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Physics of photosensitive-grating formation in optical fibers

Victor Mizrahi, Sophie LaRochelle, and George I. Stegeman
Optical Sciences Center, University ofArizona, Tucson, Arizona 85721

John E. Sipe
Department ofPhysics, University of Toronto, Toronto, Ontario, Canada M5S 1A 7

(Received 8 May 1990)

We study the physics of photosensitive-fiber-grating formation in optical fibers, assuming a local
bleaching model, and demonstrate that sustained grating growth is possible. Good agreement with
our experimental results is obtained after including fiber heating effects and assuming a reasonable
two-photon absorption cross section. The grating is predicted to be chirped in space.

I. INTRODUCTION

It has been some years since the discovery that certain
germania (Ge02) -doped glass optical fibers can show a
photosensitive response to a single-longitudinal-mode ar-
gon laser beam, leading to the formation of light-induced
Bragg-matched phase gratings. ' Despite a recent resur-
gence of interest in this phenomenon, there are still many
questions surrounding the growth of these gratings. An
early experiment provided evidence that the process be-
gins with two-photon absorption (TPA) of the argon laser
beam. Later it was suggested by Meltz et al. that this
TPA results in the bleaching of an ultraviolet defect ab-
sorption band of the glass, resulting in a modification of
the index of refraction in the visible region of the spec-
trum. ' Recent work has built on this picture, adding
the suggestion that new absorption bands are formed
which contribute to the index change, perhaps even dom-
inating over the simplest bleaching effect. In either case
we shall generically refer to this approach as a "bleaching
picture. " Such a picture is an example of a local model:
a model in which the modification of the index of refrac-
tion of the glass is a function only of the local iritensity of
the light. This is in contrast to, for example, a pho-
torefractivelike model, as recently suggested by Payne,
which involves carrier transport over macroscopic dis-
tances. An early objection to local models was raised by
Bures, Lapierre, and Pascale, who pointed out that, in
coupled-mode theory, the intensity modulation of the
light within a real dielectric constant grating of fixed
phase would always be 90' out of phase with the grating.
It was therefore not clear how such a grating could grow.
This led them to introduce an ad hoc phase shift of 90'
into their phenomenological growth equations. In a pho-
torefractivelike picture the requisite phase shift is impli-
cit, but such a model predicts a modulation depth of the
grating (in steady state) independent of the intensity of
the laser that formed it. This is in sharp contrast with
experiment.

In this paper we will discuss the growth dynamics of
photosensitive-grating formation based on a local bleach-
ing model. We demonstrate numerically that a local
model can lead to sustained growth of the grating, be-

cause the grating phase is not fixed in time or space, as
assumed by Bures, Lapierre, and Pascale. Furthermore,
as a consequence of the local nature of the model, we
show that one would expect oscillatory behavior during
the grating formation, which we observed experimentally.
To more accurately reproduce the behavior of our experi-
mental growth curves we find it necessary to take into ac-
count laser heating of the fiber, and in the process draw a
conclusion about the relative signs of the thermal and
two-photon bleaching changes in the index of refraction.
Our conclusion is in accord with recent measurements.
This paper is a detailed exposition of results that we have
previously reported in brief.

After a short theoretical introduction (Sec. II), in
which we develop the basic equations used in our model
system and calculate the expected behavior, we turn in
Sec. III to a discussion of the experimental system and re-
sults. Then, in Sec. IV we discuss the role of heating in
modifying the calculated behavior and show good agree-
ment with experiment. In Sec. V we establish that the
parameters that we use in the model are reasonable. Our
conclusions are summarized in Sec. VI.

II. THEORETICAL BACKGROUND

We calculate the propagation of light within the fiber
grating using the usual coupled-mode equation formal-
ism. ' Since our fiber is single mode and maintains polar-
ization, we ignore the transverse profile of the electric
fields and just deal with plane waves. The total electric
field within the fiber is written as

0(z, t)= ,'E(z, t)e ' '+c.c. —

We assume that the electric field consists of a forward-
and a backward-propagating component,

E (z, t) =E+ (z, t)e'k'+E (z, t)e

where k is the wave vector of the light in the medium (us-
ing the initial dielectric constant of the fiber). If a weak
phase grating grows in the glass, the dielectric constant
can be written as a sum of a slowly varying component
and a rapidly varying component of spatial period 2k; the
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where Ae represents the small modification in the back-
ground dielectric constant of the glass. We will take Ae
to be real, ' consistent with the 95% reAection that we
routinely observed in our fibers. Any higher spatial fre-
quency components in Ae are ignored, as they do not
contribute to Bragg-matched reAection. At any instant in
time the forward and backward electric-field envelope
functions can be calculated by the usual coupled-mode
formalism in the slowly varying envelope approximation.

