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Lattice Boltzmann model of immiscible Auids
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We introduce a lattice Boltzmann model for simulating immiscible binary fluids in two dimen-
sions. The model, based on the Boltzmann equation of lattice-gas hydrodynamics, incorporates
features of a previously introduced discrete immiscible lattice-gas model. A theoretical value of the
surface-tension coefficient is derived and found to be in excellent agreement with values obtained
from simulations. The model serves as a numerical method for the simulation of immiscible two-
phase flow; a preliminary application illustrates a simulation of flow in a two-dimensional micro-
scopic model of a porous medium. Extension of the model to three dimensions appears straightfor-
ward.

INTRODUCTION

Discrete models of hydrodynamics known as lattice
gases were recently introduced by Frisch, Hasslacher,
and Pomeau (FHP). ' In their original formulation, the
lattice gas consists of a collection of discrete particles of
unit mass and unit momentum moving on a triangular
lattice. When particles meet at a lattice site, they collide
with each other such that mass and momentum are local-
ly conserved. At a macroscopic scale, the behavior of the
lattice gas is very close to the incompressible Navier-
Stokes equations.

In addition to its intrinsic interest as a model of hydro-
dynamics, the lattice gas is also a useful numerical
method for the simulation of complex hydrodynamic
flows. Examples in the current literature include external
flows in three dimensions, Bows in microscopic models
of porous media, and Aows of immiscible mixtures.
In each of these areas of application, the emphasis is on
the efficient simulation of gross features of the flow. Thus
any small-scale inaccuracies in the lattice-gas method are
potentially outweighed by its e%ciency, or, indeed, its
ability to simulate certain complex fIows not easily acces-
sible by other methods.

However, lattice-gas models are not free of problems.
Two of the most serious disadvantages are the difficulty
of extending the models, particularly the multiphase
models, from two to three dimensions, ' ' and, for many
applications, the high level of statistical noise in the mod-
el. To eliminate or reduce these two problems, as well as
gain insight into the workings of lattice-gas models, two
related adaptations of the lattice-gas model, known as lat-
tice Boltzmann models, have been introduced. ' ' The
first version is an explicit solution of the Boltzmann equa-
tion that is obtained by assuming that there are no corre-
lations between particles. ' Probabilities or, equivalently,

average populations, substitute for discrete particles, and
each Boolean FHP collision is expressed as an arithmetic
nonlinear collision operator in the resulting Boltzmann
equation. In the second version of a lattice Boltzmann
model, the nonlinear collision operator is linearized about
a local equilibrium. ' ' Both lattice Boltzmann models
retain the original macroscopic adherence to the Navier-
Stokes equations. In addition, both models are free of
statistical noise. However, only the second of these two
approaches is easily implemented in three dimensions.

Lattice Boltzmann models have thus far only been in-
troduced for the simulation of single-species fluids. Thus,
one of the most promising applications of lattice-gas
methods —the simulation of immiscible two-phase
Aov s—has not yet been approachable with the advan-
tages of the lattice Boltzmann method. Our objective in
this paper, therefore, is to introduce a method that not
only retains the advantages of the lattice Boltzmann ap-
proach but also provides the ability to simulate complex
multiphase fIows.

Specifically, our model is a variant of both the lattice
Boltzmann model of Refs. 15 and 16 and the immiscible
lattice-gas model of Ref. 8. In a two-species version of a
lattice Boltzmann model, we add a perturbation to the
linearized collision operator that makes the pressure ten-
sor locally anisotropic near a Quid-Auid interface. This
addition results in surface tension at interfaces while re-
taining the adherence to the Navier-Stokes equations in
homogeneous regions. Though capable of general appli-
cations, we expect that our model's greatest utility will be
for the simulation of immiscible two-phase Aow in micro-
scopic models of three-dimensional (3D) porous media.

The paper proceeds as follows. We first formulate a
Galilean-invariant, linearized collision operator by com-
bining ideas previously presented in Refs. 15—17. The
perturbation scheme that provides for surface tension is
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then developed in detail. From this scheme, a theoretical
prediction of the surface-tension coefficient is derived.
This theoretical prediction is then compared with three
independent surface-tension measurements obtained from
numerical simulation of the model. In all cases, good
agreement between simulation and theory is obtained.
Finally, a preliminary application of the model is demon-
strated with a simulation of immiscible two-phase Aow in
a microscopic model of a porous medium.

