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Role of end chains in the reentrant behavior of a nonpolar system
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In this paper we propose to estimate the role of chain conformations in bringing about reentrant
polymorphism in a nonpolar sample of mesogens. To this end we also show that the reentrant
phenomenon is built in the McMillan model, if one explicitly incorporates the e8'ect of tail-chain
conformations in the molecular potential instead of treating the chains as an extension of the rigid
part. The model is next utilized to predict the single reentrance I-N-Sm-N„with lowering of tern-
perature in a nonpolar system.

I. INTRQDUCTIOlV

Since the discovery of reentrant polymorphism in a
binary mixture of two polar compounds, ' a large number
of investigations have been carried out in this field.
Liquid-crystalline systems exhibiting such reentrant po-
lymorphism I X Sm X„-, a-nd -the double (or triple) reen-
trant phase sequence consist of organic molecules usually
with three or four aromatic rings with ester linkages and
having polar cyano or nitro-end groups. Apart from
pure compounds, ' such reentrant polymorphism with a
lowering of temperature is also exhibited by binary mix-
tures of polar-polar, ' ' polar-nonpolar, ' or even by
nonpolar-nonpolar compounds. "' The last one howev-
er only shows the single reentrant phase sequence. Fur-
ther, as a given homologous series is ascended the reen-
trant phase sequence is shown by the higher homologs
(e.g. , usually by the octyloxy, nonyloxy, etc. members)
which are neither very short nor very long. These
findings indicate that the dipolar force plays a crucial
role in the reentrant polymorphism. There are theoreti-
cal models' ' that emphasize this role of dipolar force
to bring about the phase sequence. A number of theories
assume some sort of bimolecular organization (di-
mers)' ' or even trimers or n-mers with antiparallel
association that compensates (not always fully) the dipole
moments. This system of dimers or n-mers together with
existing monomers can bring about the desired phase se-
quence. Such theories can also explain the variation of
layer thickness' ' as an interdigitation or reorienta-
tion' (in the case of constant layer thickness) of the com-
ponent systems in a mean-field approach. These theories
essentially show that the high-temperature smectic phase
is an induced phase and the reentrant nematic phase is
brought about by a competition between two incommens-
urate lengths. This two-length theory is also one of the
main ingredients of the Landau theory of the phase tran-
sition developed by Prost and Barois. ' A further re-
view of theories and experiments for reentrant nematic
phases can be found in Refs. 24 and 25.

However, the occurrence of single reentrance I-X-Sm-
X„(Refs. 11 and 12) in a binary mixture of nonpolar
compounds cannot possibly be due to such dipolar forces.

In fact, for such systems, observation' on layering thick-
ness shows no hint for the kind of dimerization as is
found in reentrant systems with polar compounds. The
above result, together with the observation that in all the
systems discussed the reentrant phase usually occurs for
certain members (usually eighth or ninth) of the homolo-
gous series, indicate that the tail chains should have some
active role in bringing about the reentrance. Dowell
proposed a lattice model for condensed phases that pre-
dicted reentrance in a single-component nonpolar system.
In that model, it is seen that a segregated packing of
cores beside cores and chains beside chains occurs with a
lowering of temperature leading to a usual smectic phase.
With further lowering of temperature, the chains become
less flexible, and packing differences between the rigid
cores and tail chains decrease. Thus, the need for segre-
gated packing of rigid cores with cores (and tail chains
with tail chains) is overcome by entropy of unsegregated
packing, leading to the disappearance of the smectic-A
phase and the appearance of the reentrant nematic phase.
In other words, the Dowell model holds the change in
chain configuration responsible for reentrance. We
present in this section some results we have obtained on
the role of chains in bringing about reentrance in a
single-component nonpolar sample. As in the case of po-
lar systems, ' ' our present study is also based on a
molecular mean-field approach and the starting point, so
to say, is again the McMillan model. Here, however,
we show that the reentrant phenomenon is built in the
McMillan model, if one explicitly incorporates the efFeet
of tail-chain conformations in the molecular potential in-
stead of treating the chains as an extension of the rigid
part. The model is used next to predict the single reen-
trant phase sequence I-iV-Sm-X„with lowering of tem-
perature in an idealized nonpolar system. Our results
also indicate that chain conformations alone can give rise
to reentrance for certain intermediate members of a
homologous series only under some very restrictive con-
ditions.

