMES

When p =q, the decay to the empty state is controlled by
the slower decay of Sz(t) and Sz(t) compared to that of
S, z(t) and is hence of the form t '~ . When pWq the
approach to the final state is controlled by the now-
slower term S, z(t), which decays as e

Two comparisons between the results just obtained and
others obtained earlier are in order. One is the compar-
ison between our ballistic coagulation results and those of
the ballistic annihilation reaction 2 + 3 ~0. The only
difference between these long-time results is a rescaling of
the time by an r-dependent factor, i.e., by the probability
that initially a fraction r of the particles is stationary. In
fact, it is not unreasonable to investigate the situation in
which initially none of the particles are stationary (e.g. ,
that initially no coagulation has taken place) and in that
case the long-time results for the annihilation and coagu-
lation reactions are identical when p =q. The other com-
parison that might be made is with a diffusion-limited
coagulation reaction of the form 3 + 2 ~3, for which it
is appropriate to set p =q in our analysis. In both models
the decay behaves as t ' at long times but, as with the
annihilation reaction, the physical reasons are quite
different. As in that case, the decay in the ballistic
coagulation reaction arises from a central limit effect
while that of the diffusion-limited reaction has to do with
the space-time scaling connections. That the physical
basis of the otherwise similar results is different can be
seen from the entirely different nature of the parameters

We illustrate how the survival probability of X parti-
cles can be calculated using the first-passage-time ap-
proach. To find the collision partner of an X particle, we
make the following mapping to a discrete-time random
walk (cf. Fig. 1). We consider a random walk starting at
a distance 1 from the x axis at "time" n =0. The "time"
variable n will correspond to the subsequent neighbors to
the right of the given X particle. If such a neighbor is an
X particle, we take a step of length 1 away from the x
axis (we move "away" from the collision event since this
particle will have to be annihilated first). This happens
with probability p. If such a neighbor is a Y particle, we
take a step of length 1 toward the x axis. The probability
for this event is q. For a stationary neighbor. the step
length is set equal to zero, and the probability of this
event is r =1—p —q. Clearly, the collision partner is
identified with the first "time" that the random walker
reaches the x axis, i.e., the collision partner is the nth
neighbor with probability F, o(n), where F (n)
denotes the distribution for first passage from m to I' in
n "time" steps. ' The latter is related to the probability
distribution P,(n) to go from m to m' in n "time"
steps by the following renewal equation:

P (n)= g F (n')P . (n —n') .
n'=0

In terms of the generating functions
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P (s)= g s"P (n)
n=0

(21)

and

F .(s) = g s "F (n),
n=0

one finds the relation

(22)

P (s)
F .(s)=

P ~ (s)
(23)

For the random walk described at the beginning of the
section, one has that (see the Appendix)

A +2 ~A. On one hand, we find that the coagulation
reaction and the annihilation reaction behave essentially
the same way at long times except for a rescaling of the
time. On the other hand, the time dependences of the de-
cay in the ballistic coagulation reaction when p =q and
the diffusion-limited coagulation reaction are also identi-
cal, but for different physical reasons. The difference is
rejected in the different parameters that enter the decay
laws. Finally, we have derived the ballistic coagulation
results using a random-walk formalism that stresses the
formal connection with the diffusion-limited case and
that can perhaps be generalized to more complicated
ballistic reactions.

P,(s) =y P ~ .(s) for m &' m ' (24a)
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and P ~ .(s), the generating function for the probabili-
ty of return to the starting point, is

P (s)= 1 —y
1 —s

(26)

The survival time ~ of the particle under consideration is
equal to the distance it has to cover to meet its collision
partner divided by the relative velocity. Hence ~ is a ran-
dom variable of the following form:

n

APPENDIX

The compact result (24) for the Laplace transform of
the probability distribution for return to the starting
point can be obtained using the following procedure,
which circumvents the use of spatial Fourier transforma-
tion. The probability distribution P (n) to go from 0 to
m in n steps obeys the master equation