SINGLE-PHASE LATTICE BOLTZMANN
COLLISION OPERATOR

6](n) np /i 114 An6 5 n] /i n3 5 n5 (2)

where R, and ~ represent the AND and NOT Boolean
operators, respectively. The rest of the FHP collisions
contribute terms similar to this one. By adding the con-
tributions from all collisions included in the model the
collision operator b, (n) is constructed.

The Boolean field n;(x, t) is clearly a highly fiuctuating
function of space and time resulting in the need for much
temporal and spatial averaging to obtain accurate veloci-

The FHP lattice gas models the Auid as a collection of
identical particles, each of unit mass and momentum,
moving on a triangular lattice. At nodes of the lattice the
particles collide with other particles present at the node,
redistributing the particles among the available lattice
directions while conserving total mass and momentum at
the node.

The particles in a FHP lattice gas can be considered as
a Boolean field n; (x, t ) where n; is set to 1 or 0 to indicate
the presence or absence of a particle with velocity ci at
site x. The evolution of the system can be written as

n;( +xc;,1+1)=n;( xt)+h, (n),

where c, =(cos(i —1)n/3, sin(i —1 )7r/3) is the velocity
associated with lattice direction i and b, , (n) is a collision
operator describing the change in n,- due to a collision
with other particles present at site x. Figure 1 shows an
example of a collision in the FHP model, where three
particles with zero total momentum collide and change
direction by 60 . For this collision, 6& is given by

ty or pressure fields. To eliminate the need for this
averaging, as well as gain insight into the FHP lattice
gas, a lattice Boltzmann model can be constructed. A
lattice Boltzmann model follows from the Boltzmann ap-
proximation that particles are uncorrelated. One may
then construct a model based on the mean particle popu-
lations instead of the discrete particles. ' ' Statistical
Auctuations are then nonexistent.

The collisions in a lattice Boltzmann model can be per-
formed in two ways. In the first method, the collisions
are straightforward analogs of the FHP particle col-
lisions. ' The Boolean variables n.;(x, t) are replaced by
the average population densities N;(x, t) and the logical
operations in the collision operator replaced by their
Boating-point equivalents. For example, the lattice
Boltzmann equivalent of the collision of Eq. (2) is

A, (N) =N2N4N6(1 —N, )(1 N3 )(—1 N5 ),— (3)

where 0 ~ N; ~ 1 is the mean population density of lattice
direction i. All of the other FHP collisions have a similar
Boltzmann representation.

By writing all of the FHP collisions in their Boltzmann
form and performing propagation of the mean popula-
tions in the same manner as propagation of the particles,
a lattice Boltzrnann model that is the floating-point coun-
terpart of the discrete FHP model can be constructed.
Equations close to the incompressible Navier-Stokes
equations can be recovered for the Boltzmann model in
exactly the same fashion as for the FHP model.

For small departures from equilibrium, this Boltzmann
model can be simplified by linearizing the collision opera-
tor about the local equilibrium distribution. ' ' From
now on we will consider a model in two space dimensions
with additional rest particles, where NO is the average
population density of rest particles. We can write the
time evolution of this lattice Boltzmann system as

N, ( +xc, , t +1)=—N;(x, t)+ g Q,,N"'q(x, t), (4)
j=0

where 0, is the linearized collision operator described
below and N,

"' is the nonequilibrium part of the proba-
bility distribution. N"' is given by

N Ileq —N N eq
i i i

I I I ~
'~

3 '=. 3 :-' 2
where N, 'q is the equilibrium distribution up to second or-
der in velocity. For a site with average population densi-
ty of d =(M,No++6 &N;)/(6+M, ) in each direction,
and velocity v=g; &N;c;/d(6+M, ), the equilibrium
distribution N for a model with a maximum of M, rest
particles is given by a pseudo-Fermi-Dirac-distribution

AdN;q=do 1+ +2c; u +G(do)Q, &u u&
0

(6)

Before Collision After Collision

where d0 is the average population density on the lattice,
Ad =d —d0 and

FICi. 1. An example of a three-particie collision in the FHP
model. The particles collide and rotate by 60. The numbers
refer to the labeling of the lattice directions.

