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Model for spin relaxation by correlated internal motions in liquid crystals

Ronald Y. Dong
Department of Physics and Astronomy, Brandon Uniuersity, Brandon, Manitoba, Canada R 7A 6A M

(Received 22 May 1990)

The effects of correlated internal rotations in an alkyl chain on the spectral densities of motion in

liquid crystals are examined using the master-equation method. It is assumed that the overall reori-
entation of molecules is decoupled from the internal motions in their alkyl end chains. The pentyl
chain that is attached to a cylindrical biphenyl core in 4-n-pentyl-4'-cyanobiphenyl (5CB) is studied
as a specific example. The reorientation of a symmetric top in an anisotropic potential is described

by the small-step rotational diffusion model. The equilibrium probability of each conformer, which
is required to construct the transition-rate matrix for the master equation, is obtained using the
Emsley-Luckhurst theory. The effects of the nematic mean field on the chain dynamics are dis-
cussed. Both J, (co) and J2(2') in 5CB are found to be frequency dependent, with J&(2~) being
weaker.

I. INTRODUCTION

Recent interest in measurement of spectral densities of
motion' by means of deuterium nuclear magnetic reso-
nance (NMR) relaxation study in deuteriated liquid crys-
tals has yielded a wealth of experimental data that has al-
lowed testing of motional models that describe reorienta-
tion and internal motions of molecules oriented in an or-
dering pseudopotential. Multiple internal rotations
within fIexible molecules have been studied by many au-
thors at varying levels of treatment. Wallach considers
internal rotations assuming that free diffusive rotations
about the various carbon-carbon bonds occur and all the
rotations are independent. Levine et al. have extended
this approach by using a single phenomenological rate
constant for the internal rotations. The assumption of
free rotations can give conformations of molecules that
are precluded on grounds of "excluded-volume" effects,
while the decoupled rotations are inapplicable to long
chain molecules because the large change in the molecu-
lar shape may not be favored by the intermolecular
forces. Despite these drawbacks, a superimposed rota-
tions model is used by Beckmann et al. ' in an attempt to
describe internal motions of an alkyl chain in a nemato-
gen. The Wallach approach was later improved by the
jump model. Assuming decoupled internal rotations,
London and Avitabile explicitly consider the energetics
of the trans-gauche isomerism based on the rotational
isometric state (RIS) model. This has been refined by
Tsutsumi. Wittebort and Szabo' consider concerted
internal rotations by explicitly following conformational
transitions through a master equation. They use phe-
nomenological transition rates for one-bond, two-bond,
and three-bond motions in a side chain attached to a ma-
cromolecule which diffuses as a symmetric top in solu-
tion. Edholm and Blomberg" apply the Kramer's formu-
la to the case of conformational processes. A multidimen-
sional diffusion equation has recently been applied' to
describe motion of aliphatic tails in isotropic solutions.

Following Tsutsurni, a jump model is used' to discuss
internal dynamics of liquid crystals. The spectral densi-
ties calculated using this decoupled jump model make nu-
merical computation dificult unless only one bond is al-
lowed to jump. In order to model correlated internal ro-
tations in a mesogen, we extend the master-equation
method' to flexible cylindrical molecules reorienting in
an anisotropic potential of mean torque. The equilibrium
probability of a rotamer is calculated based on the
Emsley-Luckhurst theory, ' which has been successfully
used to explain equilibrium properties such as quadrupo-
lar splittings observed in deuteriated liquid crystals.
Several models' ' have been used to describe reorienta-
tion of rigid molecules in an ordering potential of Maier-
Saupe type. The small-step rotational difFusion model' is
used here, since it has been successful in interpreting data
obtained in liquid crystals by various experimental tech-
niques' including NMR. In this model, molecular reori-
entation is governed by a rotational diffusion tensor that
is diagonal in a molecule-fixed frame. In a flexible mole-
cule with N distinct conformations, we assume that
diffusion tensors for different rotamers do not differ ap-
preciably and that an "average" rotational diffusion ten-
sor may be used to solve the rotational diffusion equation.
In this paper, we propose a simple theory' based on the
master-equation method to describe correlated internal
motions in liquid crystals. This provides the theoretical
background necessary for gaining insight into internal
dynamical processes in anisotropic media.