II. THEORY

Let us consider a system of molecules, each with a rig-
id core (maybe consisting of three or four aromatic rings),
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where r is the separation between the centers of mass of
the molecules and 0&2 is the angle between their long
axes, U(r) represents the short-range central force while
the term with W(r ) describes the orientational forces due
to the anisotropic dispersion forces, quadrupole-
quadrupole forces, etc. ' McMillan further chose the fol-
lowing specific forms of U ( r) and W (r):

W(r)= — exp[ —(r/ro) ],«o~
U(r) =BW(r),

(lb)

where U and 0 are constants characterizing the strengths
of the two parts of interactions and ro, which specifies the
range of interaction, is of the order of the length of the
rigid part (core) of the molecule. The mean field (keeping
only the lowest-order nonvanishing term of the Fourier
expansion and consistent with the periodic structure in a
smectic phase) described by the pair interaction potential
is given by

27TZ
VM(cosO, z) = —

U Bar cos

27TZ+ g+ o.o. cos Pz(cos9)

where g is the orientational order parameter,
g= (Pz(cos8) ); r is the layering order parameter,
r= (cos(2~z/d) ); o is the layering curn orientational or-
der parameter,

o.= (P2(cos8)cos(2~z/d) ),

a=2 exp[ (rrro/d) ], — (lc)

d being the layer thickness.
Defining il&0,&=o =0 as the nematic and

g&0, r&0, o.%0 as a smectic phase, a phase sequence
Sm-N-I can be reproduced. Moreover, a phase diagram
for a homologous series can also be obtained by varying
a. As a homologous series is ascended, d (which is taken
as equal to the molecular length as the smectic phase con-
sidered by McMillan was a smectic-3 i phase) increases;

remaining constant n likewise increases. In subse-
quent work of the authors it has been conclusively es-
tablished that the phase sequence Sm-N-I can be obtained
even when one ignores the short-range central force term
in the Kobayashi potential [Eq. (la)] and the phase dia-
gram for a homologous series reproduced with this
simplified potential hardly differs in any essential way

and chains on either side of it. We further imagine that
the linkages are apolar. In order to bring forth the ra-
tionale behind our extension of the McMillan model we
first review briefly the essential aspects of McMillan's
work. "

In his model, McMillan used a simple form of pair in-
teraction potential suggested by Kobayashi

V, 2
= U(r)+ W(r)P2(cos0, 2),

from the diagram with U(r) taken into consideration.
It has also been shown by Lee et al. that the mono-

tonic rise of Sm-N and Sm-I temperatures in McMillan's
model, which contradicts experimental results, can be
rectified by modifying W(r) as

n n
exp[ —(r/ro)2],

where n„and n are the number densities of molecules
along x and y directions.

Thirdly, the Aexibility of polymethylene chains was ex-
plicitly taken into consideration by Marcelja, Mukher-
jee et al. , ' and by Luckhurst to reproduce the even-
odd effect in N-I and Sm-N transitions.

In the present paper we draw attention to another
inadequacy of the McMillan model which can be rectified
to give rise to the possibility of reentrant polymorphism,
though in a very narrow range of model parameters.

In the McMillan model ro which is the range of pair
interaction [Eq. (lb)] and also the layer thickness d in Eq.
(lc) are constants (independent of temperature) for a
member of a homologous series. We think this to be an
oversimplification for Aexible molecules The layer thick-
ness, which is taken to be the length of a molecule,
should change with temperature as the average
configuration of the end chains changes. Moreover, the
contribution to the longitudinal polarization of a mole-
cule from the C—C bonds of the tails would also change
with temperature. As the temperature is lowered the all-
trans contribution with maximum longitudinal polariza-
bility will be favored. In other words the polarizability
spreads out along the molecular axis as the all-trans
configuration becomes more and more probable thereby
changing the shape of the Gaussian pair potential. The
range of interaction therefore gets changed. From the
above consideration it is clear that a change in the value
of ro and d with temperature may bring in a change in
the value of the cx parameter in contrast to being a con-
stant in the McMillan model. Over and above this, in the
McMillan model a is varied to take care of a homologous
series. But there is no way of linking a specific value of o.
to a particular member. To do this we have to put
specific values of d and ro for a member of a homologous
series. As explained above these d and ro values can also
vary with temperature. This change of d and ro (and the
associated change in a ) from member to member, and
also their change with temperature for a particular
member, is what we endeavor to introduce in this work.

