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Measurement of the diffusion coefFicient of strongly interacting colloidal suspensions
by nondegenerate two-wave mixing
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We have measured the diffusion coefficient of strongly interacting "colloidal liquids" near the
"liquid"-"solid" phase transition using nondegenerate two-wave mixing. We self-consistently calcu-
late the diffusion coefticient as the product of the elastic modulus and a relaxation time that is
identified as the time taken for a particle to diffuse one-tenth of the average interparticle distance.
This procedure also predicts an electrolyte concentration where the diffusion coe%cient vanishes,
which is identified with the melting point of the colloidal crystal. This is shown to be essentially
identical to the Lindemann criterion. In addition, we find that the colloidal liquid-solid transition
as a function of ionic concentration gives a critical exponent y =0.08+0.003.

Suspensions of charged polystyrene microspheres have
received intense interest in recent years because of the
discovery that they could form ordered crystalline phases
in ultraclean water that could be investigated using quasi-
elastic light-scattering methods. ' The crystals are
thought to be purely repulsive and easily melt upon the
addition of small amounts of salts that screen the interac-
tions of the charges on the particle surfaces. The parti-
cles interact through a Debye potential with the strength
of the potential characterized by the number of charges
per microsphere and the strength of ionic concentration
in the suspension. ' As such, the suspensions can be
well characterized, and form model systems for studying
some basic condensed-matter physics.

The crystals have had many applications in pure and
applied physics. Due to their strong reflectance at the
Bragg condition, they have been proposed for Raman
filters, distributed-feedback lasers, and as model systems
for the study of the inhibition of spontaneous emission.
In addition, the noncrystalline colloidal suspensions have
an extremely high nonlinear index of refraction based on
the ponderomotive force. ' These "artificial Kerr
media" have nonlinearities 10 times that of CS2 with re-
laxation times on the order of milliseconds. Self-focusing,
self-trapping, and degenerate four-wave mixing have been
observed due to the high nonlinear index. '

Because they can be well characterized, there have'

been many experimental and theoretical studies per-
formed to determine their properties. Studies of the po-
lystyrene microspheres have observed the iridescence of
the structured phase at the freezing point and measured
the viscosity by monitoring the decay of absorption grat-
ings in tagged particles' and correlated light-scattering
experiments. " Other work has observed the onset of di-
latancy in noninteracting systems, ' and measured
Young's modulus by the change in lattice spacing under
gravitational compression' and the resonance frequency

of standing shear modes. ' Theoretical studies have used
the Lindemann criterion' and effective hard-sphere ra-
dii' to determine the melting point. Other theoretical
studies of nonequilibrium properties of these systems
have calculated viscosities using the Smoluchowski equa-
tion, ' the structure factor of the colloidal liquid, ' and
arguments based on effective relaxation times of the
strongly interacting system. '

Our work concerns the use of the high nonlinear index
for investigation of the properties of the strongly in-
teracting colloid. We have developed a technique which
measures the absolute low-shear-rate viscosity of solu-
tions to within 10% of previously tabulated values with
sample volumes as small as 20 picoliters. This technique
relies on the forces associated with radiation pressure in a
traveling optical intensity grating. It is based on the ex-
change of energy between the two interfering light beams
mediated by colloidal medium, referred to as nondegen-
erate two-wave mixing (NDTWM). We have then pre-
dicted the effective viscosities using a relaxation-time ar-
gument originally given in Ref. 19, and found them to
match our experimental work to about 10%.

