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The wave-number-dependent Lamb-Mdssbauer factors (LMF’s) of big and small particles in a
glass of neutral hard spheres are investigated within mode-coupling theory by varying size ratio 8,
total packing fraction 7, and concentration c;. It is possible to form a glass by the big particles
only, while the small particles retain their mobility. Diffusion blocking of small particles is
achieved by increasing either 7 or 8. The wave-number dependence of the small particles’s LMF
shows characteristic deviations from a Gaussian in contrast to big particles’ LMF, which is almost

Gaussian.

I. INTRODUCTION

The idea of Leutheusser' and Bengtzelius and Gotze
and Sjolander? to relate the liquid-glass transition to a
zero-frequency pole emerging from the density-relaxation
spectrum has been exploited continuously®™!° to under-
stand the dynamics of supercooled liquids and their criti-
cal behavior at the transition point. In all these papers,
the well-known mode-coupling theory (MCT) has been
employed. Several important implications of MCT on
the liquid-glass transition have been confirmed by a hy-
drodynamic approach!! and by molecular-dynamics simu-
lations.!>!3 Most of these attempts have been on the
freezing of one-component systems, however, in which lo-
calization of all particles of the system is associated with
the arrest of density fluctuations, i.e., both coherent and
incoherent density relaxation functions acquire a nonzero
long-time limit signaling a transition to the nonergodic
glass state. Many interesting physical phenomena like
the percolation problem or the conductor-nonconductor
transition in ionic glasses cannot be investigated within
these models. Therefore, it has been suggested® to study
multicomponent systems and to look for the tagged-
particle motion. In this paper we will investigate Lamb-
Moéssbauer factors (LMF’s) for binary mixtures of small
and big particles within MCT. The theory requires
nonergodicity parameters f(g) and static structure fac-
tors as input, which is provided by our previous paper
(referred to as paper I in the following).

The paper is organized as follows. In Sec. II we define
the nonergodicity parameters as the ¢ =oo limit of the
density-relaxation function of a tagged particle. Using
the expression of double differential scattering cross sec-
tion the nonergodicity parameters are recognized as the
LMPF’s of the system. The approximate way to calculate
these LMF’s is provided by MCT, which generates a
self-consistent method for LMF’s. These LMF’s are cal-
culated by varying 7, §, and ¢, of the system. The results
|
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are presented in Sec. III. In Sec. IV we give a summary
and conclusions.

II. FORMAL FRAMEWORK

A. Tagged-particle density-relaxation function

Following the notation of paper I we define the
tagged-particle density-relaxation function for a particle
of species s as

¢s(q,t)=i 2 <eiq~r;(t)e~iq.r;(0)>
NS 1Sj=N;
=(N%q)le "N %q)) , W

with the normalized tagged-particle density of species s
NoAq)=exp(—iqtV kT . )

¢,(q ;1) describes the density distribution of a tagged par-
ticle at time ¢ >0, which was placed into the origin at
t =0. From linear-response theory one finds

(NXq)),=¢,(q;1), 3)

where ¢,(q =0,1)=1=¢,(g,t =0).
long-time limit

()= lim 6,(g,t)=(N%Q|Py(L)IN%q)) , )

Consequently, the

viz, f(r)=V"!3.e'9"f,(q) determines the probability
of finding a tagged particle at finite distance 7 from its ini-
tial position after a long time r— . Accordingly, we
talk about a delocalized or localized particle depending
upon whether f(g)=0 or #0.

B. Experimental relevance of f(q):
Lamb-MGéssbauer factors

The scattering cross section for incoherent scattering is

2 <e~iq-rj(t)eiq~rj> ) (5)
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where bi"°° denotes the incoherent scattering length and
W9(q,t) describes the internal dynamics of the target par-
ticles. The long-time limit of the tagged-particle relaxa-
tion function thus determines the intensity of recoilless
incoherent scattering:!'*
incoh
d%o
dQdw

«< SN |bi" " 2W(q,0)f,(q) . (6)

recoilless s

While in thermal neutron scattering ¥(q,w)=2m78(w),
making the recoilless incoherent scattering also elastic,
this is not so in general. A well-known example is the
Mossbauer absorption experiment, for which ¢ =k, and
w=cky(1+v/c)70 if ik, is the momentum of the ab-
sorbed incoming ¥y quantum, c¢ the velocity of light in
vacuum, and v/c the small relative frequency shift pro-
duced by the moving y source. Obviously, a detector
behind the absorber would give a counting rate