6+M, 1 —2d0
G(do) =

0
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These equations are similar to the equilibrium equations
discussed in Ref. 3 but modified here for the inclusion of
M, rest particles. Following Ref. 17, Galilean invariance
is restored to the model by setting the maximum number
of rest particles to

2=6(ap+a6p )+2M, b,
y: 6(ap+2a6p) 3M b

'+M, b
C

(12)

12(1—dp) —6
1 —2d0

(8)

We note that a different equilibrium distribution which
would not require the addition of rest particles to achieve
Galilean invariance could be used instead of the distribu-
tion of Eq. (6). However, as described later, we require at
least one rest particle in order to ensure that the inter-
faces remain as thin as possible. Since the computational
cost of adding M, rest particles is the same as adding one,
we have chosen to use the equilibrium distribution found
for the discrete lattice-gas models, thus maintaining a
close connection to the discrete models.

The linearized collision operator 0 is constructed in
the following fashion. Following Ref. 16, we note that
since 0 is rotationally invariant, then for 1 +i,j ~ 6, we
may write 0,; =O,

~; ~. We therefore denote 0, by a0,
a60, etc. for 1 ~i,j ~ 6, where a& represents the collisions
between moving particles on lattice links I9 degrees apart.
In addition to the collisions between moving particles
there are collisions that create and destroy rest particles,
given by probabilities b and c, respectively. The linear-
ized collision operator is then given by

c
b

bT

A

xp=(M„1, 1, 1, 1, 1, 1)

xi=(0, 2, 1, —1, —2, —1, 1)

K2= (0,0, 1, 1,0, —1, —1)

(10)

corresponding to conservation of mass and two com-
ponents of momentum, respectively. For 0, to be non-
trivial, these three conservation relations give the follow-
ing equations:

a 0+2a 60+ 2a120+ a180+M

6b+M, c =0,
a0+a60 —a120 —a180 =0 .

In addition we can specify the remaining nonzero eigen-
values,

where A is a circulant matrix' with
(ap, a6p, aipp Qisp Q, pp a6p) as its top row and b
=b(1, 1, 1, 1, 1, 1) . II has six unknown coefficients which
must be computed. The eigenvalues and eigenvectors of
0 are computed using an extension of the theory of circu-
lant matrices. There are three zero eigenvalues with
eigenvectors

These eigenvalues represent the rate of decay of particu-
lar combinations of X,"'q to the equilibrium configuration.
For example, ~ controls the rate at which rest particles
equilibrate with the moving particles. A, is the most im-
portant eigenvalue as it determines the fIuid's kinematic
viscosity v via the relation '

—1 1 1—+—
4 A, 2

(13)

By lowering k close to —2, we can lower v arbitrarily
close to zero, even if the corresponding matrix has no
particle-based equivalent. However, care must be taken
to ensure that the smallest scale of the simulated How is
greater than the lattice scale or numerical inaccuracies
will result. When combined with Eq. (11), Eq. (12) en-
ables us to compute the values of the six components of
A, . Since N,

"' decays like 1+A,, 1+y, or 1+~, we nor-
mally set y and ~ to be equal to —1 so that X,"' decays
to zero as quickly as possible and use A. to set the kine-
matic viscosity.

LATTICE BOLTZMANN OPERATOR
FOR IMMISCIBLE FLUIDS

In the immiscible lattice-gas (ILG) model of Ref. 8, the
particles are colored either red or blue and the collision
rules are modified to obtain surface tension between the
two fIuids. Essentially, these collision rules optimally
send particles of one color to neighboring sites containing
other particles of the same color.

Our lattice Boltzmann model of immiscible Auids is
both a variant of the ILG and an extension of the
Boltzmann formulation of the previous section. As in the
ILG, the mass is colored either red or blue and the col-
lisions are modified to obtain surface tension between the
two Auids. However, our collision operator for produc-
ing surface tension is substantially different than the one
used in the ILG. Specifically, we have designed a two-
step two-phase collision rule. The first step of the two-
phase collision is to add a perturbation to the particle dis-
tribution near an interface which creates the correct
surface-tension dynamics. In the second step we recolor
the mass to achieve zero diffusivity of one color into the
other.