The change in d from member to member and also
with temperature is rather straightforward. This can be
done, ' which will be discussed later in this section, by
generating explicitly all possible conformations of chains
following Flory. Further, as more and more of the C—C
bonds are added, the polarizability of the molecules
should spread out along the axis. The ro should, there-
fore, increase for higher members. Moreover, as the tem-
perature is reduced the chains should straighten out more
resulting in a rise in the value of net polarizability of the
molecules. The maximum spread occurs when the chains
are in an all-trans conformation. We assume a "work-
able" though very simplified and intuitive variation of the
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core length. In this model the width of the Gaussian r,
consists of two parts

=r o+Ar

where r,o is the length of the central rigid aromatic part
of the molecule without any of the chain segments. This
r,o, which remains constant with temperature, is analo-
gous to ro in McMillan's o.. The Ar is the spread in the
Gaussian due to the straightening of the chain part. If
we, for the sake of simplicity, consider that the rigid part
extends to the whole all-trans length at T=O K we can
take Ar at some other temperature to be the probable all-
trans length, i.e., Ar is the all-trans length of the chains x
all-trans probability (P,„)at that temperature.

With these changes McMillan a is modified to

~ (r,o+br)
cx —2 exp

where (1) is the average length of the molecule to be cal-
culated from the conformations of the molecule. The
all-trans probability at any given temperature can also be
calculated by generating all the conformations properly
weighting them by the respective intrachain conforma-
tional energies. One further point is that in the applica-
tion of the McMillan model to ordinary smectics it is ob-
served that a calculated from Ts ~ [using the expression
(lc)] corresponds to the core length usually smaller than
the geometrical size of the core, i.e., the core length
relevant to a is a fraction K, of r„ the geometrical
length. With this possibility o; can be written in our mod-
el as

where the layer thickness d is equal to ( i ) as the smectic
phase considered in this work is really a smectic-A1
phase. The layer normal is taken as the z direction. v is
the coupling constant characterizing the interaction
strength and a is given by Eq. (3).

The order parameters are given by the self-consistent
equations

q= f fP2(cos8)exp( —
VM /kT)d (cos9)(1/Z), (6a)

2&za'= f f cos P2(cosg)exp

X (
—V~ /k T)d (cos8)( 1/Z),

where Z is the partition function.
With this we write the free energy per particle in units

of kT

F/kT= —
—,'v(il +ao. )

—log, Z

cos5 sin5 cosP;

T; = sin5 —cos5 cosP;

sin5 sing,
—cos5 sing;

Calculation of ( i, ) the average chain length
and I'„, the all-trans probability

To calculate P„and (l, ) we are to explicitly generate
chain conformations using internal angles and the corre-
sponding orientation in molecular frame. Adopting the
convention of Flory the transformation matrix from
(i +1)th frame attached to the (i +1)th segment to the
ith frame can be written as

(x=2 exp sing; —cosP;

where K, is taken as a constant for a given homologous
series. Moreover, for a homologous series r,o is a con-
stant. Knowing r,o and K„successive members can be
treated individually with the addition of one C—C bond
at one or either end. At this point we would like to point
out an interesting aspect of a in Eq. (3). For a particular
member of the homologous series McMillan's 0. of Eq.
(lc) is a constant, independent of temperature. The a of
the present model however changes with temperature.
As the temperature changes, both b, r and ( I ) change and
as a consequence a can, in certain cases, decrease [as evi-
dent from the results of Table III and Eq. (3)] with the
lowering temperature giving rise to a reentant nematic
phase. Now, taking the pair interaction potential

where vr 5is the bo-nd angle and P, dihedral angle for the
ith chain segment.

In the rotational isomer model the dihedral angle can
take three values. For a trans configuration the angle/=0' and for the two gauche states (g+,g ) the values
of P are +120' and —120', respectively. Therefore, a set
of P values for the segments gives a conformation of the
chain. For a given conformation the components of the
unit vector along the (i +1)th C—C bond can be ob-
tained in the rigid core frame by the following transfor-
mation:

vi +1 T1 Ti —1Ti

0

8'(r) = — exp[ (r/r, )]—V

nl e ~
(4)

2&zV~= —v r)+ao. cos P2(cos9),

[the alternative choice of the modified form of Eq. (2) is
discussed later in this section] and following McMillan,
we write the mean field experienced by a molecule