II. THEORY

The nuclear spin-relaxation rates are given as linear
combinations of spectral densities of motion ut (mLto)

L

which may be evaluated by Fourier transforming the time
autocorrelation functions of fluctuation interactions. In
the case of deuteron (I = I) with nuclear quadrupolar in-
teraction being the dominant interaction,

4310 1991 The American Physical Society



MODEL FOR SPIN RELAXATION BY CORRELATED INTERNAL. . . 4311

3 2

J,„(mLco)= (vg) G (t)cos(mLcot)dt, (1)
L 2 p L

where vg =e qg/h, the quadrupolar coupling constant
(i) =0 is assumed) and the time autocorrelation function

G (t)=(D 0(QLg(0))D 0(OLg(t))),

where the Euler angles QL& specify the orientation of
principal axes of the electric-field-gradient tensor with
respect to the external magnetic field. To evaluate
G (t), one needs to transform the electric-field-gradient
tensor through successive coordinates to allow for inter-
nal motions and reorientation of the molecule. We define
a coordinate system (IVI in which the chain may have N
distinct configurations. The X frame is attached rigidly
on a molecule-fixed (M) frame with an orientation
specified by the time-independent Euler angles A~&. In
each configuration, a C—D bond has a known orienta-

tion. Its motion due to conformational transitions is re-
sponsible for spin relaxation. Using the decomposition
theorem for the Wigner matrix components, one has

Dm O(+Lg) X Dm m (f)LM)Dm m (&Me)
mM, m

XD 0(Q~g ),

where the Euler angles AIM give the orientation of the M
frame with respect to the laboratory (I.) frame (Zt axis
~~B), while A~g give the orientation of the C—D bond in
theiV frame. Both QI~ and Q&& are time dependent be-
cause of molecular reorientation and internal motion, re-
spectively. It is conventional to assume that internal
motion is independent of the overall reorientation of the
molecule. With this assumption and if the rotational
motion about the ZM axis has cylindrical symmetry,

Gm (t)= y y yDm m (&MN)D (&M%)
mMm m

X[g (t)(D' 0(Q~g(0))D', (Sl~g(t)))+(P, )'5 05 o(D' o(Q~g(0))D', o(Q~g(t))) j,
(4)

where P2 is the orientational order parameter, and

g (t), the correlation functions that describe the re-
L M

orientation of a molecule, are given by

g, (t)=(D' (& (0))D' (& (t)))

k

(8)

where p, (l) is the probability of occurrence of
configuration l at equilibrium. g (t) has been given

L M

by the small-step rotational diffusion model' '

while (D o(A&g(0))D, (Q&g(t)) ) are internal corre-

lation functions that describe internal motion of the
chain with respect to the N frame. The second term in
Eq. (5), which is equal to the first one at t = co, makes the
correlation function g (t) decay to zero, so that only

L M

the Auctuating part of the interaction remains. Using the
assumption of decoupling internal and external motions,
the conditional probability that at time t, the molecule
has configuration i and orientation QLM and when at
t =0, the molecule has configurational l and flLM(0) can
be expressed as the product of configuration and orienta-
tion conditional probabilities:

p, , (OtM, t~AIM(0), 0)=p(i, t~l, 0)p(AtM, t QLM(0), 0) .

(6)

The thermal average in Eq. (2) can be evaluated by using
the conditional probability to give

G (t)=y f fdfl dA (0)D (f), g(0))
t, l

XD 0(A~g(t))p, (l)p, , (A~M, t~fllM(0), 0),
(7)

where c represents the initial amplitude of the
L M

correlation function and is given by the mean square of
the Wigner rotation matrices. a' ' represent normal-

L M

ized weights of each exponetial decay with time constant
(k)
mLmM7

k) —b(k) (2)
mL mM mL mM mM

=b'" /[6D, +mM(DII —D

are the usual correlation times for diffusion of mole-

cules in an isotropic medium and are given in terms of D~~

and D~, rotational diffusion constants of the molecule
about its ZM axis and of the Z~ axis, respectively. The
a, b, and c coefficients are all depending on P2, and are
tabulated for the Maier-Saupe potential in Table I of Ref.
17. Equation (8) is obtained by performing the double in-
tegrals in Eq. (7) with p(QLM, t~QIM(0), 0) solved from
the rotational diffusion equation of a symmetric top in a
Maier-Saupe potential. Now the internal correlation
functions in Eq. (4) are given by
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TABLE I. Euler angles for the tetrahedral lattice vectors.

Lattice vector

~~ ~p~
j

N

c
Ci

a'
bt

C

d'

0
109.5
109.5
109.5
180
70.5
70.5
70.5

—120
0

+ 120

60
180
300

C
ill

N

FIG. 1. The tetrahedral lattice on which the pentyl chain
backbone of a 5CB molecule is constrained. The eight possible
orientations of a vector connecting two lattice points and the M
and X frames are shown. The vectors c and c' lie on the X~Z~
plane.

=g exp( —im a&&)d o(PIv&)p, q(l)
i, l

tion. There are X distinct configurations for the chain.
Transitions between different configurations take place by
means of one-bond, two-bond, or three-bond motion ' in
the chain. These bond motions involve jump rate con-
stants k1, k2, and k3, respectively. In general, for each
type of bond motion, one needs more than one rate con-
stant to account for the difference in number of gauche
linkages in conformations. Transitions among
configurations are described by a master equation,

where R, - is the rate constant for transition from
configuration j to configuration i. This depends on the
type of bond motion in the transition. The diagonal ma-
trix elements of R are the negative of sum of all rates
which deplete configuration i,,

(12)

X exp(im' aIvg)d, (/3Ivg)p (i, t Il, O), (10)
Moreover, R, satisfy the detailed-balance principle,

R,,p, (j)=R,,p, (i) . (13)
where PIv& and aIv& are the polar angles of the C—D
bond in the rotamer of configuration i in the Ã frame.