THEORY OF NDTWM IN COLLOIDS

A dielectric particle within these suspensions will be
affected by a force exerted on it in a light field with a
strong intensity gradient in the direction of the gradient.
The force is given by the expression '

where o, is the polarizability of the particle, I the intensi-
ty of the light field as a function of the spatial coordi-
nates, and c the speed of light. The polarizability is given
by
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where 1/r=4k D, k =2'/A, , and D is the diffusion
coefficient of the particle. Expression (3) allows the
diffusion coefficient to be measured directly by measuring
the NDTWM gain curve as a function of 5co. At higher
intensities, the peak of the gain curve is a function of g,
which is a dimensionless ratio proportional to I/ck~T,
the ratio of the potential of the colloidal particle in light
field to the mean thermal energy. Figure 1 shows several

0.7

a being the radius of of the particle (430 A in this work)
and n being the ratio of the indices of refraction of poly-
styrene and water. Nonlinear effects in this artificial
Kerr media are caused by the change in the net index of
refraction due to changes in the colloidal particle number
density from the gradient force, as it can be shown that
the effective index of refraction of the composite medium
is linearly proportional to the volume fraction of the po-
lystyrene microspheres. ' ' We are interested in the
effects caused by a moving index grating from the in-
terference of two Doppler-shifted light beams. The effect
was first seen in 1986 by Chang and Sato, and studied
theoretically by McGraw and Rogovin in 1987. '

When two counterpropagating Doppler-shifted light
beams are superposed in a nonlinear medium, the travel-

ing intensity grating that results will lead to a traveling
index grating. This in turn leads to the scattering of one
light beam into the direction of the other, indicating that
one beam will gain energy at the expense of the other one.
For low intensities, the NDTWM gain is given by '

normalized gain curves at differing values of g.
Dozier, Lindsay, and Chakin to make an important

distinction between two different types of diffusion
coe%cient. There is the single particle Do that is a mea-
sure of the average single-particle displacement in a time

(x'&= (4)
3D

and the mutual diffusion coefficient Dk which indicates
how a density modulation of wave vector k will decay
through diffusion:

~p~
D Vpk k

These are only necessarily the same for noninteracting
particles. In the derivation of NDTWM in Ref. 21, it is
obvious that the mutual diffusion coeKcient is what is be-
ing measured by NDTWM. However, the wavelength of
light which we are using is X=0.514 pm. Multiple-
particle effects ought to come in only if there are many
particles per "cubic wavelength. "

An estimate of the number of particles per cubic wave-
length being dragged along in the traveling-wave grating
is X—4~/3(k/2n) p —10 particles. Therefore, although
in theory what we are measuring is the mutual diffusion
coefficient, in practice we believe that what we measure
should essentially be the single-particle value.

EXPERIMENTAL MEASUREMENT
OF THE DIFFUSION COEFFICIENT

Figure 2 shows our experimental setup. The laser used
a 5 W argon ion laser running at 514 5 nm. The
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FIG. 1. NDTWM gain as a function of g. Gain is normal-
ized by 1/pg. IAfter Ref. 5.)

FIG. 2. Experimental setup. 8 is a 50/50 beamsplitter, PZT
is a mirror mounted on a piezoelectric transducer, M are 10X
microscope objectives, and P is the sample holder, a 5-pl
volume pipette.
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piezoelectric transducer (PZT) was driven using a tnan-

tors was lock-in detected using as reference an attenuated
signal from the function generator driving the PZT.
Phase-sensitive detection at the PZT displacement fre-
quency ensured that we only detected gain antisymmetric
in the beam Doppler shift. PZT displacement was cali-
brated by Michelson interferometry. The diameter of the
beam going through the microscope objectives was mea-
sured to be approximately 7 pm by measuring the power
transmitted through pinholes of different sizes. The sam-
ple holder was a 275-pm-thick 5-pl volume pipette, from
which the sample volume probed was estimated to be ap-
proximately 2 X 10 cm, or 20 picoliters.

A scope trace of the output from detector 1 is shown in
Fig. 3. The upper trace is proportional to the PZT dis-
placement; the lower is the NDTWM signal. Output
from detectors 1 and 2 is shown in Fig. 4, showing that
one beam gains energy at the expense of the other. Fig-
ure 5 shows NDTWM signal as a function of beam
Doppler shift, showing that the gain curve is Lorentzian.