The projection of the unit vector of the (i +1) C—C
bond along the molecular axis (defined as the axis of the
rigid part of the molecule) is thus u, + i. In units of C—C
bond length, u, +1 is, in fact, the projected length of the
bond along the molecular axis. Transforming all the
C—C bonds and adding them we obtain the projected ax-
ial length of a chain for that conformation. The average
of this projected length over all the conformations is tak-
en to be (l, ). For the calculation of the average length,
we need to weight the individual conformation in accor-
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1=2

where i indicates the chain segment number and
represents any of the three rotation isomer states t
( trans), g

—(gauche).
For polymethylene chains the rotation energies taken

were

E(t, t)=E(g+, t)=E(g ', t)=0,
E(t,g+ ) =E(g —,g

—
) =400 cal/mol,

E (g,g ) =E (g,g
+

) =2000 cal /mol .

The partition function Z, for chain configuration is thus

Z, = g exp( —U,„,/kT) .
all conf.

As U;„, of an all-trans state is zero, the all-trans probabil-
ity P„ is given by

Pt = 1/Z

U; exp( —U;„,/k T)
all conf. i = 1(l, )=

Z.
2.0,

and (l)(=d)=r,„+(l,).
The all-trans length for the 1Vth homolog, assuming

dance with the respective conformational energies. For a
given conformation the conformation energy, i.e., the in-
termolecular interaction energy of a polymethylene chain
of N segments,

N

chains on either side is

N(l+cos6), N even
l (N+1)+(N —1)cos5, N odd .

Now that we can calculate b, r and ( l„), we solve the set
of self-consistent equations and the stable solution is
picked up corresponding to the minimum of the free en-
ergy.

III. RESULTS AND DISCUSSION

Our model system consists of nonpolar molecules that
have rigid cores with fiexible chains on either side of
them. We assume 5=68', typical of the polymethylene
chain. As discussed in Ref. 38, this value of the
carbon-carbon bond angle is in accordance with the evi-
dence provided by analysis of the x-ray diffraction of
crystalline n-alkanes, ' by electron diffraction of gase-
ous n-alkanes from propane to heptane, ' and by the mi-
crowave spectrum of propane. Taking each chain seg-
ment to have unit length, calculation was done for
different values of r,o (in units of C—C bond length) for a
homologous series with chain segment members up to
%=7. We restricted ourselves to N ~7 primarily due to
the excessive computation time needed for higher
members. Taking TN I between 300 and 400 K the
search for reentrance was continued down to a tempera-
ture about —,'T& I. This has been taken to be a typical
range for mesophases of thermotropic liquid crystals.
The lower bound is low enough for most systems to crys-
tallize. Now, varying the input parameter a;„(value of a
chosen at T& t ) it is seen that reentrance can be obtained

TABLE I. Values of 9 (= T& I /T) at transitions for the sixth homolog. (T~ I has been taken to be
300 K and calculation was done up to 2= 3.8; —indicating that the former phase prevails. )

+in

0.50
0.55
0.60
0.65
0.70

1.0
1.0
1.0
1.0
1.0

r,o= 1.7
N-Sm

1.4
1.4

Sm-N„

2.6
2.8

1.0
1.0
1.0
1.0
1.0

rco = 1.9
N-Sm

1.6
1.4
1.4
1.4

Sm-N„,

2.2
2.6
2.8
3.0

I-N

1.0
1.0
1.0
1.0
1.0

r,o =2.0
N-Sm

1.6
1.4
1.4
1.4

Sm-N„

2.3
2.6
2.8
3.2

Oin

0.50
0.55
0.60
0.65
0.70

I-N

1.0
1.0
1.0
1.0
1.0

rco =2.2
N-Sm

1.6
1.4
1.4
1.4

Sm-N„

2.4
2.8
3.0
3.2

I-N

1.0
1.0
1.0
1.0
1.0

r,o
=2.6

N-Sm

1.8
1.6
1.4
1.4
1.2

Sm-N„

2.4
2.8
3.2
3.4
3.8

I-N

1.0
1.0
1.0
1.0
1.0

r,o= 3.0
N-Sm

1.8
1.6
1.4
1.4
1.2

Sm-N„

2.6
3.2
3.4
3 ' 8

+in

0.50
0.55
0.60
0.65
0.70

I-N

1.0
1.0
1.0
1.0
1.0

r,o= 3.4
N-Sm

1.6
1.6
1.4
1.4
1.2

Sm-N„

3.0
3.4
3.8

I-N

1.0
1.0
1.0
1.0
1.0

r.o=3 6
N-Sm

1.6
1.6
1.4
1.4
1.2

Sm-N„,

3.2
3.6

I-N

1.0
1.0
1.0
1.0
1.0

r, o
= 3.8

N-Sm

1.6
1.4
1.4
1.4
1.2

Sm-N„

3.7
3.8
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TABLE II. Phase sequence of other members when the fitted

parameters of N=6 are extended to them. —indicates that the

former phase prevails (r,0 =2.0 T~ I = 300 K, and K, =0.6405).