To evaluate internal correlation functions, one requires
both p,q(l) and p(i, tIl, O)=p;

&
. For simplicity, we adopt

the diamond (tetrahedral) lattice to describe the carbon-
carbon backbone of an alkyl chain and the bond lengths
of C—C and C—D bond are assumed to be identical.
There are eight possible orientations of a vector connect-
ing two adjacent points on the lattice. These belong to
the antiparallel sets Ia, b, c,dI and Ia', b', c', d'I, as indi-
cated in Fig. 1. Table I gives the Euler angles for the
tetrahedral lattice vectors. The ZN axis is in the a direc-

N

p,.& (t)=x,"'(x&") ' g x,'"'xi'"'exp( —
IA.„It) .

n=1

Using Eq. (14) in Eq. (10), one obtains

(14)

Equation (11) has been solved' as an eigenvalue problem.
This is achieved by symmetrizing R and then diagonaliz-
ing to give N real and negative eigenvalues k„and eigen-
vectors x". One of these eigenvalues (n =1) is zero, and
the corresponding eigenvector x'" is given by the equilib-
rium distribution of configuration, i.e., xt "=

I p, ( 1)]'
The conditional probability p;t (t) is given by

0

N

(D (Q0~g(0))D, o(Q~g(t)) &
= g exp( —I&„lt) & d' 0(PpjQ)exp( ~m aN~Q)xl xl"'

n=1 l=1
(15)

We consider here the pentyl chain of 4-n-pentyl-d»-4'-cyanobiphenyl-d~ (5CB-d, 5). The biphenyl core is assumed to
possess cylindrical symmetry. The M frame can be chosen to be identical to the N frame (see Fig. 1), whose Xz axis is
picked such that the c and c directions lie on the X&Zz plane. Substituting Eqs. (g) and (15) into Eq. (4), one obtains
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2

6 (t) = g c g g a'"' g d o(P~&)exp( —
imMaM&

)x&""x&'"' exp[ —[(r'"' ) '+ lk„l ]t)

+'fi 0(P2) g g doo(I3IMQ )&I "&i"' exp( —l~. t)
n =1 1=1

The spectral densities J'~' (mLco) of the deuterons on the C carbon are calculated from Eq. (1):
L

N 2

J &'(mLoi)= (vg') g g c g d o(I3$&)exp( im—Map&)x& "xI"'
m~ n =1 1=1

(16)

+ (vg') ~ o(P2) 2 2 doo(f3')xi"'xi'"' ~ I/[(mLo') +l~ I ) .
n =1 1=1

(17)

Since we are concerned with mI %0 in the Zeeman and
quadrupolar spin-lattice relaxation times, the second
term involving P2 in the above equation will subsequent-
ly be omitted.

To construct the rate matrix R in the master equation,
the elementary jump modes connecting the configurations
and the equilibrium probability p, (j) of the
configuration j must be specified. To obtain p,q(j) for a
free alkyl chain, one needs only the intramolecular energy
U;„,(j). This can be aPProximated by U;„,(j)=nsE,&,
where n is the number of gauche linkages in the chain in
configuration j and E, is the energy difference between
the g

—+ state and the t state. Etg varies between 2.1 and
3.2 kJ/mol in gaseous alkanes. A slightly larger value'
was used in liquid crystals. The total energy U(j, o~) of a
molecule in configuration j, having an orientation ~ with
the director, is given by sum of U;„,(j) and U,„,(j,oi), the
anisotropic part of the potential of mean torque. It can
be shown' that p, (j) is given by

p, (j)=exp[ —U;„,(j)/kT]Q /Z, (18)

Z = g exp[ —U;„,(j)/kT]Q. . (20)

The U,„,(j,o~) for configuration j can be written' as

U,„,(J,co) [X P2o(c2sPo) 2+zXzdz (Io)c3s oy2], (21)

where (P, y) are the polar angles of the director in the
principal frame of the interaction tensor X. An
extended-atom model is assumed for the chain, with only
the skeleton carbons being explicitly considered. The X
is obtained based on additivity of local-bond-interaction
tensors which are cylindrically symmetric and indepen-

where the orientational partition function for
configuration j is

Q = f exp[ —U,„,(j,oi)/kT)den, (19)

and the configuration-orientational partition function Z
1s

dent of configuration. Therefore
5

X~ =X,5 o+Xcc g C~ (co;),
l =2

(22)

where mj is the orientation of the ith C-C segment in the
molecular (M) frame for configuration j, C2 (co) is a
modified spherical harmonic, X, and Xcc are the unique
components of the interaction tensors for the aromatic
core (including the cyano group and the first methylene
group) and for a C-C segment, respectively. X is a 3X3
matrix and is diagonalized to determine the X2o and X22
in Eq. (21). X, and Xcc can be derived from fitting the
quadrupolar splittings of the chain deuterons, and are
temperature dependent. They are assumed to be known
in modeling dynamics of the chain.

