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Glass transition of two-component liquids. II. The Lamb-Mossbauer factors
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The wave-number-dependent Lamb-Mossbauer factors (LMF's) of big and small particles in a
glass of neutral hard spheres are investigated within mode-coupling theory by varying size ratio 6,
total packing fraction g, and concentration c&. It is possible to form a glass by the big particles
only, while the small particles retain their mobility. Diffusion blocking of small particles is
achieved by increasing either g or 5. The wave-number dependence of the small particles LMF
shows characteristic deviations from a Gaussian in contrast to big particles LMF, which is almost
Gaussian.

I. INTRODUCTION

The idea of Leutheusser' and Bengtzelius and Gotze
and Sjolander to relate the liquid-glass transition to a
zero-frequency pole emerging from the density-relaxation
spectrum has been exploited continuously ' to under-
stand the dynamics of supercooled liquids and their criti-
cal behavior at the transition point. In all these papers,
the well-known mode-coupling theory (MCT) has been
employed. Several important implications of MCT on
the liquid-glass transition have been confirmed by a hy-
drodynamic approach" and by molecular-dynamics simu-
lations. ' ' Most of these attempts have been on the
freezing of one-component systems, however, in which lo-
calization of all particles of the system is associated with
the arrest of density fluctuations, i.e., both coherent and
incoherent density relaxation functions acquire a nonzero
long-time limit signaling a transition to the nonergodic
glass state. Many interesting physical phenomena like
the percolation problem or the conductor-nonconductor
transition in ionic glasses cannot be investigated within
these models. Therefore, it has been suggested to study
multicomponent systems and to look for the tagged-
particle motion. In this paper we will investigate Lamb-
Mossbauer factors (LMF's) for binary mixtures of small
and big particles within MCT. The theory requires
nonergodicity parameters f„.(q) and static structure fac-
tors as input, which is provided by our previous paper
(referred to as paper I in the following).

The paper is organized as follows. In Sec. II we define
the nonergodicity parameters as the t = ~ limit of the
density-relaxation function of a tagged particle. Using
the expression of double differential scattering cross sec-
tion the nonergodicity parameters are recognized as the
LMF's of the system. The approximate way to calculate
these LMF's is provided by MCT, which generates a
self-consistent method for LMF's. These LMF's are cal-
culated by varying q, 5, and c& of the system. The results

are presented in Sec. III. In Sec. IV we give a summary
and conclusions.

II. FORMAL FRAMEWORK

A. Tagged-particle density-relaxation function

where (I), (q =O, t)= 1=g, (q, t =0). Consequently, the
long-time limit

f, (q)= lim p, (q, t)=(N, (q)~Po(X)~No(q)}, (4)

viz, f, (r) = V ' g e'q'f, (q) determines the probability
of finding a tagged particle at finite distance r from its ini-
tial position after a long time t~~. Accordingly, we
talk about a delocalized or localized particle depending
upon whether f, (q) =0 or WO.

B. Experimental relevance of f, (q):
Lamb-Mossbauer factors

The scattering cross section for incoherent scattering is

Following the notation of paper I we define the
tagged-particle density-relaxation function for a particle
of species s as

iq r' (t) .iq. r' (—0) ~.
s

=(N, (q))e ' ')N, (q)),
with the normalized tagged-particle density of species s

N, (q) =exp( i q r',—)+ks T .

P, (q;t) describes the density distribution of a tagged par-
ticle at time t )0, which was placed into the origin at
t =0. From linear-response theory one finds
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Z (v) cr- const'—
d20-

d +dc' co= cko(1+ v/c)

~ [const —f, (q)+'(q, (c +v)ko) ]

if s denotes the particle species which consists of the
Mossbauer nuclei. The Doppler shift vko produced by
the moving source is so small that the other terms in the
total cross section do not vary with v appreciably
(
—v,„~v~ v,„and v,„oforder 10 ms ') and are,

therefore, included in the constant term in Eq. (7)
[Aco=v, „ko =10 ms '(14.4/Rc) keV for Fe, for ex-
ample]. From the above it is clear that the long-time lim-
it of the tagged-particle relaxation function, f, (q), is sim-

ply the LMF of particle of species s.