, d*o
Z{v) e |const dQdo |o=cky(1+v/c)
o [const — f,(g)¥(g,(c +v)ky)] )]

if s denotes the particle species which consists of the
Mossbauer nuclei. The Doppler shift vk, produced by
the moving source is so small that the other terms in the
total cross section do not vary with v appreciably
(— Venax <V <V;ax and v, of order 107 ms™!) and are,
therefore, included in the constant term in Eq. (7)
[Aw=>=v,,ko=10"2 ms™1(14.4 /#ic) keV for Fe’’, for ex-
ample]. From the above it is clear that the long-time lim-
it of the tagged-particle relaxation function, f(g), is sim-
ply the LMF of particle of species s.

C. Mode-coupling equations for LMF’s

Using the Mori-Zwanzig formalism'® and adopting the
procedure used for Debye-Waller factors (DWF) in paper
I, the generalized oscillator equation for the tagged-
particle density-relaxation function in the ¢ — oo limit>!*
reduces to

v’q°f(q)+ K (q)[f,(g)—1]=0 . (8)

Here v, denotes the particle’s thermal velocity
(vi=kyT/m,, m, the mass of particles of species s). Ap-
plying MCT to the friction kernel K (q) we find for a
two-component system K, (q)=v2K,(q),
K(q)=1/(N;g*)3 3 f,(lq—k|)(k-q)*C,;(k)C,;(k)
ij k
X[Sii(k)Sjj(k)]'/zf,-j(k) ,

(9a)
where according to Eq. (8)

fi(@=1/[14+q*/K ()] . (9b)

Here C,.(k) are the direct-pair-correlation functions
whose explicit expressions are given in paper I and
S A(k)=[I—C(k)],' denotes the partial structure fac-
tors. Note that K has an explicit linear dependence on
the LMF’s, while in paper I we saw that K. depends bi-
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linearly on f(q). Unlike the nonergodicity parameters
fss(q), which are strongly interdependent through highly
nonlinear equations, the LMF’s f(g) are solved separate-
ly for species 1 and 2. The latter are only indirectly cou-
pled via the static structure factors and the nonergodicity
parameters entering Egs. (9) as input information.

III. NUMERICAL RESULTS

The nonlinear Eqgs. (9) have been solved for LMF’s
self-consistently for various values of the system parame-
ters 1, 8, and c;.

A. Glass instability

In this subsection we consider the solutions of Eq. (9)
for ¢;=0.9, §=0.2 as 7 is varied from 17=0.57 to 0.51.
We find nonzero solutions f,(q)> 0 for 7=0.52 (see Fig.
1) while f,(g)=0 for the lowest density 7=0.51 due to
vanishing coherent input parameters f;;(g). Thus for
n>17, (0.51<n,<0.52) the big particles are localized,
forming a glassy matrix in which the small particles move
(localized or delocalized, see below). The shape of LMF
of the big particles is very nearly Gaussian. This is
demonstrated by plotting In[f,(g)] as a function of g*
(Fig. 2) or, more clearly, in Fig. 3, where we show the g-
dependent generalized localization length of the large
particles

L(g)=[2/K,(@)]"/*, (10)

in comparison to the same quantity (shown by dashed
lines for two 7 values) for a purely Gaussian LMF,

IZ(q)IGaussian:(z{exp[q212(0)2/2]_1}/qz)l/z .1

Figure 4 shows the variation of //I,(q) with respect to
for a representative q value. It is interesting to note that
the inverse localization length varies linearly with 7 in
the whole range of calculations. The slope of this
straight line can be understood by generating an iterative

1.0

fo(q) [

0.5

00 1 1 1 1 1 1 1
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q0;
* FIG. 1. Lamb-Modssbauer factor f,(g) of a big particle for to-
tal packing fraction 7=0.52, 0.53, 0.54, 0.55, 0.56, and 0.57 at
fixed 8=0,/0,=0.2 and ¢,=N,/(N,+N,)=0.9. The se-
quence of curves is that of the 7 list.
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FIG. 2. In[f,(q)] vs (go,)*. All parameters as in Fig. 1.

solution of Eq. (9) starting from the strong-friction limit
f(g)=1,1i.e, Ks(q)(m: o, according to

K (@"W=K (@)= F,(q;q—k)k>/[k*+K (k)" V],
k

s=2. (12)