The elementary jump modes are defined ' by Monnerie
and co-workers. Any configuration of the pentyl chain
can be written as a sequence of five lattice vectors
[ij'kl'm) representing the orientations of C,„-C, C -C&,

C&-C&, C&-C&, and C&-C„respectively. For example, the
configuration illustrated in Fig. 1 is specified by the set of
vectors [ac'ac'a). To construct all possible sterically al-
lowed configurations, only those sequences [ij'kl'm) are
allowed in which adjacent vectors, disregarding the
primes, are different. As the C,„—C bond is fixed on the
aromatic core, i can only take one possible value which is
taken to be a, and the pentyl chain could have 3
configurations. In addition, four bond sequences that
contain a g

—
g conformation are disallowed because

deuteron and deuteron or carbon atoms would occupy
the same lattice site in the case that C—C and C—D
bond lengths were exactly the same. These j'k1'm se-
quences are given by j=m. As a result, the number of
acceptable configurations N is reduced to 51. The 21
configurations' of the type [aj'al'm) are listed in Table
II(a). The ten configurations of the type [aj'cl'm) are
listed in Table II(b). There are ten configurations of the
type [aj'dl'm) and of the type [aj'bl'm). These can be
generated in the same manner as those given in Table
II(b). To evaluate the spectral density of a deuteron, the
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orientation of the C-D vector in each of the
configurations, which have been specified in terms of the
carbon-carbon skeleton, must be known. A C-D vector
may only have one of eight possible orientations in a dia-
mond lattice, i.e., [a,b, c,dI and [a', b', c', d'I. There are
two sets of C-D vectors, each of which contains one of
the two deuterons bonded to each carbon. We follow
Wittebort and Szabo' by assigning [c',c,c', cI =set l
and [b', b, b', b I

=set 2 for configuration [ ad'ad'a I. Only
set 1 of C-D vectors is given in Table II, as the spectral
density is independent of whether set 1 or set 2 is used.
With the above assignment, the C-D vectors in all the
other configurations are determined as follows. Consider
a chain which starts in configuration 1 and makes a jump
to another configuration by a possible elementary motion.
The accompanying changes in the directions of the C-D
vectors can be determined' using the following rule: any
C-D vector attached to a C—C bond which moves must
alter its orientation.

The intercon versions among the configurations are
governed by the rate matrix elements R; involving ele-
mentary jump constants. The elementary jump modes in

k3

ij'kl'm ~il'kj'm, (23)

e.g. , ad'ab'a~ab'ad'a (tg t~tg+t). However, not
all three-bond motions are equivalent. The jump rates
for ad'cb'a~ab'cd'a (g+g+g+~g g g ), ad'cb'c
—+ab'cd'c (g+g+t~g g t), and ad'ab'a~ab'ad'a are
slightly different from each other. For simplicity, these
rates are assumed to identical. The two-bond motions
are of the type

k2

ij'kl'm ~ij'kn'm,

while one-bond motions are of the type

kl

ij'kl'm ~ij'kl'n,

(24)

(25)

which involve rotation about the Cz—C& bond. Not all
one-bond motions are equivalent. For example,

R are presented in graphical form in terms of one-bond,
two-bond, and three-bond motions in Fig. 2. The three-
bond motions involve

TABLE II. Configurations, conformations, and C-D vectors (set 1) of a pentyl chain.

No. Conformation Configuration

(a)

C
C-D vectors

Cp C

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

ttt
ttg +

ttg
tg+t
tg t

tg g
g

ttg +

ttg
tg+t
tg t

ttg +

ttg
tg+t
tg t

tg t

d'
dt
d'
d'
d'
d'
d'
b'
b'
b'
b'
b'
b'
b'

e
e
e
c
c
e
e

d'
dl
dl

c
b'

c
b'
b'
b'
b'
d'

c
dl

c
c
c
c
b'
d'
b'
d'

c
b

a
b

a
d

a
c
d
a
b
d

d
b

e'

e
e
e
c
e
c
d'
d'
d'
d'
d'
d'
d'
b'
b'
b'
b'
b'
b'
b'

c
c
c
c
c
c
e
d

d
d
d
d
d
b
b
b
b
b
b
b

c
c
c
b'
d'
b'
d'
d'
d'
d/

c
b'

e
b'
b'
b'
bl
d'

e
d'

c

c
b
a
b
d
d
a
d

c
b
b
a
b
d
a
d
c
c

22
23
24
25
26
27
28
29
30
31

g+tt
g tg

g tg

g g
g tt

g g g

d'
dl
d'
d'
dl
b'
b'
b'
b'
b'