The immiscible lattice Boltzmann algorithm can be
summarized as follows.

(1) Single-phase collision. (a) Compute N, =R, +B, .
(b) Compute d, v, and NP'" from N, . (c) Perform a
single-phase collision obtaining N,

' =N, +g pQ, ~NJ"'q.

(2) Two-phase collision. (a) Add a surface-tension in-
ducing perturbation to N,

' obtaining N," IEq. (17)]. (b)
Recolor the N,

" to obtain R," and B;" [Eq. (18)].
(3) Propagate the R," and B," according to
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R;(x+c;,t + 1)=R;"(x,r),
B,(x+c;,t + 1)=8,"(x,t) .

(14)
subject to the following constraints:

6

M, RO+ g R;"=RT,
The single-phase collision (step 1) has been described in
the previous section. We discuss the two-phase collision
(step 2) in detail below.

We note in passing that if a zero-surface-tension, zero-
diffusivity model is desired then the first part of the two-
phase collision [step 2(a)] can be omitted. The model will
then track passive interfaces between fIuids. We return
to this point later.

Two-phase collision rule: Perturbation step

The first step of the two-phase col1ision rule is to add
an anisotropic perturbation to the particle distributions
near an interface. An interface is located by examining
the magnitude of the local color gradient,

f(x)= g c, M, [RO(x+c;)—Bo(x+c;)]

R;"+B;"=iV,-", (19)

Analysis of collision rule

where RT is the total amount of red mass present at the
site before collision. These rules conserve the total
amount of red mass, the total amount of blue mass, and
the mass in each lattice direction.

We note that the inclusion of rest particles (i.e. , M, )0)
allows interfaces to be only one lattice unit thick. The
thin interfaces result because a site on an interface can
react to a perturbation in the amount of mass of one
color entering the site by altering the ratio of the red rest
mass to the blue rest mass. However, if the model does
not include rest particles then the site would be forced to
send some mass of one color towards sites containing the
other color and the interface thickness would increase.

6

+ g [R)(x+c;)—B (x+c;)] (15)

6

N, '=N, + g A,)N,"'q

j=0
(16)

Then, at sites where
~
f

~
) e, where e is a small number,

we add a perturbation to X,
' such that

N,"=N, '+ 3
i
f

i cos2(0; —8J )

where R, and B, indicate the amount of red and blue
mass with velocity c; present at a site. Note that

~
f

~
is

large near an interface between two fiuids and small in a
homogeneous region. In addition we define 0&
=tan '(f~lf ) as the angle of the local color gradient
and note that the gradient is perpendicular to an inter-
face. We set N;=R, +B,, and apply the linearized col-
lision operator of the previous section to X; to obtain

An analysis of the collision rule hinges only on step
2(a) since this is when the model dynamics are perturbed.
We recall the mechanical definition of the surface ten-
sion,

o =I (P~ Pr)dz, — (20)

where P~ and PT are the normal pressure and the tangen-
tial pressure, respectively, in the neighborhood of an in-
terface, and the integral is evaluated in a direction per-
pendicular to the interface. ' This geometry is shown in
Fig. 2, where z is the direction perpendicular to the inter-
face, m is the direction parallel to the interface, and x and
y are the usual Cartesian coordinates with x lying along a
lattice line. We denote the angle between the x and z
axes as 0&.

The pressure tensor for a two-dimensional lattice gas is

:—X+C; (17) Blue Fluid

where 6), =(i —1 )nl3 is the angle of lattice direction i
and C; is our surface-tension inducing binary-fiuid per-
turbation. The binary-fiuid collision operator C, redistri-
butes mass near an interface, depleting mass along lattice
links parallel to an interface and adding mass to lattice
links perpendicular to the interface, while conserving the
total mass and the total momentum at the site. Here 3 is
an arbitrary constant chosen to set the surface tension for
the model.