BE+ (z, t)

clz

aE (z, t)

az

ik
, [e,(z, t)E+ (z, t)+e, (z, t)E (z, t) ],

2n

ik
[eo(z, t)E (z, t)+ e2 (z, t)E+ (z, t) ],

2n

(4)

where asynchronous terms have once again been
dropped, and we have only considered the case of zero
detuning of the laser frequency from the grating Bragg
condition; n =1.5 is the index of refraction of the glass.
Equations (4) must be solved subject to the boundary con-
dition appropriate for a beam incident on one end of the
fiber, with both ends of the fiber in the air.

This is the standard formalism, which would likely be
common to any proposed growth mechanism. We must
now postulate a particular model for the evolution of the
dielectric grating. Following the suggestions of Meltz et
aI., we will assume that the dielectric constant is locally
bleached by the two-photon absorption of the laser beam
into the defect band of the Ge02, centered at about 245
nm. For completeness we note that while this band is
often attributed"' to an oxygen vacancy defect of the
Ge02 (in analogy with a similar band' found in Si02),
the precise microscopic origin of this band is still the sub-
ject of some discussion. ' '' But for us the key point is
that such a band does exist, whatever its precise origin.
One photon bleaching was clearly demonstrated in glassy
Ge02 by Cohen and Smith. ' The assumption here is
that this band can also be significantly bleached through
two-photon absorption. Through the Kramers-Kronig
relation' this leads to a change in the real part of the
dielectric constant in the visible region of the spectrum.
If we assume that the number of defect sites actually
modified by two-photon absorption is a small fraction of
the total number of sites, we can neglect depletion of the
available sites and model the effect of the two photon ab-
sorption on the real part of the dielectric constant by the
equation

t)he(z, t) =HI zt
Bt

Here I(z, t) is the local intensity of the light in the fiber,
at any instant in time. The intensity is squared in this ex-
pression, which follows from the assumption that a two-
photon-absorption process is dominant. Note that by al-
lowing 3 to be either positive or negative this expression
also serves to describe the more complicated case of the

latter gives rise to the Bragg-matched reAection. We
write

be(z, t) = eo(z, t)+e2(z, t)e '"'+
e2 (z, t)e

creation of color center absorption bands in other regions
of the spectrum, as recently discussed in Ref. 5. To com-
plete the set of equations necessary to model this system,
we note that the intensity of the light is related to the
electric field by

I (z, t) = E+ (z, t)e'"'+E (z, t)e
8m

(6)
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FIG. 1. Numerical simulation of photosensitive fiber
transmission as predicted using Eqs. (4) and (5) (solid line, no
heating). The dimensionless time variable v.= 5 X 10 AI ot,
where Io is the laser intensity incident on the fiber. We have
used a fiber length of 30 cm and a vacuum laser wavelength of
488 nm. To include laser heating [per Eq. (7), dashed line] and
compare with the results shown in Fig. 2, we assume
B =8.1X10 ' cm /W and IO=1.72X10 W/cm .

In general, the parameter A in Eq. (5) is unknown to
us, although we will attempt to estimate A in Sec. V
below. In any case, we may absorb 3 into the time vari-
able and then study the grating growth dynamics in
scaled time units. Apart from this linear rescaling of the
time axis, the only free parameter at our disposal is the
precise length of the fiber (and hence the grating) in units
of the wavelength of the light in the medium. We have
used a typical fiber length of 30 cm, with a laser wave-
length of 488 nm (in vacuum).