(b)
d'
d'
d'
b'
b'
b'
b'
b'
d'
d'

a
d

e
c
c
c
e'
dt
d'
d'
d'
dt

b
b
b
b
b
a

a
a
a

b'
b'
b'
a'
a'
a'
a'
a'
b'
b'
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g+tt

22

Q9---
'll I

Q18

Ql.
r I

I
I

Qll

I I I

I I I

I I I

20 "" 41 40

I

14 " " 36 35

5
I

'Q4

Q19
r Ir

I

18

6 ""' 51 50

21 " " 46 45 2

ttg+ ttg k, 0
g+tg+

13 20 0
g+tt g+g+t

Q14

12
I

Q9

rr IQ--

I I
I

I I

13 ' " 31
I

QV --Q0

Q30

~25

4
tg+t

tg t

0
ttg+

kg

k3

tg t

011
tg+t

0

0 k Itl
2 0

FIG. 2. Diagrammatic representation of the rate matrix R.
The jump rate constants are k& (solid line), k2 (dashed line), and
k 3 (dotted line) . 0 0

g+g+g+

ad'ad'c —+ad'ad'b and ad'cd'a~ad'cd'b have slightly
different rate constants. Again they are set to the same
value for simplicity. Because of Eq. (13) and the elemen-
tary jump rate constants r, =r.. . R.;, =p,q(i)r;, . In gen-
eral, more than one rate constant for each type of bond
motion is needed because of different internal energies
U;„,(j) involved in the interconversion among
configurations. For example, the interconversions be-
tween configurations 1, 2, and 3 involve one-bond
motions. If we define k, to be the rate constant for tran-
sition between two conformations which have an equal
number of gauche sequences, an additional rate ki is
needed (Fig. 3) for transition between configuration 1 and
configuration 2 or 3. Also shown in this figure are some
examples of various rates for two- and three-bond
motions. These are required to determine r," in Table III.

We summarize how the spectral density is calculated
using the information in Tables II and III and Eq. (17).
The 51 X 51 rate matrix R is constructed and then sym-

FIG. 3. Generalization of a part of the rate matrix R in Fig.
2 to the case of nonuniform equilibrium distribution of the
configurations.

metrized. This is followed by diagonalization using stan-
dard routines to yield a set of eigenvalues A, „and corre-
sponding eigenvectors x "' (i, n =1, . . . , 51). To evaluate
the spectral density of deuterons on any carbon except
C„ the required polar angles a)v& and /3)v& for each
deuteron in each configuration are obtained using both
Tables I and II. To obtain the orientation of the C-D
vector in the methyl (p =e) group, it is assumed that the
threefold rotation of the methyl group is fast, thus mak-
ing the "effective" C-D vector identical to the C&-C, vec-
tor and reducing v(&) by a factor of P2(cos6), where 8 is
the LCCD (109.5') in the methyl group.

Finally, the spectral densities for the ring deuterons are
obtained using the superimposed free-rotation model

3 2
J(R)( ) ( (R))2y c Id2 (p )]2

M

X g a'~' l(r(J) ) '+(1 —5 0)D~ ]/I(ml co) + r(r'J' ) '+(1 —5 0)D2i ] I,
J

(26)
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TABLE III. Elementary rate constants required to construct the rate matrix R. Only the nonzero r;, (for j)i) are listed. Under
each column of rate constant are the indices (i,j) of r;;.

(2,3)
(9,10)

(16,17)
(23,24)
(28,29)
(33,34)
(38,39)
(43,44)
(48,49)

ki

(1,2)
(1,3)
(8',9)

(8,10)
(15,16)
(15,17)

k It
1

(4,6)
(5,'7)

(11,13)
(12,14)
(18,20)
(19,21)
(22,23)
(22,24)
(27,28)
(27,29)
(32,33)
(32,34)
(37,38)
(37,39)
(42,43)
(42,44)
(47,48)
(47,49)

k Itt
1

(25,26)
(30,31)
(35,36)
(40,41)
(45,46)
(50,51)

(4,5)
(11,12)
(18,19)

k2

(1,4)
(1,5)

(8,11)
(8, 12)

(15,18)
(15,19)

k II
2

(2,7)
(3,6)

{9,14)
(10,13)
(16,21)
(17,20)
{22,25)
(27,30)
(32,35)
(37,40)
(42,45)
(47,50)

k Ill
2

(23,26)
(28,31)
(33,36)
(38 41)
(43,46)
(48,51)

k3

(4, 19)
(5,11)
(6,21)
(7,13)

(12,18)
(14,20)
(25,30)
{26,31)
(35,40)
(36,41)
(45,50)
(46,51)
(24,29)
(29,34)
(39,44)

k3

(2,23)
(3,'48)

(9,'33)

(10,28)
(16,43)
(17,'38)

k II
3

(6,51)
(7,'26)

(13,'31)

(14,'36)

(20 41)
(21 46)

where D~ is the rotational diffusion constant of the ring
about its para axis. A strong collision limit is assumed
for the free internal ring rotation. v& '=185 kHz, while
vg' for the methylene deuteron is taken to be 168 kHz.
In the next section we examine the site, temperature, and
frequency dependences of J&(coo) and J2(2coo) in the deu-
terated liquid crystal 5CB-d» using Eqs. (17) and (26).