C. Mode-coupling equations for LMF's

Using the Mori-Zwanzig formalism' and adopting the
procedure used for Debye-Wailer factors (DWF) in paper
I, the generalized oscillator equation for the tagged-
particle density-relaxation function in the t~ ~ limit '
reduces to

where b,'"""denotes the incoherent scattering length and
'0'(q, t) describes the internal dynamics of the target par-
ticles. The long-time limit of the tagged-particle relaxa-
tion function thus determines the intensity of recoilless
incoherent scattering

hlllCO

~ QN, Ib,'"""I'II'(q, rv)f, (q) .
recoilless s

While in thermal neutron scattering 4'(q, rv)=2rr5(cv),
making the recoilless incoherent scattering also elastic,
this is not so in general. A well-known example is the
Mossbauer absorption experiment, for which q =ko and
cv=cko(1+v/c)%0 if fiko is the momentum of the ab-
sorbed incoming y quantum, c the velocity of light in
vacuum, and v/c the small relative frequency shift pro-
duced by the moving y source. Obviously, a detector
behind the absorber would give a counting rate

linearly on f„.(q). Unlike the nonergodicity parameters
f„.(q), which are strongly interdependent through highly
nonlinear equations, the LMF's f, (q) are solved separate-
ly for species 1 and 2. The latter are only indirectly cou-
pled via the static structure factors and the nonergodicity
parameters entering Eqs. (9) as input information.

III. NUMERICAL RESULTS

The nonlinear Eqs. (9) have been solved for LMF's
self-consistently for various values of the system parame-
ters g, 6, and c l.

l~(q) = [2/K2(q) ]' (10)

in comparison to the same quantity (shown by dashed
lines for two rl values) for a purely Gaussian LMF,

l2(q)Io„„„,„=(2Iexp[q l2(0) /2] —1]/q~)'~2 . (11)

Figure 4 shows the variation of l/l2(q) with respect to rl
for a representative q value. It is interesting to note that
the inverse localization length varies linearly with g in
the whole range of calculations. The slope of this
straight line can be understood by generating an iterative

A. Glass instability

In this subsection we consider the solutions of Eq. (9)
for c, =0.9, 6=0.2 as g is varied from q=0. 57 to 0.51.
We find nonzero solutions f2(q) )0 for rl ~ 0.52 (see Fig.
1) while f2(q)=0 for the lowest density r)=0. 51 due to
vanishing coherent input parameters f; (q). Th.us for
g) rl, (0.51 (rl, (0.52) the big particles are localized,
forming a glassy matrix in which the small particles move
(localized or delocalized, see below). The shape of LMF
of the big particles is very nearly Gaussian. This is
demonstrated by plotting in[f2(q)] as a function of q
(Fig. 2) or, more clearly, in Fig. 3, where we show the q-
dependent generalized localization length of the large
particles

v,'q'f, (q)+E, (q)[f, (q) 1]=0'. — (8)
1.0—

Here U, denotes the particle's thermal velocity
(v, =k~ T/m„m, the mass of particles of species s). Ap-

2

plying MCT to the friction kernel K, (q) we find for a
two-component system It., (q) =v,~K, (q),

K, (q)=1/(N, q )g g f, (lq —kI)(k q)'C„(k)C„(k)
i,j k

X [S;;(k)S,i(k)]' f; (k),
(9a)

where according to Eq. (8)

f, (q) = 1/[1+q /K, (q) ] . (9b) 0.0-
I
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Here C„(k) are the direct-pair-correlation functions
whose explicit expressions are given in paper I and
S„(k)=[I—C(k)]...' denotes the partial structure fac-
tors. Note that K, has an explicit linear dependence on
the LMF's, while in paper I we saw that K„depends bi-

FIG. 1. Lamb-Mossbauer factor fz(q) of a big particle for to-
tal packing fraction g=0. 52, 0.53, 0.54, 0.55, 0.56, and 0.57 at
fixed 5=0 1/0 2=0.2 and cl =Xi /(1V'& +IVY ) =0.9. The se-
quence of curves is that of the q list.
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B. Concentration dependence of LMF's

The inhuence of concentration variations on LMF's
has been studied by varying c, from 0.1 to 0.9 at fixed
g=0. 55 and 5=0.2. In Fig. 9, f I(q) and fz(q) are plot-
ted for various c, . First, it is to be noted that the half-
widths of LMF's for large and small particles difFer by a
factor of about 8, indicating a correspondingly large
difFerence in their localization lengths. Secondly, the
trend in the variation of the widths as c

&
is increased is

opposite. While the localization length of the big parti-
cles is decreased [increasing width of f2(q)], the small
particles exhibit a slight increase in their localization
length as c& is varied from 0.1 to 0.9.