The result of a Runge-Kutta numerical solution' to
the set of coupled equations presented above is shown in
Fig. I (solid line). Here we have plotted the transmission
of the light through the fiber; the calculation conserves
energy, and therefore the reAection increases correspond-
ingly. The first striking feature is that the grating can in
fact undergo sustained growth, eventually excluding most
of the light from the fiber, in contrast to the suggestion of
Bures, Lapierre, and Pascale. Their suggestion that a lo-
cal model cannot lead to sustained growth in a coupled
mode formalism is based on the assumption that the
phase of the dielectric grating remains constant in time.
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In fact, our detailed calculations show that the phase is
both time and space dependent, permitting grating
growth. We discuss this further below. The coupled
equations, although mathematically simple, lead to very
rich behavior. The grating growth is not monotonic. In-
stead the transmission curve is subject to oscillatory be-
havior, with a time scale comparable to that of the
overall reduction in fiber transmission. This appears to
result from a delicate interplay between the phase and
amplitude of the grating with the intensity profile of the
light in the fiber. We do not fully understand the under-
lying physics of these oscillations. However, in the
present model they appear to depend on the existence of
Fresnel reflection from the input coupling end of the
fiber, which will interfere with the light reAected from the
grating; if we set the former equal to zero in the comput-
er simulations, the numerical experiments yield a grating
growth that is smooth. This was determined by setting
the input face Fresnel reAection to zero in the computer
model. The Fresnel reAection at the exit face is necessary
to provide a component of backward wave in the fiber.
Once the growth process begins it is possible to artifically
eliminate the exit face Fresnel reAection from the calcula-
tion, in which case the numerical experiment indicates
that growth stops but the oscillations continue. Thus in
this model the oscillations appear to result in large part
from an interference of the light reflected from the input
face and that reflected from a moving grating.

Two points need to be made regarding the calculation.
First, we have assumed that the fiber is precisely an in-
tegral number of wavelengths long. Varying this changes
the phase of the oscillations on the growth curve, but
does not otherwise result in significantly different behav-
ior. Second, it is usual to assume that the Fresnel
reflection from the fiber end faces is about 4%. In fact,
by monitoring Fabry-Perot oscillations in the transmis-
sion of a single-mode helium-neon laser probe while heat-
ing the fiber to vary the dielectric constant of the glass we
find that the effective reAection depends on the quality of
the cleave, and is more typically about 2&o. This appears
to be principally due to cleaves which are not perfectly
perpendicular to the fiber axis, resulting in less that per-
fect coupling of the reAected light back into the fiber
core. We have taken this into account in our calculations
by modifying the Fresnel reflection coefficients accord-
ingly. This leads to smaller oscillations, but does not oth-
erwise qualitatively affect the results.

III. EXPERIMENTAL RESULTS

An experimental growth curve is displayed in Fig. 2.
The experimental set up has been described elsewhere. '

The fiber (Andrew Corporation) is single mode at 488
nm, maintains polarization and is the same type of fiber
as was used in our previous work. ' The germania-doped
core is elliptical, with a 1 pmX2pm diameter. High-
frequency oscillations on the growth curve, which are due
to environmental perturbations, ' have been minimized
by keeping the fiber slack. Residual oscillations were
filtered out with a three-stage RC filer (18-Hz cutoff fre-
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FIG. 2. Experimental results for our polarization maintain-

ing single-mode fiber at 488 nm. A fiber length of 33 cm was
used. Both the transmitted (solid line) and the reflected (dashed
line) powers are shown. The powers stated are for the air side
of the fiber cleaves.

quency) placed before the analog-to-digital converters.
In Fig. 2 we clearly observe low-frequency oscillatory

behavior. Such behavior had been observed previously in
a multimode fiber, where the interpretation is more com-
plicated, but was dismissed as being of thermal origin. '

The evidence given at the time was that very low power
preparation of the fiber (where heating of the fiber would
presumably be minimized) resulted in smooth grating
growth. Our own measurements at low powers do not
lead to the disappearance of the oscillatory behavior, but
rather to a lengthening of the period. In the curve shown
in Ref. 19 the experiment has perhaps not proceeded far
enough to be sure that oscillations would not be present.

Qualitatively, the oscillatory behavior that we observe
is similar to that predicted by the simple bleaching mod-
el. However, the experimental results suggest a gradual
damping of the oscillations with time, which does not
come out of the simple model presented above. Further,
we could not rule out the possibility of some fiber heating
due to direct absorption of the argon laser beam, which
could conceivably lead to some oscillatory behavior, as
suggested by Lapierre, Bures, and Chevalier. ' Therefore
we decided to incorporate heating into the system of cou-
pled equations.