III. NUMERICAL CALCULATIONS

Using the above jurnp model, we present. some numeri-
cal calculations of spectral densities for the pentyl chain
of 5CB and qualitatively compare the theoretical predic-
tions and the experimental data. ' The parameters in the
potential of mean torque are taken from Counsell et al.
At T=302 K, X, =4.52 kJ/mol and XCC=1.36 kJ/mol.
While a value of 3.27 kJ/mol was used for E,z in 5CB by
Cheng and Dong, ' E, was taken to be 3.8 kJ/mol by
Counsell et aI. Using P2 =0.533, E« =3.5 kJ/mol,

D~~ =7.6X10 s ', D&=4.5X10 s ', and D& =2.2&10
s ', JI '(coo) and J2 '(2coo) at coo/2vr=30. 7 MHz are cal-
culated from Eq. (26) to be 36.06 and 25.77 s ', respec-
tively. We have chosen the rotational diffusion constants
so that these theoretical values are close to the experi-
mental spectral densities' at this temperature
(J&=36.7+1.8 s ' and J2=25. 1+2.5 s '). Following
Wittebort and Szabo, ' all phenomenological rate con-
stants in R are set equal. Thus the spectral densities for
deuterons at all carbons in the pentyl chain of 5CB may
be calculated with only one adjustable parameter k (i.e.,
the jump rates for one-, two-, and three-bond motions are
set to be identical).

It has been shown that conformational dynamics ap-
pear to be relatively insensitive to the presence of an an-
isotropic potential of mean torque in systems like lipid bi-

layers. To investigate this possibility in liquid crystals,
the spectral densities for a free pentyl chain are calculat-
ed using

1V

p, (j ) =exp[ —U;„,(j )/kT]/ g exp[ —U;„,(j )/kT]

(27)

and Eq. (17). Figure 4 shows plot of calculated J'P'(coo)
and Jz~'(2coo) and coo/2m=30. 7 MHz versus the carbon
number with k =6X10' s '. The model predicts a de-
crease in both Jj and J2 along the pentyl chain except at
C(5). For comparison, we have also plotted in the same
diagram the calculated spectral densities with the sarge
motional parameters and p, (j) given by Eq. (18). The
above k value was chosen to give qualitative agreement
between the calculated spectral densities for a con-
strained chain and the experimental data. ' As seen from
the figure, the effects of the nematic mean field on the
internal dynamics of a chain appear not be significant for
liquid crystals, since these spectral densities are only
slightly higher than those for a free chain except those at
C(4) and C(5), and may be compensated using a slightly
different k value. However, we will not examine further
the free pentyl chain. The theoretical and experimental
spectral densities agree qualitatively, with the exception
of the theoretical values for C(4), which are too low. The
effect of varying the jump rate k is shown in Fig. 5. All
spectral densities of the chain deuterons in 5CB-d]5 in-
crease as k decreases. Therefore, one way of improving
the fits for the spectral densities of C(4) is to reduce the
jump rate k, but this is futile, since the fits at other car-
bon sites would drastically deteriorate. The possibility of
different jump rates in the rate matrix R will be addressed
later. The model also predicts frequency dependences in
both J, (co) and J2(co) for the chain deuterons, as shown in
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Fig. 6. The predicted frequency dependences of the ring
deuteron spectral densities are shown in the same dia-
gram. The frequency dependence in Jz is less than that
of J

&
~ This seems to qualitatively agree with the experi-

mental data' given at three Larmor frequencies in the
figure. The data at 15.3 MHz are obtained in our labora-
tory. Thus the model provides an explanation for the fre-
quency dependences in the spectral densities, provided
that the reorientation motion of the entire molecule has a
D~ value of less than about 5 X 10 s

It is noted above that the calculated spectral densities
of C(4) deuterons are too low when a single k value is
used in R. When the pentyl chain is restricted to confor-
mations that start with a trans [Table 2(a)j, the spectral
densities of C(l) and C(2) deuterons are identical, and the
variations in the spectral densities along the chain are
very gradual. The large discrepancy in the spectral densi-
ties at C(4) seems to suggest that some jump rates in the
rate matrix may be smaller. To explore the possibility of
two sets of jump-rate constants in R, we assume that k',",
k2" and k&' take a lower value. These jump-rate con-
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FIG. 5. Plot of theoretical spectral densities J
& (cop) and