The eak of the gain curve shifted to higher frequen-
cies as the laser power was increased (Fig. 6). However,
estimates show that g « 1 at all laser powers, which indi-
cates that the Doppler shift giving the peak gain should
not change due to McGraw and Rogovin's theory. But a
simple calculation based on the estimated value of the
nonlinear index n2 =4X10 " m /W, indicated that the
threshold for self-focusing was approximately 20 mW.
C t l tion of the nonlinear wave equation usingompu er so u

'

22 self-a code developed at our laboratory showed that se-
focusing effects led to intensity increases at the center of
the beam which would increase g to the values needed to
see this peak shift (Fig. 7). We took great care to ensure
that all later experiments were performed with powers
under the self-focusing threshold.

The apparatus was calibrated against suspensions of
noninteracting colloids whose viscosity could be calculat-

Ti)T) 8 (2 msidiv)

FIG. 4. Top trace: detector 1 signal. Bottom trace: detector
2. Time scale is 2 ms/division.

ed from the Handbook of Chemistry and Physics. The
three solutions were —' by volume aqueous suspensions o

3

10 /o b volume 0.090-pm-diam polystyrene microsphereso yv
and —,

' by volume mixtures of glycerol and water.
used three mixtures to test our apparatus, w ~c were
pure water —' water and —,

' glycerol, and pure glycerol.2

The NDTWM gain from these three colloidal suspen-
sions is shown in Fig. 8, from which it can be seen that
the position of the peak changes by over a factor of 2
with increasing viscosity. Using the relationship given in
formula 3 and Stokes's law [formula (13b)], the absolute
viscosity is calculated to be within 10% of the value given
by the Handbook of Chemistry and Physics at all three
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FIG, 3. Scope trace of NDTWM gain. The upper trace is the
ramp voltage for the PZT; the lower is signal from detector 1.
As gain is dependent on beam Doppler shift, the lower trace
should look like the derivative of the upper. The time scale is 1

ms/division; the top voltage scale is 1 V/division, and the bot-
tom is 5 mV/division.
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FIG. 5. NDTWM gain as a function of beam Doppler shift.
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FIG. 8. Normalized frequency of peak gain vs g. Curve a is
from McGraw and Rogovin's theory (Ref. 5). b is calculated
from self-focusing model and experiment (cf. Fig. 6).
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FIG. 6. Dependence of the peak of the gain curve on laser

power.

concentrations.
The experiments on strongly interacting colloids were

performed on 0.086-pm-diam microspheres from Interfa-
cial Dynamics Corporation (IDC). From IDC literature,
the surface charge density on the polystyrene micro-
spheres was (1 charge)/(2500 A ), leading to a total

charge of roughly 900e per sphere. The colloidal sus-
pensions were crystallized by agitating solutions with
ion-exchange resin (Dow Chemical Mixed-Bed Analytic
Resin) which lowered the electrolyte concentration to at
most 10 mol/l at which point a solution of NaCl in wa-
ter was added to raise the ionic strength to well-defined
values. Below an electrolyte concentration of 1.6X10
mol/I no measurable signal could be seen. The frequency
detuning of the peak of the gain curve for full bottle con-
centration [volume fraction ((t) =O. lj is plotted in Fig. 9.
This figure shows that at low salt concentrations, the
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FIG. 7. Two-wave-mixing gain in three solutions. The solu-
tions were

3 0.090-pm microspheres in deionized water with,
for curve a, 3 water; curve b, 6 water, 6 glycerol; curve c, —,

' gly-
cerol.

NaCi Concentration {10-3rnoiii}

FIG. 9. Normalized diffusion coeKcient of 0.086-pm diam
polystyrene microspheres as a function of NaC1 concentration
((5=0.10).
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curve c, 1.4X 10 mol/I; curve d, 2.0X 10 mol/l.
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diffusion coefficient is very low, but rises rapidly with in-
creasing electrolyte concentration.