wg
4

4

0

o/+

~O

o+
o+ 0f

~O

Two-phase collision rule: Recoloring step
Red Fluid

'=, Interface

The second step in the collision rule is to recolor the
mass after it has been perturbed in step 2(a). The out-
come of recoloring is given by the solution to the maximi-
zation problem

6
8'(R', B')= max g (R;" B;")c; .f—

R",B"

FIG. 2. Interface geometry for collision rule analysis. z is the
axis perpendicular to the Auid-Auid interface, w is parallel to the
interface, and ~ and y are the usual Cartesian coordinate axes.
The lattice is oriented such that the 1 and 4 directions lie on the
A" axis.
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given by

P &=QNc; c;t3, (21)

o = —(n A, ) '(cosOf )

X g g U, 3
~
f(x) ~cos[2(0f —0, )], (31)

which yields

6

Px P»—= g N;c;, c;, ,
i=1

6

T WW g Nl 1W l Ill

i =1

where c,, and c; are the components of velocity c; in
directions z and w and are given explicitly by

c; =cos(0; Of ),
c, =sin(0, —

Of ) .
(23)

Using these definitions, converting the integral in Eq. (20)
to a sum over all x on the lattice and adding a cosOf fac-
tor to account for the angle between the x and z axes we
find

cosOf
g g N;(x)(c;, —c, ),
x i=1

(24)

where we are averaging over n lines parallel to the x
axis. We let U, =c,, —ci and remark that to first order
in v,

o, = —k '(cosOf)[18M (6+M, )d cos(20f)] . (32)

Interface 2 gives

oz= —A, '(cosOf)[12&32 (6+M, )d cos(20f —~/3)] .

(33)

where Of is the local gradient angle. Note that OfWgf,
the average gradient angle, in general except for Of =0'
and 30 because the discrete lattice creates spatial fiuctua-
tions in Of.

In order to evaluate Eq. (31) we consider a box of fiutd
containing an interface with average gradient angle Of.
We assume that the interface is thin and we have perfect
separation of red and blue. In addition we assume a uni-
form distribution of mass on the lattice with (6+M, )d
total mass at each site. The interface will be composed of
segments of two difFerent types, shown in Fig. 3 which
have Of =0' and 30', respectively. These two segments
will occur with probability 1 —&3tanOf and &3tanOf, re-
spectively.

Computing o. for interface 1 by calculating the value of
Eq. (31) we obtain

y U, N,'q=a

giving

cosOf
g g U, N,"'q(x, t) .
x i=1

(25)

o. = —18K, 'Ad (6+M, )F(0f ),
where

(34)

Mixing the two cases, weighted by their probability of oc-
currence we obtain the following explicit formula for the
surface tension, accurate to first order in velocity,

Adding the surface-tension inducing perturbation (17)
to the lattice Boltzmann evolution Eq. (4) and then sum-
ming both sides of the equation over the entire lattice, we
obtain

g N (x+c;,t+1)= g N (x, t)+ g LI;.N"'q(x, t)

F(0f ) =2[sin(~/6 —
Of )cos(20f )

+cos2( rt/6 Of )slnOf ] (35)

We note that this formula has a 12-fold anisotropy with a
maximum deviation of approximately 10% at Of =7r/12.

A similar analysis can be carried out if we instead as-
sume that the interface is very wide with a slow variation

+ C,"(x,t) (27)

For a lattice at steady state with reasonable boundary
conditions we have

Segment 1 Segment 2

gN;(x+c, , t+ I)= QN, (x, t) (28)

giving

g A,)N"'q(x)+C, (x) =0 . (29)
X J

Since U, is an eigenvector of 0 with eigenvalue A, we find
from Eq. (29) that

0 =0f 0, = z/6

g g U, N,"'q(x) = —A.
' g g U, C; (x) . (30)

X I X l

Substituting this equation and Eq. (17) into Eq. (26) gives

FIG. 3. The two types of interface segments which compose
the interface are shown as 1 and 2. They have Of =0 and 30'
and occur with probability &3tanOf and. 1 —&3tanOf, respec-
tively.
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of the color across the interface. Equation (34) is then
recovered with F =1. The agreement between the two
calculations indicates that surface tension is approxi-
mately independent of the actual distribution of color
near the interface.