IV. HEATING EFFECTS

For our fiber parameters the transverse thermal
diffusion time (of order 1 @sec) is essentially instantane-
ous as compared with the grating formation time (ap-
proximately 10 sec). Also, the distance that heat can
diffuse longitudinally on the time scale for grating forma-
tion is very long compared with the dielectric constant
grating period (0.2) pm). Therefore we assume that the
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effect of linear absorption-induced heating is to modify
only the Eo(z, t) term of Eq. (3). In this spirit we make the
replacement 60~&0+Eth where e,h is a thermal contribu-
tion to the dielectric constant due to linear absorption of
the laser beam by the fiber. We take this thermal contri-
bution to be of the form

1.2x 10

1.0x10

0.Bx 10

(7)

Kp

0.6x10

where (I(z, t) ) represents the intensity in the fiber, after
spatially averaging over the grating period but leaving
the slow variation unaffected. The parameter B depends
not only dn/dT, but also on the absorption coeKcient of
the fiber and the heat transfer to the surrounding air.
However, these subtleties may be bypassed by resorting
to experiment. Measuring the temperature rise in a fiber
with its output end in index matching fluid, the quantity
B can be extracted from Eq. (7) if dn/dT is known. Us-
ing a thermocouple in intimate thermal contact with the
fiber cladding, and 85-mW incident laser power, we mea-
sured a steady-state temperature rise of 0.14 K. For pure
fused silica ' dn/dT=1. 0X10 K ', but our fibers
have an estimated 20 mo1% Ge02 doped into the core.
For such a material we have been unable to obtain a
value of dn/dT, but adding germania does not appear to
significantly modify it from that of pure silica. We
therefore use the value of dn/dT of pure silica. This
leads to a value of 8=8.1X10 ' cm /W. (For esti-
mates that require a conversion from power to intensity
inside the fiber, we use the geometric area of the fiber
core.

In Fig. 1 we also plotted (dashed line) our predicted re-
sults with this B, for A )0. We have taken the incident
laser intensity Io=1.72X10 W/cm, to compare with
the experiment of Fig. 2. Note that the effect of adding a
small heating term is to dampen the oscillations, in quali-
tative agreement with the experimental results. The rela-
tive sign of A and B is crucial. If we assume that 3 and
B are of opposite sign the effect of the heating term is to
sharpen the oscillations rather than dampen them. We
remark that if we consider a fixed grating subjected to
laser heating [that is, we set 3 =0 in Eq. (5) but include
the effect of the e„„],we find that the numerical solutions
of the equations do not show oscillations in the transmit-
ted intensity. This argues against the conjecture' that
the oscillations are the result of a thermal effect. Rather,
we find that they are an integral aspect of the grating
growth, but are slightly damped by the thermal effects.

It is interesting to consider the spatial distribution of
b, E [Eq. (3)] after the phase grating has been formed. We
show the slowly varying part of the dielectric constant
eo(z) in Fig. 3. The time is fixed to correspond to the end
of the run shown in Fig. 1 (dashed line), where the
transmission has been reduced to about 5% of the start-
ing value. Clearly the grating has forced the light to be
concentrated near the entrance face of the fiber. The
eo(z) indicates that the spatial average dielectric constant
has been modified by the laser. This is a direct conse-
quence of our assuming a local model, where the local
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change in the dielectric constant is a monotonic function
of the intensity (which is positive definite). Of particular
interest is the distribution of E2(z), which is the complex
amplitude of the dielectric constant grating. We define
~&(z)=1~2(z)lexp[ iy(z)] In Fig. 4 we present 1&2(z)l
and in Fig. 5 we present cp(z). It is a consequence of Eq.
(5) that y=0 at the exit face of the fiber. From Fig. 5 we
see that the gratings are strongly chirped. Over short
segments the chirp is approximately linear. This may
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FIG. 4. Amplitude of the phase grating ~e2(z) ~
as a function

of position. Heating as in Fig. 1.

FIG. 3. Slowly varying part of the dielectric constant eo(z) of
Eq. (3), as a function of position z along the 30-cm-long fiber.
Here z =0 corresponds to the entrance face of the fiber. Laser
heating is taken into account as in Fig. 1.