Here
F.(q;k)
=1/(q2Ns )E(k-q)zés,-(k)C'sj(k)[S,-,-(k)Sjj(k)]l/sz(k)

ij
and K (¢q)'V=3,F,(q;q—Kk) is independent of q. Figure
5 demonstrates the behavior of the first (n =1), second
(n =2), and converged (n — o) solution of Eq. (12). It is
clear from this comparison that the linear slope of
V'K,(q) found as a function of 7 in our calculations
reflects this same linear behavior of the strong-friction
limit. Note that the second term in Eq. (12) only contrib-
utes a correction =25% to the strong-friction limit. Due
to extremely slow convergence, our calculations have not

|2(q)/02'v"1-"'1'"'|""
0.10

FIG. 3. Generalized localization léngth /,(g) of a big particle
(measured in units of o,). All parameters as in Fig. 1. Dashed
lines are the Gaussian approximation, Eq. (11), to I,(q) for
7=0.52 and 0.57.

86=0.2. [/(q) is measured in units of 7,].

been carried out sufficiently close to the glass-transition
point 7, to observe the expected asymptotic 1/ n—1, be-
havior. Such nonanalytic behavior of the solution of Eq.
(9) will result from the V71—, asymptotic form of the
coherent input f;;(q) (see paper I and Ref. 7).

Turning to the small particles’ properties, Fig. 6 shows
the LMF’s f(q) for various 1 which differ qualitatively
from the f,(q). While for > ,>75 (0.52<7n 4 <0.53)
the small particles are localized (though with a much
longer localization length than the big particles), they get
delocalized, i.e., they are diffusing through the glassy ma-
trix of big particles for 7 <% ,. This phenomenon, which
was first predicted in Ref. 9, has recently been observed
in a computer simulation'® of a binary mixture of
Lennard-Jones particles. As temperature was decreased,
the system showed a glass transition at 7 =T}, indicated
by an abrupt strong decrease of the diffusion constant of
the big particles, while the small particles’ diffusion con-
stant remained liquidlike until it dropped to a small value
of hopping diffusion at temperature T, < Tp. Within the
classification of ergodic-to-nonergodic transitions given
by Gotze,® the delocalization transition is of type 4,
while the glass transition corresponds to a type-B transi-
tion. This explains our choice of notations above. It is
interesting to note that the partial packing fraction of

small  particles [7c,;8%/(c;8+c,—nc,)=0.071 at
50— T T T T
fay
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FIG. 5. Iterative solutions of Eq. (12), [KY(q)03]'"?, for
n =1 (triangles), n =2 (open circles) and n = o (solid circles).
All parameters as in Fig. 4.
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FIG. 6. Lamb-Moéssbauer factor f;(g) of a small particle for
total packing fraction 7=0.53, 0.54, 0.55, 0.56, and 0.57 at fixed
8=0.2 and ¢, =0.9. Inset shows In[f,(q)] vs (go,)% The se-
quence of curves is that of the 7 list.

1n=0.57, 6=0.2, and ¢, =0.9] is so low that it would cor-
respond to a dilute liquid (for hard spheres) if the interac-
tion with the big particles were not present. However,
strong long-range indirect interactions mediated via the
big particles localize the small particles even at such low
densities. Classification of a low-density charged hard-
sphere liquid has been reported recently,17 and it is, of
course, also the long-range of Coulomb interactions
which is responsible for the glass forming in that system.

A second characteristic difference in the LMF’s of
small and big particles is the continuous decrease to zero
of the inverse localization length as the delocalization
point n=1m 4, is approached (Fig. 4). Figure 7 shows the
generalized g-dependent localization length /,(g), which
exhibits an interesting dip at wave vector g, [g, is the po-
sition of the main peak in S,,(g)], the physical
significance of which can be understood from the proba-
bility density function P,(r)=4xr%f (r). In Fig. 8, P,(r)
(solid line) and

1(q)/0,
3.0

2.5

2.0

1.0

0.5

FIG. 7. Generalized localization length /,(g) of a small parti-
cle (measured in units of o,). All parameters as in Fig. 6.
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1 1

0 3 o, 4

FIG. 8. Probability density P,(r) (solid curve), P9(r)
(crosses), and P{(r) (open circles) for fixed n=0.53, ¢, =0.9,
and §=0.2.