We believed that the change in the diffusion coefficient
was due to the melting of the colloidal crystal, as in the
work of Dozier Lindsay, and Chaikin. ' However, we
could not directly see the melting transition because the
Bragg notch was located in the near uv. To test this idea,
we measured the transmissivity of a series of colloidal
suspensions at differing NaC1 concentrations. The sus-
pensions were made up in standard 100-pm-thick cu-
vettes, and their transmissivity was measured on a Cary
spectrometer. Figure 10 shows the transmissivity in the
300—500-nm region of the spectrum. Curves a and b (at
0 and 10 mol/l NaC1 concentration) have clearly
defined "notches" near 390 nm due to Bragg scattering of
these wavelengths, characteristic of long-range order in
the suspension. Curves c and d (at 1.4 and 2X10
mol/l) show no diffraction minimum, indicating that at
or near 1.4X10 mol/I the colloidal crystal "melted, "
which is near the concentration where the diffusion
coefficient becomes zero from extrapolation of the data in
Fig. 11.

THEORY OF THE MELTING TRANSITION
OF THE COLLOIDAL CRYSTAL

The phase transition observed is probably an example
of a Kirkwood-Alder transition. ' In 1939, Kirkwood
predicted that a hard-sphere liquid would undergo a tran-
sition to long-range order when the packing fraction of
the hard spheres exceeded a certain value which was
significantly less than the close-packing limit of 0.74.
Computer experiments subsequently demonstrated that
the packing fraction for crystallization is of the order of
0.55 —0.6. Related work (mentioned above) demonstrat-
ed that the experimental onset of dilatancy in a hard-
sphere system (where percolation causes large-scale struc-
tures in the system) occurs around a packing fraction of

FIG. 11. Theoretical melting concentration of colloidal crys-
tal as a function of volume fraction.

0.55, which is probably related to the establishment of
long-range order. '

The colloidal suspensions which we work with are not
simple hard spheres. They are polystyrene beads with a
measured charge of roughly 900e per sphere. Any dis-
cussion of the melting transition has to take this into ac-
count. There has been work done on assigning eff'ective
hard-sphere radii to the spheres based on the interparticle
potential, treating the transition as a Kirkwood transition
when the effective packing fraction reaches 0.55. We
discuss the phase transition in a diff'erent, but related,
manner, namely, assuming that the crystal phase exists
and using the Lindemann criterion for determining when
thermal fiuctuations will destroy long-range order.

The colloidal suspensions are composed of hard
charged spheres surrounded by a "fluid" of counterions.
The counterions are of two types: those that detached
from the polystyrene spheres when originally made, and
those added by the experiments. The suspension is net
charge neutral. The interparticle potential is a solution
to the Poisson-Boltzmann equation:

p2p
E

(6a)

p=en sinh(eg/ke T)+Zeq exp(Zeg/ke T) . (6b)

This assumes a colloid with added univalent electrolyte of
density n and polystyrene microspheres of density q with
Z charges per microsphere.

Linearizing the equation leads to solutions for the po-
tential around a polystyrene microsphere with the as-
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sumption that the field must approach that of a point
charge of charge Ze as the density of screening ions goes
to zero:

(Ze) exp [ —~(r —2a)]Ur=Ze
4rreeor 1+aa

z 2e (n +Zq)
eepk~ T

(7)

The Debye screening length 1/~ is a measure of the ex-
tent of the potential, which decreases as the electrolyte
concentration is increased.

The form of the potential given by Eq. (7) is not univer-
sally accepted. U(r) is given by the solution of a non-
linear PDE, and should not be expected to be valid out-
side of the limit aq ' ~ 1 (that is, the low-concentration
limit). There is some evidence for an attractive potential
in the paper by Ise et al. , who saw an increase in the
crystal plane spacing with increasing counterion concen-
tration. The lattice spacing for a purely repulsive crys-
tal is dictated by purely geometric considerations. In-
terestingly enough, we saw the same general behavior (in-
crease in lattice spacing with increasing salt) from the
transmittivity experiments, although any inference based
on two points of data is extremely weak. To the best of
our knowledge, the true form of the interparticle poten-
tial has not been determined. However, the Poisson-
Boltzmann equation can be exactly solved in one dimen-
sion, and this solution can be interpreted as the field from
a plane of charges in an ionic suspension. In the limit
~r ))1, the solution is of the same form as the linear solu-
tion, multiplied by a "dilution factor" which physically
results from the screening of charges in the plane by op-
positely charged counterions.

