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Statistical-thermodynamic approach to fracture
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We present a statistical-thermodynamic theory that associates fracture of a solid with the ap-
proach of a spinodal upon increasing stress. This formulation is illustrated by a one-dimensional
model, and the temperature dependence of the nonlinear stress-strain relation and fracture stress is
obtained. A two-dimensional network model is treated by both effective-medium theory and Monte
Carlo simulations, showing metastability and the nucleation of microcracks.

The mechanisms and physical characteristics of frac-
ture continue to attract the attention of many pure and
applied researchers. ' Recent work has focused on quasi-
analytical methods to calculate the failure strength distri-
bution for hierarchical and democratic load-sharing sys-
tems, and on numerical simulation of the mechanical
response of bond networks, ' including molecular-
dynamics (MD) simulations at zero temperature.
Finite-temperature MD computations have been carried
out by Soules and Busbey and by Kieffer and Angell, for
the case of uniaxial and isotropic imposed strains, respec-
tively. Furthermore, Raj and co-workers have modeled
intergranular fracture and cavitation in metals with the
specific aim of estimating growth rates and low-cycle fa-
tigue associated with inclusions and voids.

In most of the analytical and computational ap-
proaches mentioned above, the role of thermal fluctua
tions has been suppressed. In the work that we outline
below, a statist''cal-thermodynamic formulation allows the
temperature to enter from the outset. We treat the solid
under stress as a metastable state of equilibrium, in analo-
gy with the more familiar case of a supersaturated vapor.
Fracture at a failure threshold corresponds to a metasta-
bility limit, or spinodal, just as does nucleation at the
point of critical supersaturation. Nonequilibrium defects
such as macroscopic cracks, dislocations, and impurities
play the same role in decreasing overall strength that
dust particles do in lowering the nucleation barrier. Here
we concentrate on fracture induced in an ideal, defect-
free crystal, that is, the homogeneous nucleation of frac-
ture. A statistical-thermodynamic approach similar in
spirit was presented first by Nishioka et al. and more re-
cently by Englman and Jaeger. A field-theoretic formu-
lation of the nucleation and growth of cracks under ten-
sion has been presented by Rundle and Klein, ' but theirs
is a coarse-grained theory without explicit reference to
the structure of crystal lattices or to the temperature
dependence of fracture strengths. Related formulations
of thermal effects have also appeared in the context of po-
lymer systems; in particular, Termonia, Meakin, and
Smith" have introduced temperature-dependent proba-
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bilities into their simulation of strained networks, but be-
cause the bond breaking is not reversible, they are not
describing a thermal equilibrium situation.

The application of equilibrium statistical thermo-
dynamics to fracture is valid only if fracture occurs at an
intermediate time scale, long enough that the system can
achieve metastable equilibrium, and short enough that
the solid does not undergo a phase transition to a liquid
or gas. An equilibrium theory also requires that in the
absence of fracture a stressed solid must display no hys-
teresis, such that the state of the system may be specified
only by the temperature and the stress or strain. Iron
whiskers appear to satisfy these requirements. They con-
tain few defects (such as impurities or macroscopic
cracks) and have stress-strain behavior that is reversible
(i.e., no plasticity or fatigue) almost up to the fracture
point. ' Furthermore, whiskers under stress have been
demonstrated to exist in a metastable state, in which the
stressed whisker remains undamaged until it eventually
fractures; this phenomenon was labeled "delayed frac-
ture, "' with a lifetime depending on the temperature and
the applied stress.

We illustrate our approach through a schematic one-
dimensional model of a solid under stress. Consider X
harmonic springs, or bonds, arranged in parallel and sub-
jected to a common strain e. Let the ith bond be
represented by the variable s;, with s, =0 and + 1 describ-
ing its broken and intact states, respectively. In the case
where instead a stress is applied to the system, the ap-
plied load is shared democratically among all intact
bonds. Thus the effective interaction range is infinite,
and we expect mean-field-like behavior. With ~ and D
denoting the elastic modulus and dissociation energy as-
sociated with each bond, the system Hamiltonian resem-
bles that of noninter acting spins in a field,&= g; s;(D —

—,'Ice ). It follows that the "magnetiza-
tion, "or fraction of intact bonds, is given by
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the local minimum disappears: it is this limit of metasta-
bility, or spinodal, which we identify as the fracture
threshold, where o, ( T, D, ~) is the ideal fracture strength.

Figure l(b) shows P* versus a. for the particular choice
v=D=1 and several values of T. At T=O, no bonds
break until they all break at the threshold cr, (T=O); in

general, P* decreases continuously with o until
a =cr, (T), at which it drops to O. Similarly, Fig. 1(c)
shows the corresponding o versus e (stress-strain) curves:
only the T=0 curve is linear. The turnover point
(der ld E=O) in the stress-strain curve is exactly the point
where the metastable minimum at P* disappears in the
plot of the free-energy g (P).

Finally, in Fig. 1(d) we display the o vs T-ph-ase dia-
gram. The failure stress decreases with increasing tem-
perature for T & D. In this regime, the curve agrees qual-
itatively with experimental data on the strength of iron
whiskers. ' Over this same range, the failure strain first
decreases and then increases with increasing temperature,
and the nonlinear region of the stress-strain curve [Fig.
1(c)] becomes broader. This result should be compared
with that of the mechanical model with initial random
defects studied by Hassold and Srolovitz, who found a
similar trend with increasing initial density of broken
bonds. From Fig. 1(d) we see that the thermal fluctua-

tions have a significant eAect on the fracture stress even
at relatively low temperatures, e.g. , o., decreases by 50%
as T increases from 0 to only a few tenths of D.