We note that if 3 =0, then 0. will be zero as well. In
this case only the second step of the collision procedure is
performed, resulting in a model with zero surface tension
and zero diffusivity. This model, a variant of the immis-
cible lattice Boltzmann model, has some potential appli-
cations in the study of complex flows involving passive
interfaces.

The results of these tests for a range of particle densities
is shown in Fig. 4. The points represent the values mea-
sured in the simulations and the line shows the theoreti-
cal prediction from Eq. (34). The measurements in both
directions agree very well with the theoretical prediction.

Bubble-test measurements

0
inner outer R

(36)

A second measurement of the surface tension was per-
formed with a bubble test. ' For a two-dimensional bub-
ble at rest, Laplace's law states that

SURFACE- TENSION MEASUREMENTS

Three methods are employed to measure surface ten-
sion. The first of these computes the surface-tension
coeKcient from Eq. (20), while the second employs a bub-
ble test' to verify Laplace's law of surface tension. In
addition a dynamic test of the surface tension was per-
formed by measuring oscillations of a capillary wave.

Mechanical surface-tension measurements

This test is essentially a numerical evaluation of Eq.
(20), the mechanical definition of surface tension. A lat-
tice 256 units long by 16 units wide was initialized with
an interface in the center of the lattice and allowed to
evolve to steady state. The difference between P& and PT
is then calculated and summed along a line perpendicular
to the interface, giving the value of o..

The surface tension was measured with this method for
two orientations of the interface, t9f =0' and Of =30.

where P;n„„and P,„„,are the pressures inside and out-
side of the bubble, respectively, o. is the surface-tension
coe%cient, and R is the bubble radius.

The lattice was initialized with a bubble of one fluid in
a sea of the other fluid. The pressure inside the bubble
was measured by averaging the pressure at all sites inside
a circle of radius 0.7R centered on the bubble and the
outside pressure was measured by averaging the pressure
at all sites more that 1.3R from the center of the bubble.

A number of tests with bubble radii ranging from 8 to
64 lattice units were run; the results are shown in Fig. 5.
The values measured by simulations are shown as points
while the theoretical values from Eqs. (34) and (36) are
shown as a line. The linearity of the measured points in
the plot shows that the correct scaling behavior of pres-
sure difference with radius is present in the model. More-
over, the good fit of the measured points to their theoreti-
cal values indicates that the model is behaving closely to
our predictions.

LA
V

CS

lg)
Cl

C7

O ~
4 0

0.0 0.1 0.2 0.3 0.4 0.5

CS

0.00 0.05
1/R

0.10 0.15

FIG. 4. The results of mechanical surface-tension measure-
ments. Values measured in simulations are shown as points
(squares for 0& =0' and triangles for Of =30') and the theoreti-
cal prediction is shown as a solid line. The measured points and
the prediction agree quite closely.

FICi. 5. The results of the bubble-test measurements of sur-
face tension showing AP vs 1/R. The measured values are plot-
ted as triangles and the theoretical prediction is shown as a solid
line. Again the agreement between simulation and theory is
quite close. Error bars are smaller than the size of the points
used to plot the measurements.
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Capillary-wave test

In order to test the surface-tension dynamics, a
capillary-wave test was performed. The tests were per-
formed on a lattice of height 2h with no-slip boundaries
at the top and bottom of the box and periodic boundaries
in the other direction. The oscillation of a capillary wave
of wave number k and amplitude A at an interface in the
middle of such a box of height will be of the form

( r) g i!a)t+kx) (37)

where co satisfies

TWO-PHASE FLOW IN POROUS MEDIA

As an example of a preliminary application of our
model we show a simulation of two-phase Aow in a mi-

C9

CS

CV
CI
CS

k rr tanh(kh)
2p

where p is the Auid density.
The lattice was initia1ized with a capillary wave of low

amplitude (relative to h) and allowed to relax to equilibri-
um, exhibiting oscillatory motion. The position of the in-
terface, z (x, t), was measured at each time step and the
oscillation frequency found by Fourier-transforming
z(xo, t) over time at some xo and then choosing the fre-
quency with maximum amplitude as the oscillation fre-
quency.