43 PHYSICS OF PHOTOSENSITIVE-GRATING FORMATION IN. . . 437

BN N
2(A'co )

Each defect that undergoes TPA is assumed to lead to
a local change in the dielectric constant. We may write
b.a=4~ha(N„„, N—), where N„„~is the total number of
defect sites, hu is the effective change in the linear polari-
zability of a defect which has undergone TPA, and we are
ignoring local field effects. Finally, since the maximum
change in the dielectric constant Ae

„

that we may ex-
pect in this simple picture is given by 4~N„„&ha,we
have, from Eq. (11),

a(~~) o.2I
2(A'co)

(12)

07T

10
z (crn)

20 30

have interesting implications for pulse compression pur-
poses.

Finally, we are left with the problem of determining
whether the time scales for grating growth are in fact
reasonable, given that TPA is likely to be a weak process.
We turn to this problem in Sec. V.

V. MATERIAL EFFECTS

In general the parameter A of Eq. (5) will be related to
the two-photon absorption cross section of the 245-nrn
band, as well as other material parameters which are at
present unknown to us. We may, however, place a
reasonable bound on A by the following considerations.

The basic equation describing attenuation of the laser
by TPA is

FIG. 5. Phase y(z) of e2(z)= ~ez(z)~exp[ —iy(z)]. Heating as
in Fig. 1.

as long Ae (((be),„(i.e., ignoring depletion of the avail-
able defect sites). Equation (12) may be compared direct-
ly with Eq. (5) to obtain an explicit expression for A.
With this expression we can now attempt to check
whether the model is reasonable in view of the experi-
mental growth time for the grating.

A rough comparison of Fig. 2 with Fig. 1 (dashed line)
leads to an 3 of about 2X10 ' cm /W sec. We can ob-
tain an upper bound on what o2 must be taking as a
lower bound for Ae

„

the actual value of Ae in the fiber
at the end of the experiment. Either by roughly estimat-
ing this Ae from the experimental reAectivity by assum-
ing a uniform grating, ' or by using the spatial average of
e2 from the numerical experiment of Fig. 4 as an estimate
of Ae, we find a he=2X10 . This leads to an upper
bound of o.

2 about 3X10 cm sec. To be even more
conservative we note from Fig. 3 that the model calcula-
tion leads to a peak value of eo of 1 X 10 (this calcula-
tion ignores possible defect depletion), leading to a loose
upper bound of o.

z of 2X10 cm sec. Since typical
values of o.

2 range from 10 to 10 ' crn sec for a wide
variety of molecules, the model we have presented here
for the grating formation is plausible. Furthermore, re-
cent measurements of the index change in a fiber ex-
posed to ultraviolet light at 266 nm show that the result-
ing index change has the same sign as dn/dT, which is
consistent with our present findings.

al
az

(8) VI. CONCLUSIONS

I =2% BN
(10)

Combining Eqs. (8)—(10), we have

where P is the usual TPA coefficient. If N is the number
density of defect sites which can undergo TPA, and 0.

2 is
the TPA cross section of the defects, then we may write

Xo.
2

%co

where Ace is the one-photon energy. Alternatively, if we
assume that one defect is bleached for every pair of pho-
tons absorbed, then TPA attenuation of the laser beam
may be expressed by

In conclusion, we have demonstrated through explicit
calculation that a local bleaching model can lead to sus-
tained grating growth in photosensitive fibers. Low-
frequency oscillations in the transmission of light
through the grating follow as a consequence. We have
experimentally observed such oscillations, which in our
model are a consequence of the grating formation dynam-
ics, but are modified by direct laser heating of the fiber.
After taking heating into account, we find good agree-
ment between theory and experiment. The defect TPA
cross section needed to predict the time scale for grating
formation is found to be reasonable. The model therefore
appears to be a viable alternative to photorefractivelike
models, and we would like to suggest that the term "pho-



MIZRAHI, LaROCHELLE, STEGEMAN, AND SIPE 43

torefractive" no longer be applied to this effect without
justification. Finally, it follows as a necessary conse-
quence of this model that the dielectric constant phase
grating that is formed is substantially chirped in space.
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