(27) P (n)=pP, (n —1)+qP +, (n —1)+rP (n —1)

where l; is the initial distance between the subsequent
right neighbor of the particle under consideration. n is a
random variable characterized by the probability distri-
bution F& o(n), and the l; are independent, identically
distributed random variables with density 'll 1). Conse-
quently, ~ is a so-called compound random variable, ' '
and the Laplace transform of its probability density is the
composition of the generating function of the probability
distribution for the n variable and the Laplace transform
of the probability density of the variable l/2c. For the
survival probability (i.e., the probability that r is larger
than a given value) one thus obtains

For the generating function

(A 1)

P (s)= gsP (n),
0

one finds

P (s) —5 o=s [pP, (s)+qP +,(s)+rP (s)] .

(A2)

(A3)

This equation can be rewritten in the following recursive
form (we omit the explicit s argument for simplicity):

1 sS~(s)=F, 0(4—(s))=(qy/p)(4(s)) . (28)
sqP +, — P= y—sqP — P, —5 o, (A4)

Since y( t(s) ) =p 4(s)B(4(s) ), cf. Eqs. (7) and (25), one
recovers the result (9).

IV. DISCUSSION AND CONCLUSIONS

We have extended previous work on the ballistic an-
nihilation reaction 3 + 2 —+0 to the coagulation reaction

where y is a solution of the quadratic equation (25). We
consider the solution of this equation with ~y~ & l. By
iteration of (A4), one has

Sp — —y
' for m &0

sqP — P
y 0 for m~0.

Here we have used the fact that for m ~ 0 the right-hand
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side must vanish because otherwise it diverges for
m ~—~. With a second iteration one obtains the result

Using the normalization condition

Pm

)m m

(p/yq) Po — for m )0

(yq/p)l IP for m (0 .

1 —s

(A6)
one finally obtains the result (24) of the main text.

(A7)

D. Toussaint and F. Wilczek, J. Chem. Phys. 78, 2642 (1983).
D. C. Torney, J. Chem. Phys. 79, 3606 (1983)~

P. Meakin and H. E. Stanley, J. Phys. A 17, L173 (1984).
4G. Zumofen, A. Blumen, and J. Klafter, J. Chem. Phys. 82,

3198 (1985).
5Z. Racz, Phys. Rev. Lett. 55, 1707 (1985).
J. L. Spouge, Phys. Rev. Lett. 60, 871 (1988).

7L. W. Anacker and R. Kopelman, J. Phys. Chem. 91, 5555
(1987).

8P. Argyrakis and R. Kopelman, J. Lumin. 40, 690 (1988).
W. Sheu, K. Lindenberg, and R. Kopelman, Phys. Rev. A 42,

2279 (1990).
C. R. Doering and D. ben-Avraham, Phys. Rev. A 38, 3035
(1988); Phys. Rev. Lett. 62, 2563 (1989); M. A. Burschka, C.
R. Doering, and D. ben-Avraham, Phys. Rev. Lett. 63, 700
(1989).

Y. Elsken and H. L. Frisch, Phys. Rev. A 31, 3812 (1985).
W. Sheu and K. Lindenberg, Phys. Lett. A 147, 437 (1990).
A way to see that this relation is valid is to consider the situa-
tion in which Z particles are introduced into the system only
twice: in addition to the Z particles introduced at t =0, we
introduce a "pulse" of such particles at a later time to. In this
case the source term represents the introduction of the second
pulse and is proportional to a 5 function, e.g. ,
dZ~/dt =a5(t —to). The survival probability is then, ac-
cording to Eq. (18), given by S, z(t)=rSz(t)+aSz(t —to).
The significance of each contribution is clear. Equation (18)
is then the generalization to a continuous introduction of new
Z particles.
E. M. Montroll and G. Weiss, J. Math. Phys. 6, 167 (1965).
W. Feller, An Introduction to Probability Theory and its Appli-
cation (Wiley, New York, 1968).