Wavelengths ranging from 16 to 128 lattice units were
tested. Figure 6 shows the comparison between the
theoretical prediction of the dispersion relation and the
measured values. The two curves match closely indicat-
ing that the model is correctly simulating surface-tension
effects in a dynamic system as well as a static system.

croscopic model of a porous medium. Since lattice-gas
and lattice Boltzrnann methods can easily incorporate
solid boundaries of arbitrary geometric complexity, Aow
through porous media is one of the most promising appli-
cations of these new methods.

The microscopic model of a porous medium used in
the simulation is similar to that used by Lenormand, Zar-
cone, and Sarr in laboratory experiments. ' The porous
medium consists of randomly sized squares of solid ma-
terial placed on a regular grid. No-slip boundary condi-
tions are applied by using the "bounce-back" boundary
conditions at solid sites. A pressure difference is applied
across the lattice by adding a fixed amount of momentum
to the sites at one side of the lattice. The wetting proper-
ties of the solid matrix can be set by allowing the solid
sites to bias the local color field.

For the simulation shown, the lattice is 108 lattice
units wide and 80 lattice units long. The size of the
squares in the model of the porous medium varies from 4
to 12 lattice units and the minimum channel width be-
tween two adjacent squares is 6 lattice units. The wetting
properties are set such that the initially resident red Auid
perfectly wets the solid matrix relative to the invading
blue Auid. The pressure difference used in the simulation
is chosen such that the invading Auid is not able to
penetrate the narrow channels due to capillary effects.
The capillary number for the simulation is approximately
10

Figure 7 shows the time evolution of the simulation.
In the plot the invading blue Auid is shown as black, the
resident red Auid as white and the solid matrix as grey.
As expected the invading Auid is unable to penetrate the
narrower channels, resulting in trapping of some of the
resident Auid in these channels.

It is interesting to note that there are considerably
more instances when the invading fiuid does not
penetrate into narrow or mid-sized channels than there
would be in the equivalent simulation using the discrete
ILG model. In ILG simulations of Aow through porous
media, random fluctuations of interfaces can be compara-
ble to the size of small pores. However, when real Auids
Aow through real porous media, these Auctuations, of or-
der (kT/o )', are usually much smaller than the small-
est pore size of interest. Thus the lattice Boltzmann
model, which has no fiuctuations, may be considered a
more realistic method of simulating Aow through a mi-
croscopic model of a porous medium.
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FIG. 6. The capillary-wave dispersion relationship is plotted.

Values measured from simulations are shown as points and pre-
dictions from linear theory as a solid line. The measured points
agree fairly well with the theoretical predictions.

FICx. 7. The evolution of a two-phase How in a microscopic
model of a porous medium. The wetting, initially resident Quid

is shown as white, the nonwetting, invading Quid as black, and
the solid matrix as grey.
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CONCLUSIONS

We have introduced a lattice Boltzmann model for the
simulation of two immiscible Auids. The theoretical
value of the surface-tension coefficient was derived.
Simulations of bubbles and interfaces confirmed this pre-
diction for Auids at rest and simulations of capillary
waves verified this prediction for Auids in motion.

This model should be useful for gaining a better under-
standing of similar discrete models as well as for numeri-
cal studies of immiscible two-phase Bow. Because Aows
through complex geometries may be easily simulated, the
model is particularly promising for studies of Aow
through microscopic models of porous media. One such
preliminary application has been demonstrated.

Compared to the immiscible lattice-gas model of Ref.
8, extensions of this lattice Boltzmann model to three di-
mensions are straightforward. Moreover, the lack of
fIuctuations in the lattice Boltzmann model obviates the
need for spatial averaging in the determination of veloci-
ty fields. We note, however, that in our implementations,
a single-site update of the ILG is approximately 10 times
faster than in the lattice Boltzmann method. We can re-
port one comparison with a finite-diA'erence method.

Simulations of capillary waves performed using the
volume-of-fIuid method of Hirt and Nichols revealed an
accuracy and efficiency similar to that obtained with the
lattice Boltzmann model.

Extensions of our model to three dimensions are
currently in progress. Subsequent work with the three-
dimensional lattice Boltzmann model will then serve to
better delineate the strengths and weaknesses of this new
approach to the simulation of immiscible two-phase Aow.
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