No. of
chain

segments 2 at
I-N N-Sm Sm-Nre

Value of a
at phase

transitions
I N NSm Sm-N„

1.0
1.0
1.0 1.350
1.0 1.0

2.60

0.081
0.344
0.620 0.545
0.848 0.837

0.209

for %=4—7 for r, p
~ 3.8. For larger values of r, p the com-

petitive effects of Ar produced by all-trans probability
and b, (l ) have nearly equal and opposite effects on the
layering interaction parameter 0.; it either decreases very
slowly, or even increases marginally with lowering of
temperature such that the reentrance temperature be-
comes too low. Admissible values of o.;„also lie in a nar-
row range between 0.4 and 0.8. Some results on N=6 are
shown in Table I. The tabulated results clearly show that
Ts + goes down with increasing r,p. Therefore, what

re

we may infer is that a reentrance is possible but at a small
value of r,p so that Ts is not too low. A value of r,pre

around 4 (i.e., length of the core is four times that of a
C—C bond) is, however, too small for a real system
where the core consists usually of more than one phenyl
ring. Another aspect of our study is whether a reen-
trance occurring in a particular member persists over
other members as well. It is to be pointed out that
though we could reproduce reentrance for N=4 —7, we
had to use different r, p and n;„ for different members.
What we ought to do is to fix a value of K, from one

member showing reentrance and use the same value of K,
(and also r, o& for other members as well. For example,
we have chosen X=6 for finding E, . Taking the
T& I =300 K data for a;„=0.62 we find K, =0.6405. Us-
ing this K, and taking r,p=2.0 we can find the corre-
sponding u;„ for each member from N=4 —7 and go on
looking for the phase sequences for each member. Re-
sults are shown in Table II. It is seen that while we start-
ed with parameters appropriate for reentrance in %=6,
we do not have this phenomenon repeated in other
members. What happens is that the computed a;„ for a
lower member is quite low. For such systems all-trans
probability p„at T~ I is fairly high, but due to a limited
number of conformations, P„ is found to increase rather
slowly at lower temperature. This together with the vari-
ation of (1, ) reduces the a parameter steadily at low
temperature and the smectic phase is unstable except for
very low temperature. Thus the lower homologs exhibit
only the I-X phase sequence down to quite low tempera-
tures. As the homologous series is ascended, the system
shows a tendency to exhibit smectic polymorphism,
where at N=6, it shows the reentrant phase sequence I-
N-Sm-X„. For still higher homologs, n;„at Tz I is quite
high (Table II), but all-trans probability is low. At high
temperature, the smectic phase is found to stabilize
(Table II&. However, due to the large number of confor-
mations available, P„ increases significantly with the
lowering of temperature. This together with the varia-
tion of ( 1, ) induces a lowering of the a parameter that is
not quite sufhcient to distabilize the smectic phase. Con-
sequently reentrance vanishes for the higher member.
Variation of p„and (1, ) with temperature are shown for
%=4—7 in Table III.

Thus our calculation on the nonpolar system demon-
strates that a change in chain configuration with temper-
ature may lead to reentrance. It should however be stat-

TABLE III. All-trans probability and average chain lengths for dift'erent members of the homologous series T=300 K,
r, = ro, +hr, ts. r =P,„ times the all-trans length equals P„l,„, (1)= r,o+ ( 1, ), ( 1, ) denotes the average length of chain, X denotes the
number of chain segments, r,o=2.0 and K, =0.6405.

p„

N=4
Lt, =4.7492

(t, ) X,r, y(t) p, „

N=5
L„=5.4984

(t, & rC, r, x(t & p, „

N=6
L„=7.4984

(1, ) ~, r, )(t& p, „

N=7
L,„=8.2476

(1, ) rC, r, x(t)