The behavior of the localization length of the big parti-
cles (Fig. 10) seems quite plausible because we expect
these particles to become more and more confined by the
small particles as c& —+1. More precisely, we expect
l2(c I ~1)/o.2=0.055, since from Fig. 3 of Ref. 2 we con-
clude that for a hard-sphere one-component system at
g=0. 55, l/o. =0.05. The opposite limiting value for
c,~0 [lz(c, —+0)/o. &=0.05] is almost reached at
c, =0.1. The reason for lz staying essentially constant up
to about c, =0.7 can be traced back to the almost con-
stant partial packing fraction gz=qcz/(cI6 +cz) in the
range 0. 1 &c, &0.7.

Turning back to the LMF of the small particles (Fig.
9), these particles exhibit strongly anharmonic motions
with large localization lengths. This is demonstrated in
Fig. 11. Due to the large values of lI(q)~o,„„;,„,Eq. (11)
increases rapidly with increasing q, falling outside the
frame of Fig. 11 for qo. 2

~ 6. It is interesting to note that
the trend of an increasing localization length l& with in-
creasing concentration must be reversed in the small in-
terval 0.9(cI (1, since we expect lI(cI ~1)/o2=0. 05,
according to the above argument. The onset of this de-
crease of l

&
can be observed by the weaker q dependence

of lI(q) (Fig. 11) for c, =0.9.
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FIG. 10. Generalized localization length lz(q) for a big parti-
cle (measured in units of o.2). All parameters as in Fig. 9. The
dashed line at c& =0.9 is the Gaussian approximation, Eq. (11),
to l2(q). The inset shows l, (q =0.4)/o. 2 vs cj.

I ~(q)/o2

Figure 12 shows for c& =0. 1 and 0.9 information about
the detailed spatial distribution of the small particles
which is contained in the q dependence of fI(q) or,
equivalently, in lI(q). The common features of P, (r),
which remain invariant with concentration (see inset, Fig.
12), are the small shoulder at r = 1 2ITz, in addition to the
first broad peak at around r =0 3o2. These features can
be understood if we recall Fig. 8, where P, (r) was shown
for lower density (rl=0. 53, cI =0.9, and 5=0.2). Due to
an increase in density accompanied by a stronger locali-
zation of the particles, the small-r shoulder of P, (r) in
Fig. 8 evolves to a pronounced peak in Fig. 12, while the
central peak of Fig. 8 reduces to a shoulder in Fig. 12,
suggesting that small particles still get a chance to go
around a big particle once in a while. In contrast, for
q=0. 53 this is a most frequent event, making r =1.3o2
the most probable distance to find the small particle fort~ ~. A somewhat related feature is the appearance of
a shoulder, which has been seen very recently in a
molecular-dynamics simulation by Raux et al. ' Howev-
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FIG. 9. Lamb-Mossbauer factors of big particles [f2(q)] and
small particles [f,(q)] for c, =0.1, 0.3, 0.5, 0.7, and 0.9 and
fixed 6=0.2, g=0.55. For small particles the sequence of
curves is from right to left according to the c& list, while for big
particles it is the opposite.
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FIG. 11. Generalized localization length l, (q) for a small
particle. Other details as in Fig. 10.
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cussed above, the small particles will keep their mo i ity
and diffuse through the voids of the glassy matrix. On in-
creasing t e pac ingh k fraction further (see Sec. III A), the
diffusion will be blocked, and the small particles become
localized in a type- 3 transition.

LMF of the bigThe wave-number dependence of the
all downpartic es is we re

'
1 11 presented by a Gaussian for a

small-to the glass-liquid transition point reflecting sma-
1' de oscillations in a harmonic potential. In con-

trast, the LMF of the small particles has a characracteristic
form. The outstanding feature of thisnon-Gaussian orm. e

LMF is that its values in the large-q wing are muc ar er
h th of a Gaussian of corresponding localizationt an oseo

len th. ysica y,Ph
'

ll this result of our calculatio
the motion of the small partic es in "les in "channels" which are
determine y ed b th anharmonic potential set up by the
glassy matrix.
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