J,(2cop) at 30.7 MHz and 302 K vs the jump rate k. Rotational
diffusion constants are given in Fig. 4. The number within the
brackets of J's refers to the carbon number.
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FICs. 4. Plot of theoretical spectral densities Jl(cop) and
J2(2cop) at 30.7 MHz and 302 K for 5CB-d». Carbon 0 refers to
ring deuterons, while 1 —4 refer to methylene deuterons on the
pentyl chain. P2 =0.533, X, /kT = 1.8, Xcc /kT =0.54, and
E«=3.5 kJ/mol. Dashed curves are for a free pentyl chain,
while the solid curves are for a chain in an anisotropic potential
of mean torque. The adjustable parameters for these curves are

D~~ =7.6X10' s ', Dj =4.5X10' s ', D& =2.2X10 s ', and
k =6 X 10' s '. The dotted curves are generated for a con-
strained chain with the same rotational diffusion constants but
with two jump rate constants (k = 1.3 X 10' s ' and another
jump rate constant, see text). Open and closed symbols denote
experimental data.
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FICx. 6. Plot of theoretical spectral densities J&(cop) (dashed

lines) and J2(2')p) (dotted lines) vs the Larmor frequency at 302
K using a single jump rate for 5CB-d, 5. All parameters are list-
ed in the caption of Fig. 4. The open symbols denote J&, while
the closed symbols denote the corresponding J&. C', o, 4, and

denote experimental data at 12, 15.3, and 30.7 MHz for car-
bon 0, 1, 2, and 3, respectively (carbon number also appears
within brackets of J's) ~
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stants aA'ect interconversions that change the number of
gauche linkages between two and three in the conforma-
tions involved in the transition (see Table II). The eft'ect
of lowering these rates is to raise all the calculated spec-
tral densities, in particular those of C(4) deuterons.
Without optimizing the fits between the calculated and
experimental spectral densities of the chain deuterons, we
show in Fig. 4 calculated spectral densities for a con-
strained chain using k',"=k2" =k3' =4X10" s ' and all
the remaining k's equal to 1.3X10' s '. It would ap-
pear that one may satisfactorily reproduce the experi-
mental data using two sets of jurnp-rate constants. If all
the k3's are set to zero to disallow three-bond motions,
one again obtains identical spectral densities for the C(1)
and C(2) deuterons.

To examine the temperature dependence of the spectral
densities of chain deuterons in 5CB, we are limited by the
available data' at diferent temperatures and frequencies.
At 292 K, X, =5.58 kJ/mol and Xcc=1.68 kJ/mol.
Using Pz=0. 625, E, =3.5 kJ/rnol, D~~ =6.8X10 s
D&=3.5 X 107 s ', and DIt =1.28X10 s ', JI '(coo) and
J(z '(2coo) at coo/2vr=30. 7 MHz are calculated from Eq.
(26) to be 59.50 and 34.35 s ', respectively. In Fig. 7, the
frequency dependences of the calculated spectral densi-
ties for the ring and C(1)-C(3) deuterons with
k =4.7 X 10' s ', together with their experimental
values at two Larmor frequencies are shown. Again, a
qualitative resemblance between the theory and experi-
mental data may be observed. Furthermore, the motion-
al parameters, as expected, are found lower than those
used at 302 K.

The purpose of this paper has been to present a model
to describe correlated internal rotation in a pentyl chain
of a liquid crystal. It has been demonstrated that the ob-
served frequency and site dependences of the spectral
densities for the chain deuterons of 5CB can be predicted
qualitatively. We note, however, that fairly precise mea-
surements of spectral density of motion as a function of
temperature and frequency are required before a quanti-
tative fit to the above model may be attempted.

An interesting article by Ferrarini et al. has recently
appeared. A master equation' was used to describe
internal motions in 5CB. Though they explicitly con-
sidered a configuration-dependent rotational diA'usion

tensor, they still assumed that the overall and internal
motions are independent of each other. Rather heavy
computation procedures were required by these authors
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to accomplish configuration-dependent rotational
diA'usion tensors. Despite diAerences between their ap-
proach and the present work, these authors appeared to
reach similar conclusions to ours.
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FIG. 7. Plot of theoretical spectral densities J&(coo) (dashed
lines) and J2(2coo) (dotted lines) vs the Larmor frequency at 292
K for 5CB-d». I'2=0. 625, X, /kT=2. 3, X«/kT=0. 69, and
E„=3.5 kJ/mol. The adjustable pa~a~ete~s are D!~ =6.8X10'
s Dy=3. 5X 10 s Dg = 1.28X 10 s and k =4.7X 10
s '. The open symbols denote J& while the closed symbols
denote the corresponding J2. 0, o, 0, and denote experi-
mental data at 15.3 and 30.7 MHz for carbon 0, 1, 2, and 3, re-
spectively (carbon number also appears within brackets of J's).