The one-dimensional model can be generalized to
higher-dimensional networks. For a two-dimensional tri-
angular network with central forces, we can use
efFective-medium theory' to express the elastic deforma-
tion energy as

E 1—
P

where P =
—,', the elastic percolation threshold. Further

analysis yields results qualitatively similar to the one-
dimensional model. To go beyond this mean-field ap-
proximation, we carry out a Monte Carlo (MC) simula-
tion of a two-dimensional network model ~ We represent
a two-dimensional crystal as a triangular array of atoms
connected by harmonic bonds. The network is fixed
above and below with an applied overall strain F, and
with periodic boundary conditions connecting the right
and left sides to make a cylinder. The total energy for a
given configuration is E(Is; I

)= g, s, ( ,'gee, D)—, wh—ere
as before s; takes the values 0 or 1 to represent broken
and intact bonds, respectively. The strain e, refers to the
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FIG. 2. For the two-dimensional model MC simulation, (a) stress o. vs MC steps for applied strain @=6%, 7%, and 8%. MC
configurations for 7% strain, (b) in metastable equilibrium, (c) with a nucleated critical crack, and (d) showing propagation of the
crack.
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fractional extension of bond i. The bond states Is; I are
the primary variables in the MC simulation, with the I e; I

determined by mechanical equilibrium for a given
configuration Is; I. As a further simplification, we allow
only the bonds on a single row in the center of the net-
work to fiuctuate. This central row of (approximately
parallel) bonds appears similar to the one-dimensional
model, but now —instead of democratic load sharing-
the load is shared locally through the two-dimensional
elastic strain field. This geometry corresponds to a crys-
tal with a grain boundary where the bonds are much
weaker than those in the bulk.

The simulation proceeds as follows: the initial condi-
tion is all bonds intact, Is; =1I, with initial energy Eo.
Now a bond on the central row is chosen at random and
broken, and the new mechanical equilibrium is calculated
via the conjugate gradient method, ' with corresponding
energy E I . The difference AE =E

&
Ep is then used in

the standard Metropolis algorithm to determine whether
this first MC move is accepted. ' Then another bond on
the central row is picked at random, its state is "Aipped"
(from intact to broken, or vice versa), the energy of the
trial configuration is calculated, and this move is accept-
ed or rejected as described above.

Our simulations were carried out on a 30X30 bond
network with ~=1, D=0.02, and T=0.01 in arbitrary
units, and for strains (uniaxial tension, with no shear
component) in the range 0—10%. In the course of the
MC simulation we monitor the stress o., the vertical re-
storing force exerted by the network against its con-
straint. Figure 2(a) shows the evolution of cr during three
simulations with different applied strains. For small
enough applied strain, F=6%%uo, the stress drops slightly
and then remains essentially constant, indicating that a
few bonds break but the network remains connected. For
sufficiently high applied strain @=8%, the stress drops
rapidly to zero, indicating that the network breaks into
two pieces with virtually no delay. For an intermediate
applied strain @=7%,the stress drops to a plateau value,
remains essentially constant for some time, and then sud-
denly plunges to zero. We identify this behavior as relax-
ation to quasiequilibrium, followed by decay of the meta-
stable state via nucleation of a microcrack that leads to
fracture.

Figures 2(b) —2(d) show a sequence of MC
configurations for the case of intermediate applied strain.
In the first configuration, the system is in metastable
equilibrium, and there are only small clusters of broken
bonds generated by thermal fluctuations. In the second
configuration, a large cluster of broken bonds, or micro-
crack, has nucleated. In the last configuration, the crack
has begun to propagate across the network. Eventually
the network breaks into two pieces.

Just as in studies of nucleation in the Ising model, ' we
cannot associate a real lifetime with such a metastable
state, because we have not explicitly included any kinetic
mechanism for the nucleation process. We can, however,
appeal to the Griffith' theory of crack stability to esti-
mate the size of the critical crack in the nucleation pro-
cess, and to expose thereby the physical basis for metasta-
bility. We plot in Fig. 3 the energy 8„ofa configuration
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FIG. 3. Crack energy 6„(in units of D) vs crack length n for
applied strain e=6%%uo, 7&o, and 8%.

with a single cluster of n broken bonds on the middle
row, with 1~n ~20, for several values of the applied
strain in our triangular network. Here 8, plays the role
of the total energy in the Griffith picture, including terms
analogous to the elastic strain energy and the line energy.
The value n, that maximizes 8„ is the critical crack size,
which decreases with increasing strain, as does the
effective energy barrier. We have also calculated from
the MC simulations the size distribution of broken-bond
clusters —or microcracks —prior to nucleation, and
found that it agrees roughly with a Boltzmann distribu-—

c~ /T
tion, e.g. , the number of clusters of size n -e ' for a
given strain. The kinetics associated with nucleation of
cracks over an energy barrier in real stressed crystals
may, however, be complicated by surface reconstruction
and other effects that inhibit crack healing. '

We are presently investigating fracture in a two-
dimensional crystal via both MC and molecular-
dynamics simulations, with a focus on metastability and
nucleation of critical defects. We also intend to explore
finite stress or strain rate effects and thereby test the
range of validity of the statistical-thermodynamic ap-
proach. Angular force effects will also be studied, by
comparing the simulation results for pair versus many-
body potentials.
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