2r

Pl(r)=
=750

-2
exp 1.00) s (13a)

(crosses) are plotted for 7=0.53, where particles are
about to delocalize. Here P9(r) is obtained by approxi-
mating K (g)~K(0)=2/1%(0) in Eq. (9), i.e.,

fi(@)=1/[1+1g%13(0)] . (13b)

In addition, Fig. 8 shows the Gaussian probability distri-
bution (open circles)

P(r)=4mr?exp{ —r2/[213(0)]} /[2713(0)]?"2 . (13¢)
In order to emphasize the non-Gaussian character of the
motion of the small particles. Obviously, the anharmonic
thermal motion of the small particles with large localiza-
tion is much better approximated by the expression Eq.
(13a) than the conventional assumption of a Gaussian
probability distribution, Eq. (13c). The position 7,,, of
the broad maximum in Fig. 8 is determined by the locali-
zation length /,(0) and given by r,,,, =1,(0)/V'2 [accord-
ing to Eq. (13a)], while the oscillations of P,(r) around
the approximate distribution P9(r) reflect the structure of
the glassy matrix, with the oscillation length being rough-
ly equal to the diameter of the big particles.

Turning to Fig. 4, again we note that the 7 interval
covered in our calculations is so small that essential devi-
ations from a linear 7 dependence of /] (g) are not ob-
served. In contrast to the localization length of the big-
particles, where /; !(g) could be understood in terms of
the strong-friction limit /5 '(0)=~(K$")72, I71(0) is
small compared to [K{"”(0)]'/? and thus cannot be ap-
proximated by the strong-friction expressions. In spite of
(K(IU )1/2 being about ten times as large as /; '(0), both
quantities vary linearly with the same slope as 7 is
changed. This observation, makes unlikely the possibility
that the straight-line behavior of /;1(0) is an artifact due
to an infrared singularity to be discussed below.
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B. Concentration dependence of LMF’s

The influence of concentration variations on LMF’s
has been studied by varying c¢; from 0.1 to 0.9 at fixed
7n=0.55 and 6=0.2. In Fig. 9, f,(g) and f,(q) are plot-
ted for various c¢;. First, it is to be noted that the half-
widths of LMF’s for large and small particles differ by a
factor of about 8, indicating a correspondingly large
difference in their localization lengths. Secondly, the
trend in the variation of the widths as ¢, is increased is
opposite. While the localization length of the big parti-
cles is decreased [increasing width of f,(g)], the small
particles exhibit a slight increase in their localization
length as ¢, is varied from 0.1 to 0.9.

The behavior of the localization length of the big parti-
cles (Fig. 10) seems quite plausible because we expect
these particles to become more and more confined by the
small particles as ¢;—1. More precisely, we expect
I,(cy,—1)/0,=0.058, since from Fig. 3 of Ref. 2 we con-
clude that for a hard-sphere one-component system at
n=0.55, I/0~=0.05. The opposite limiting value for
¢;—0 [l,(¢c;—0)/0,=0.05] is almost reached at
¢;=0.1. The reason for /, staying essentially constant up
to about ¢; =0.7 can be traced back to the almost con-
stant partial packing fraction 1,=nc,/(c,;8°+c¢,) in the
range 0.1<¢; <0.7. .

Turning back to the LMF of the small particles (Fig.
9), these particles exhibit strongly anharmonic motions
with large localization lengths. This is demonstrated in
Fig. 11. Due to the large values of /,(¢)|Gaussian» EQ- (11)
increases rapidly with increasing g, falling outside the
frame of Fig. 11 for go, = 6. It is interesting to note that
the trend of an increasing localization length /; with in-
creasing concentration must be reversed in the small in-
terval 0.9 <c; <1, since we expect /,(c;—1)/0,=0.05,
according to the above argument. The onset of this de-
crease of /; can be observed by the weaker g dependence
of I,(q) (Fig. 11) for ¢; =0.9.

1 1 Il 1 1 L !

10 20 30 qg, 40

FIG. 9. Lamb-Modssbauer factors of big particles [ f,(g)] and
small particles [f,(q)] for ¢,=0.1, 0.3, 0.5, 0.7, and 0.9 and
fixed 6=0.2, #=0.55. For small particles the sequence of
curves is from right to left according to the ¢, list, while for big
particles it is the opposite.
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FIG. 10. Generalized localization length ,(q) for a big parti-
cle (measured in units of 0,). All parameters as in Fig. 9. The
dashed line at ¢, =0.9 is the Gaussian approximation, Eq. (11),
to I,(g). The inset shows /,(g =0.4)/0, vs ;.