~P. A. Beckmann, J. W. Emsley, G. R. Luckhurst, and D. L.
Turner, Mol. Phys. 50, 699 (1983); C. R. J. Counsell, J. W.
Emsley, G. R. Luckhurst, D. L. Turner, and J. Charvolin,
ibid. 52, 499 (1984); P. A. Beckmann, J. W. Emsley, G. R.
Luckhurst, and D. L. Turner, ibid. 59, 97 (1986).

D. Goldfarb, R. Y. Dong, Z. Luz, and H. Zimmerman, Mol.
Phys. 54, 1185 (1985); R. Y. Dong and K. R. Sridharan, J.
Chem. Phys. 82, 4338 (1985); R. Y. Dong and G. M.
Richards, J. Chem. Soc. Faraday Trans. II 84, 1053 (1988); R.
Y. Dong, Phys. Rev. A 42, 858 (1990).

T. M. Barbara, R. R. Void, and R. L. Void, J. Chem. Phys. 79,

6338 (1983); T. M. Barbara, R. R. Void, R. L. Void, and M.
E. Neubert, ibid. 82, 1612 (1985).

4N. J. Heaton, Ph.D. thesis, University of Southampton, 1986;
R. Y. Dong, J. W. Emsley, and J. Hamilton, Liq. Cryst. 5,
1019 (1989).

~D. J. Wallach, J. Chem. Phys. 47, 5258 (1967).
Y. K. Levine, N. J. M. Birsdall, A. G. Lee, J. C. Metcalfe, P.

Partington, and G. C. K. Roberts, J. Chem. Phys. 60, 2890
(1974).

7R. E. London and J. Avitabile, J. Am. Chem. Soc. 99, 7765
(1977); 100, 7159 (1978).



43 MODEL FOR SPIN RELAXATION BY CORRELATED INTERNAL. . . 4319

sP. J. Flory, Statistica/ Mechanics of Chain Molecules (Intersci-
ence, New York, 1969).

A. Tsutsumi, Mol. Phys. 37, 111 (1979).
R. J. Wittebort and A. Szabo, J. Chem. Phy. 69, 1722 (1978).

' O. Edholm and C. Blomberg, Chem. Phys. 42, 449 (1979).
' A. Ferrarini, G. Moro, and P. L. Nordio, Mol. Phys. 63, 225

(1988).
' R. Y. Dong, J. Chem. Phys. 88, 3962 (1988).
'4J. W. Emsley, G. R. Luckhurst, and C. P. Stockley, Proc. R.

Soc. London Ser. A 381, 117 (19821; G. Q. Cheng and R. Y.
Dong, J. Chem. Phys. 89, 3308 {1988}.

~5P. L. Nordio and P. Busolin, J. Chem. Phys. 55, 5485 (1971);
P. L. Nordio, G. Rigatti, and U. Segre, ibid. 56, 2117 (1972).
C. F. Polnaszek, G. V. Bruno, and J. H. Freed, J. Chem. Phys.
58, 3185 (1973);W. J. Lin and J. H. Freed, J. Phys. Chem. 83,
379 (1979).

R. R. Void and R. L. Void, J. Chem. Phys. 88, 1443 (1988).
' G. R. Luckhurst and A. Sanson, Mol. Phys. 24, 1297 (1972);

C. F. Polnaszek and J. H. Freed, J. Phys. Chem. 79, 2283
(1975); P. L. Nordio, G. Rigatti, and U. Segre, Mol. Phys. 25,
129 (1973);A. Szabo, J. Chem. Phys. 72, 4260 (1980); C. Zan-
noni, Mol. Phys. 38, 1813 (1979); I. Dozov, N. Kirov, and M.

P. Fontana, J. Chem. Phys. 81, 2585 (1984); N. Kirov, I. Do-
zov, and M. P. Fontanta, ibid. 83, 5267 (1985).
R. Y. Dong and G. M. Richards, Chem. Phys. Lett. 171, 389
(1990).

~oA. Abragam, Principles of Nuclear Magnetic Resonance (Ox-
ford University, London, 1961).

B. Valeur, J.-P. Jarry, F. Geny, and L. Monnerie, J. Poly. Sci.
13, 667 (1975); B. Valeur, L. Monnerie, and J. P. Jarry, ibid.
13, 675 (1975).

C. J. R. Counsell, J. W. Emsley, N. J. Heaton, and G. R.
Luckhurst, Mol ~ Phys. 54, 847 (1985).

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes (Cambridge University, Cam-
bridge, England, 1986).
R. Y. Dong, Mol. Cryst. Liq. Cryst. 141, 349 (1986).
A. Ferrarini, P. L. Nordio, G. J. Moro, R. H. Crepeau, and J.
H. Freed, J. Chem. Phys. 91, 5707 {1989);R. W. Pastor, R.
M. Venable, and M. Karplus, ibid. 89, 1112 (1988); R. W.
Pastor, R. M. Venable, M. Karplus, and A. Szabo, ibid. 89,
1128 (1988).

A. Ferrarini, G. J. Moro, and P. L. Nordio, Liq. Cryst. 8, 593
(1990).