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

0.278
0.313
0.348
0.384
0.421
0.458
0.496
0.532
0.568
0.603
0.637
0.669
0.70
0.728
0.755

1.73
1.81
1.87
1.93
1.99
2.06
2.10
2.16
2.20
2.26
2.30
2.34
2.38
2.42
2.46

0.569
0.586
0.603
0.622
0.651
0.658
0.677
0.696
0.716
0.731
0.755
0.764
0.778
0.791
0.802

0.154
0.168
0.213
0.246
0.281
0.316
0.356
0.395
0.434
0.474
0.513
0.552
0.589
0.624
0.659

2.32
2.38
2.56
2.68
2.80
2.92
3.04
3.16
3.28
3.40
3.50
3.62
3.72
3.82
3.90

0.422
0.483
0.445
0.458
0.473
0.487
0.503
0.517
0.532
0.546
0.562
0.574
0.587
0.598
0.610

0.085
0.106
0.130
0.157
0.187
0.220
0.255
0.293
0.332
0.373
0.414
0.455
0.496
0.536
0.575

2.90
3.06
3.22
3.34
3.48
3.62
3.74
3.88
4.00
4.14
4.24
4.36
4.46
4.56
4.64

0.344
0.353
0.365
0.381
0.398
0.415
0.436
0.457
0.479
0.500
0.524
0.544
0.567
0.587
0.608

0.043
0.050
0.062
0.076
0.092
0.110
0.13
0.154
0.178
0.205
0.234
0.265
0.297
0.332
0.367

3.0
3.18
3.34
3.47
3.61
3.75
3.89
4.04
4.18
4.33
4.48
4.62
4.78
4.94
5.08

0.302
0.298
0.301
0.308
0.315
0.324
0.335
0.346
0.349
0.373
0,388
0.404
0.420
0.437
0.435
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ed that our calculation is based on very drastic assump-
tions and that reentrance has been obtained only for
well-chosen values of some parameters. How well our
model would relate to real systems is an open question.
What the calculation indicates is that a gradual stiffening
of chains may play a positive role in reentrant
phenomenon. The encouraging aspect of this work is
that reentrance is expected for certain intermediate
members only. We may further conclude that chain Aexi-
bility may be one of the contributing factors for the ob-
served reentrance in a nonpolar mixture.

It should be mentioned that we used the pair potential
as in Eq. (lb) rather than the potential of Eq. (2) which
can give rise to the downward slope of N-I curves with an
increasing number of chain segments. The reason is that
for flexible molecules the potential of Eq. (2) poses a
problem —we cannot strictly assume that only n, is

changing (as was done in Ref. 32 to reproduce a lowering
of N-I transition temperature as a homologous series is
ascended) from member to member and n and n are
remaining constant irrespective of temperature. This is
because gauche states are more probable at higher tem-
perature and as a result a molecule sort of spreads out la-
terally.

In conclusion we would like to say that the above work
supplements Dowell's lattice model for condensed
phases for reentrance in systems of nonpolar mole-
cules.

ACKNOWLEDGMENTS

The uses of an IRIS-80 computer at the Variable Ener-
gy Cyclotron (VEC) site in Calcutta is thankfully ac-
knowledged.

*Permanent address: Scottish Church College, Calcutta
700 006, India.

~Permanent address: R.K. Mission Vidyamandira, Belur, West
Bengal, India.

&Permanent address: Saha Institute of Nuclear Physics, Calcut-
ta 700009, India.

P. E. Cladis, Phys. Rev. Lett. 35, 48 (1975).
2G. Sigaud, Nguyen Huu Tinh, F. Hardouin, and H.

Gasparoux, Mol. Cryst. Liq. Cryst. 69, 81 (1981).
F. Hardouin, G. Sigaud, M. F. Achard, and H. Gasparoux,

Phys. Lett. 71A, 347 (1979); Solid State Commun. 30, 265
(1979).

4N. V. Madhusudana, B. K. Sadashiva, and K. P. L. Mood-
ithaya, Current Science 48, 613 (1979).

5F. Hardouin and A. M. Levelut, J. Phys. 41, 41 (1980).
R. Sashidhar, B. R. Ratna, V. Surendranath, V. N. Raja, S.

Krishna Prasad, and C. Nagabhushan, J. Phys. Lett. 46, 445
(1985)~

7Nguyen Huu Tinh, H. Gasparoux, J. Malthete, and C. Des-
trade, Mol. Cryst. Liq. Cryst. 114, 19 (1984).