Figure 12 shows for ¢; =0.1 and 0.9 information about
the detailed spatial distribution of the small particles
which is contained in the g dependence of f,(g) or,
equivalently, in /,(g). The common features of P,(r),
which remain invariant with concentration (see inset, Fig.
12), are the small shoulder at r =1-20,, in addition to the
first broad peak at around r =0-30,. These features can
be understood if we recall Fig. 8, where P,(r) was shown
for lower density (n=0.53, ¢, =0.9, and §=0.2). Due to
an increase in density accompanied by a stronger locali-
zation of the particles, the small-r shoulder of P,(r) in
Fig. 8 evolves to a pronounced peak in Fig. 12, while the
central peak of Fig. 8 reduces to a shoulder in Fig. 12,
suggesting that small particles still get a chance to go
around a big particle once in a while. In contrast, for
1=0.53 this is a most frequent event, making r=1.30,
the most probable distance to find the small particle for
t— . A somewhat related feature is the appearance of
a shoulder, which has been seen very recently in a
molecular-dynamics simulation by Raux et al.'® Howev-

l1(q)/ o,

3.0

25

2.0

1 L . 1 1 1 I 1

10 20 30 qg, 40

FIG. 11. Generalized localization length /,(q) for a small
particle. Other details as in Fig. 10.
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2.0 2.5

0.5 1.0 1.5

/0,

FIG. 12. Probability density P;(r) (solid curve), PS(r)
(crosses), and PY(r) (open circles) for fixed 1=0.55, ¢,=0.1,
and §=0.2. Inset shows P,(r) for ¢,=0.9 in comparison to
P(r)at C;=0.1.

er, the small peak in their 41rr2GSl(r,t) [Gsl(r, t) is the self-
density autocorrelation function] at around 1.00, has
been traced back to activated processes allowing the par-
ticles to jump into the interstitial sites of the disordered
system. It is also clear from Fig. 12 that there is stronger
localization of the small particles when their concentra-
tion is increased. This fact is seen through the increase in
the first peak height and its shift towards smaller dis-
tance.

C. Size-ratio dependence of LMF’s

Figure 13 shows f,(g) for n=0.55, ¢, =0.5, and vari-
ous size ratios 8. At high packing fraction, the big parti-
cles are strongly localized at all § and form a rigid glassy
matrix, even when the small particles get delocalized® for
8=0.14. The big particles’ LMF can be well represented
by Gaussians (see inset, Fig. 13; for deviations from
Gaussian, see Sec. IIT A) with mean-square displacements
u?=113(0) increasing slightly with decreasing 8. Thus,

0.4

0.2

00 200 300 (qo,)?
i 1 1 1 1 1 1

10 20 30 qg, 40

FIG. 13. Lamb-M®dssbauer factor f,(g) of a big particle for
5=0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and 1.0 at fixed ¢;=0.5 and
7=0.55. The inset shows In[f,(g)] vs (go,)*. The sequence of
curves is that of the 8 list.
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inclusion of small particles into the voids of a glassy ma-
trix produces a destabilizing effect on the rigid matrix.

In contrast to the behavior of the big particles, the lo-
calization length of the small particles changes drastically
with increasing & (Figs. 14 and 15). Also, Fig. 14, as well
as Fig. 2(a) of Ref. 9, clearly displays a continuous tran-
sition from a nearly Gaussian (8=1) to a highly non-
Gaussian (6=0.2) form of f,(g). It is interesting to note
that the mode-coupling equations, Eq. (9), correctly ac-
count for the expected change from nearly harmonic os-
cillations of localized particles (6=1.0 and =0.55) to
the very anharmonic motion of small particles in the
voids of a frozen matrix. Figure 15 shows that the locali-
zation length I, of small particles increases continuously
as 8 approaches a critical value 8, (0.1<8§, <0.2), where
I, becomes infinite. The detailed behavior of /; close to
the delocalization transition is marred by an infrared
singularity!>?® which dominates the solution of Eq. (9)
for sufficiently large /,. It is responsible for an asymptot-
ic linear dependence /; ! xe=8/8,—1, which seems to
prevail in our numerical calculations up to §=0.3 (see in-
set Fig. 15). The infrared singularity can be avoided?! by
postulating a wave-number-independent friction kernel in
Eq. (9), K,(g,e)=K(¢€), and solving Eq. (9) for ¢ =0:

1
1=SF(qk)———, (14)
2R @k s e
which results in
- ® 2. d_ / °
Ki(e)=e| [ “dk k>~ —F(k,e) . [ "dk F(k,0
(15)

with
F(k,e)=3C;(k)C\;(k)[S;(k)S;;(k)]'/2f;;(k)
i

for e—0. The solutions of Eq. (15) are also shown in Fig.
15 (triangles). Equations (15) and (16) imply the critical
behavior ;! <€!/2, which is the same as for a Lorentz
particle,?! and this is clearly exhibited by the numerical