The potential on a microsphere at a position d between
two infinite planes of spheres separated by a distance
2(d ) can be expanded out to second order in
5=~d —(d)~. The spring constant obtained from this
can be used to predict the melting point of the colloidal
crystal by using the Lindemann criterion, and the
diffusion coe%cient for the "colloidal liquid" by using a
relaxation-time approximation based on the method
given in Ref. 19. For our system, (d ) is the nearest-
neighbor distance between charges in a colloidal crystal
with fcc structure; (d ) =(4/q)'~ /&2. Using the
geometry of the colloidal crystal and expanding the po-
tential to second order in 6 yields

&2Z e exp[a(2a —(d ) )] )K
ceo(d )3 1+a.a

ment of a particle from its equilibrium position by about
10% of the lattice spacing of the crystal. Assuming that
each mode has average energy —,'k~T, we arrive at the
transcendental equation

0 014Z
eeokz T ( 1+ma )

(10)

We will assume that a/(1+aa) —1/a and D(a)-1 to
avoid having to solve the transcendental equation. Al-
though D (a)-0.1 for this system, inclusion of this factor
can change the value of a obtained by at most about 30%
due to the slow variation of the logarithm with the size of
its arguments. In this limit we obtain

0.014Z e
E'Epkg T

To simplify notation, we define a dimensionless measure
of the strength of the potential y:

Z e

2eakz T (12)
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Using Z=900e /polystyrene microsphere with radius
a=0.043 pm and volume fraction /=10%, we calculate
y=8. 2X10 . Figure 12 is a plot of the electrolyte con-
centration necessary to melt the colloidal crystal as a
function of the volume fraction of the suspension. As can
be seen, for /=0. 1 it predicts a salt concentration of
about 1.6X10 mol/l. To test the validity of this ex-
pression, we measured the electrolyte concentration
necessary to melt a colloidal crystal with /=0. 02. At

1
5 =—'k6

(a +1+1)'~ (9a)
0.2—

Ze

eepk~ T~d
(9b)

0.0
0.5 1.0

The factor in a is the dilution factor obtained from the
solution of the nonlinear equation and results in cx-10
for our system. The Lindemann criterion for the melting
point states that the melting transition for a crystal
occurs when thermal energy causes the average displace-

NaCI Concentration (10-3 mo)/I)

FIG. 12. Theoretical diffusion coeKcient compared to experi-
mental value; /=0. 1, y=8. 2X 10 .
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this concentration, the condition for Bragg scattering is
satisfied by light with a wavelength around 6000 A,
which gives the crystal a brilliant iridescence. We mea-
sured the electrolyte concentration necessary to melt the
crystal by finding the concentration where the iridescence
vanished. The melting point was between 10 and
2X 10 mol/l NaC1, whereas the Lindemann theory pre-
dicts 7 X 10 mol/l.

Reference 19 presents a theory which predicts the
viscosity of colloidal suspensions in regimes far from the
melting transition. The viscosity g can be expressed as

g =G~ where ~ is a relaxation time dependent only on the
mean separation of particles, and G is the" bulk modulus
for the system. In Ref. 19, ~ is assumed to be the time for
a particle to diffuse a distance (d ) /P where I3 is on the
order of 10:

1.0

0.8-

0.6-

0.4-

0.2-

(13a)

k, TD=
6~pa

(13b)
0.0

0.000 0.005 0.01 0 0.015 0.020 0.025

Equation (13b) relating the viscosity to the diffusion
coefficient in Stokes's law. In Ref. 19, q was taken as the
viscosity of water, but we will show that if the viscosity is
defined self-consistently, the diA'usion coefficient will go
to zero at a nonzero electrolyte concentration and that
this concentration is essentially the concentration at
which the solid-liquid phase transition is predicted by the
Lindemann criterion. We approximate the bulk modulus
G by k/(d ) where k is the "spring constant" defined in
Eq. (9) above.