8L. Benguigui and F. Hardouin, J. Phys. Lett. 42, 111 (1981).
R. Dabrowski, K. Pyc, J. Przedmojski, and B. Pura, Mol.

Cryst. Liq. Cryst. 129, 169 (1985).
B. Engelen, G. Heppke, R. Hopf, and F. Schneider, Mol.
Cryst. Liq. Cryst. Lett. 49, 193 (1979).
G. Pelzl, S. Diele, I. Latif, W. Weissflog, and D. Demus,
Cryst. Res. Technol. 17, K78 (1982).
S. Diele, G. Pelzl, I. Latif, and D. Demus, Mol. Cryst. Liq.
Cryst. 92, 27 (1983).
G. R. Luckhurst and B. A. Timini, Mol. Cryst. Liq. Cryst. 64,
253 (1981).
W. H. deJeu, Solid State Commun. 41, 529 (1982).

~~Lech Longa and W. H. deJeu, Phys. Rev. A 26, 1632 (1982).
T. R. Bose, C. D. Mukherjee, M. K. Roy, and M. Saha, Mol.
Cryst. Liq. Cryst. 126, 197 (1985).
T. R. Bose, D. Ghosh, M. K. Roy, M. Saha, and C. D. Mu-
kherjee, Mol. Cryst. Liq. Cryst. 142, 41 (1987).
T. R. Bose, D. Ghose, M. K. Roy, M. Saha, and C. D. Mu-

kherjee, Mol. Cryst. Liq. Cryst. 172, 1 (1989).
L. V. Mirantsev, Mol. Cryst. Liq. Cryst. 133, 151 (1986).

2oJ. O. Indekeu and A. N. Berker, Phys. Rev. A 33, 1158 (1986).
A. N. Berker and J. S. Walker, Phys. Rev. Lett. 47, 1469
(1981).
P. S. Pershan and J. Prost, J. Phys. Lett (Paris) 40, L-27
(1979).
J. Prost, P. Barois, J. Chim. Phys. 80, 65 (1983).

~4A. Nayeem and J. H. Freed, J. Phys. Chem. 93, 6539 (1989).
P. E. Cladis, Mol. Cryst. Liq. Cryst. 165, 85 (1988).
F. Dowell, Phys. Rev. A 31, 2464 (1985);31, 3214 (1985).
F. Dowell, Phys. Rev. A 28, 3520 (1983);28, 3526 (1983).
F. Dowell, Phys. Rev. A 36, 5046 (1987).
F. Dowell, Phys. Rev. A 38, 382 (1988).
W. L. McMillan, Phys. Rev. A 4, 1238 (1971);6, 736 (1972).
Introduction to Liquid Crystals, edited by E. B. Priestley, P. J.
Wojtowicz, and P. Sheng (Plenum, New York, 1975).
D. Ghosh, T. R. Bose, M. K. Roy, M. Saha, and C. D. Mu-
kherjee, Mol. Cryst. Liq. Cryst. 154, 119 (1988).
F. T. Lee, H. T. Tan, Y. M. Shih, and C. W. Woo, Phys. Rex.
Lett. 31, 1117 (1973).
S. Marcelja, Solid State Commun. 12, 405 (1973);J. Chem. 60,
3599 (1974).
C. D. Mukherjee, B. Bagchi, T. R. Bose, D. Ghosh, M. K.
Roy, and M. Saha, Phys. Lett. A 92, 403 (1982)~

C. D. Mukherjee, T. R. Bose, D. Ghosh, M. K. Roy, and M.
Saha, Mol. Cryst. Liq. Cryst. 103, 49 (1983).
G. R. Luckhurst (unpublished).

3sP. J. Flory, Statistical Mechanics of Chain Molecules (Intersci-
ence, New York, 1969).

H. J. M. Bowen and L. E. Sutton Tables of Interatomic Dis
tances and Configurations in Molecules and Ions (The Chemi-
cal Society, London, 1958).
H. M. M. Shearer and V. Vand, Acta Crystallogr. 9, 379
(1956).

4~R. A. Bonham, L. S. Bartell, and D. A. Kohl, J. Am. Chem.
Soc. 81, 4765 (1959).
D. R. Lide, Jr., J. Chem. Phys. 33, 1514 (1960).