1.0
f(q)

0.5

0.0

1 L 1 ! L I i

10 20 30 40

qo,

FIG. 14. Lamb-MGéssbauer factor f,(q) of a small particle for
6=0.2,0.3,0.5, 0.5, and 1 at fixed ¢, =0.5 and 7=0.55. The se-
quence of curves is that of the & list.
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FIG. 15. Inverse localization length 1//,(q) vs & at fixed
g =0.4, ¢, —0.5, and n=0.55. Solid circles: solution of Eq. (9):
triangles: solution of Eq. (14); open circles: strong-friction limit
solution of Eq. (12). The inset shows 1//,(g) according to Eq.
(9) near the delocalization. [/,(g) is measured in units of 0,).]

solutions (Fig. 15) with §,~0.18. Note that for §>0.2
the solutions of Eqgs. (9) and (15) are rather similar.
Therefore, we think that the calculated K,(g) gives a
reasonable picture of reality, although the nearly linear
increase of \/Kl(q) for 0.14 <5 <0.3 should not be tak-
en seriously, since it is an artifact of infrared singularity
with no physical relevance.

In our opinion, it is important to keep the g depen-
dence in the friction kernel of small particles, since it de-
scribes physically plausible structural features of the
glassy matrix (see Fig. 8). In this sense, Eq. (15) consid-
erably overestimates K(g) for § >0.25 (Fig. 15). Howev-
er, close to the delocalization transition the approxima-
tion Eq. (15) is to be preferred for the reason discussed
above. Near =1 the results for K;(q) may be under-
stood by the strong-friction limit expression Eq. (12) ac-
cording to the argument in Sec. III A. This limit is indi-
cated in Fig. 15 by open circles.

Finally, Fig. 16 shows the probability distribution for
8=0.3 and for a comparison, an inset with P (r) for
8=1. Nearly harmonic behavior of the particles at =1
is very clearly seen by the nearly dumb bell structure of
P,(r). There is only a small deviation from the Gaussian,
as is marked by the shift in the position of the maximum
[#max =11(0)V'2=0.0710, for purely Gaussian distribu-
tion]. As 8 is decreased, the increased localization length
is clearly exhibited by P,(r), which is now better approxi-
mated by Eq. (13a) rather than a Gaussian. At §=0.3,
the probability distribution of the small particles does not
yet reflect the same detailed structure of the glassy matrix
as was seen for §=0.2 (Fig. 8). However, the long tail of
P,(r) points out the fact that the particle is making long-
distance excursions.

IV. SUMMARY AND CONCLUSIONS

The implications of the glass transition (paper I) in a
binary mixture of hard spheres, on the long-time limits of

—1..
L 1
0.15
0.5 1.0 1.5 |'/()'2 2.0
FIG. 16. Probability density P,(r) (solid curve). P9(r)

(crosses), and P{(r) (open circles) for fixed 7=0.055, ¢;=0.5,
and 6=0.3. Inset shows for comparison P,(r) at 5=1.0.

the tagged-particle density-relaxation functions (LMF’s)
has been studied within mode-coupling theory. We cal-
culated the wave-number-dependent LMF’s for both
species at various system parameters. As long as parti-
cles of both species have similar size, we find that the
liquid-glass transition is associated with the localization
of all particles in the system. The localization length
drops discontinuously from infinity (liquid) to a finite
value (glass), which is consistent with Lindemann’s melt-
ing criterion. If the diameter ratio is chosen sufficiently
small, a new phenomenon will appear. While the big par-
ticles are localized at the glass-transition point as dis-
cussed above, the small particles will keep their mobility
and diffuse through the voids of the glassy matrix. On in-
creasing the packing fraction further (see Sec. III A), the
diffusion will be blocked, and the small particles become
localized in a type- A4 transition.

The wave-number dependence of the LMF of the big
particles is well represented by a Gaussian for all 7 down
to the glass-liquid transition point reflecting small-
amplitude oscillations in a harmonic potential. In con-
trast, the LMF of the small particles has a characteristic
non-Gaussian form. The outstanding feature of this
LMF is that its values in the large-q wing are much larger
than those of a Gaussian of corresponding localization
length. Physically, this result of our calculation reflects
the motion of the small particles in “channels” which are
determined by the anharmonic potential set up by the
glassy matrix.
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