The viscosity of the suspension is gT=qo+g, where

gT is the total overall viscosity, qo is the viscosity of wa-
ter, and g is the viscosity due to the interaction of the
charged colloidal particles. ' From Eqs. (13a) and (13b),
we arrive at an expression for g:

HCI Concentration (10-3 rno li()

FIG. 13. Theoretical diffusion coefticient compared to actual
value (data from Ref. 10); /=0. 01, y=7X10 .

At Q= 1 the single-particle diffusion coefficient vanishes,
indicating a liquid-solid phase transition. In fact, Q= 1

corresponds to the Lindemann criterion, as we show
below.

We estimated that G =k/(d ) where k was given by
Eq. (7). Setting Q= 1 we arrive at an expression estimat-
ing the value of k where the difFusion coefficient vanishes:

2
6vrgTa

kii T
(14)

1.2

0.O8

Expressing g in terms of the viscosity of water leads to ~ P

Q&1 0.8-

where Q = 6rraGd /kii T/3 . Adding the viscosity of wa-
ter to the viscosity due to the colloidal suspension, the to-
tal viscosity is

0.6-

0.4-

90 (16)

Using Stokes s law, we can write the difFusion coefficient
in terms of Do, the difFusion coefficient of a colloidal par-
ticle in the absence of interactions, as

0.2-

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2

D =1—Q, Q&1,
Do

(17a)
NaCI Concentration (~ O-3 rrloi/i)

=0 Q&1
Do

(17b) FIG. 14. Critical exponent of the form D/D0=(n —nT)
with n T

= 1.6 X 10 mol/I and o. equal to 0.08 and 0.138.
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2

As 6~(a/d)-1 and /3 has been taken to be on the order
of 10, this is the Lindemann criterion. Equation (17) is
compared to the measured diffusion coefficient in Fig. 12,
with @=20chosen to best fit the experimental data.

We have applied this theory to the data in the paper by
Dozier, Lindsay, and Chaikin, ' which are given in the
same format as our data. This is an ideal test of this
theory, as their concentration regime is an order of mag-
nitude below ours (/=0. 01). From their quoted value of
300 charges per polystyrene microsphere, y =7 X 10,
which is again an order of magnitude below that of our
samples. Figure 13 is a plot of D/Do taken from Ref. 10
compared to Eq. (17) with P= 10. As can be seen, agree-
ment is good in both predicting the electrolyte concentra-
tion where their suspension solidifies, and in predicting
the single-particle diffusivity beyond the melting point.

The experimental results were further fit to a critical
parameter relation in order to establish a critical ex-
ponent. We assumed that D/Do —(n —nT), where n is
the electrolyte concentration, n T the concentration at the
transition point, and u the critical exponent characteriz-
ing the phase transition. The best fit was obtained with

n =0.08, with a margin of error of 0.003 and
n T= 1.6+0. 1 X 10 mol/t. Figure 14 shows that the
power-law behavior fits the experimentally obtained
diffusivity near the melting point.

We have shown, using two-wave mixing and light-
scattering data, that a large change in the diffusivity of
colloidal particles takes place near the order-disorder
transition in a colloidal suspension. The single-particle
diffusivities measured in the colloidal "liquid" are pre-
dicted reasonably accurately using a bulk modulus de-
rived from the Debye potential and a relaxation time de-
rived by defining the viscosity self-consistently. The
model is of interest as it predicts an electrolyte concentra-
tion where the diffusion coefficient becomes zero, which
is identified as the point at which the colloidal crystal me-
lts. This concentration is identical to the melting point
predicted by the Lindemann criterion.
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