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Interactions of nonlinear pulses in convection in binary AuitIs
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Several groups have recently reported a robust localized state of traveling waves in experiments
on convection in binary Auid mixtures. These states resemble the "pulse" solutions of complex
Ginzburg-Landau equations with subcritical bifurcations. We study the stability of these pulses ex-
perirnentally by observing their interaction with high-frequency wave packets, which we inject into
our annular convection cell by creating localized disturbances. We find that the spatial phase struc-
ture of pulses is central to their stability. An incident wave packet of sufficient amplitude can per-
turb the phase of the pulse so much that it loses stability and disappears, leading to a transition to a
new state. Phase perturbations also determine the interactions between nearby pulses and the role
of random fluctuations in the transition from a pulse state to a state in which slow traveling rolls fill

the cell.

I. INTRODUCTION

One-dimensional convection in binary Auids has
proved a useful model system for understanding the dy-
namics of nonlinear traveling waves. In quid mixtures,
besides the ordinary temperature-driven density gradient
causing Rayleigh-Benard convection (characterized by
the Rayleigh number R), there is a Soret-effect-driven
concentration diffusion described by the separation ratio
O'. For all accessible negative 4, the first instability of a
thin Auid layer as R is increased above the threshold for
the onset of convection R, is to traveling waves. In an
annular container, for weakly negative 4, at values of R
just above onset, the typical behavior is dispersive
chaos —the growth and sudden disappearance of spatial-
ly localized, slowly moving pulses composed of traveling
waves, which appear in apparently random spatial and
temporal patterns. For more negative values of 0', the
typical behavior is the formation of persistent, localized,
nearly stationary patches of traveling waves in a quies-
cent background (confined states). For larger values
of R, the fluid undergoes a transition to a spatially uni-
form cell-filling state either of stationary or traveling
rolls. In this paper, we focus on the stability of localized
traveling-wave states for moderate values of 4 near the
onset of convection.

Niemela, Ahlers, and Cannell have recently described a
confined state of traveling-wave convection in binary
fluids (25% ethanol in water, corresponding to a separa-
tion ratio 4 = —0.08) in both annular and rectangular ex-
perimental cells. In both geometries, they observe one
or more localized, stationary pulses of traveling waves
with a well-defined pattern of phase velocities that vary
across the pulse and a time-independent, stationary en-
velope. The mean traveling-wave frequency in the pulse
is approximately one half of the Hopf frequency of the
linear traveling waves at onset. They find that the pulses
fit well the functional form derived by van Saarloos and
Hohenberg from a fifth-order, complex Ginzburg-Landau
equation. These observations suggest that previously ob-

served confined states in rectangular containers are also
pulse solutions, in the sense that their confinement is an
intrinsic feature of the state and is unrelated to the pres-
ence of walls. Anderson and Behringer have also ob-
served similar stationary or slowly drifting pulses in an
annular geometry. These pulses are stable, with little
change in the shape for a range of e= (R —R, )/R, from
—0.01 to 0.008 in an annular geometry and from —0.016
to 0.004 in a rectangular geometry. At the upper end of
this range, both groups observe a transition to a state in
which traveling waves completely fill the experimental
cell. '

These experimental observations resemble in many
respects theoretical predictions based on complex
Ginzburg-Landau equations. Thual and Fauve first ob-
served stationary pulses in numerical experiments on a
quantic equation transformed to a frame comoving with
its traveling waves:

=@A +(1+ic, )
Bt Bx

+(1+ic3)~ A~ A —(1 ic, )~ A A, —
where 2 is the amplitude envelope of the traveling waves,
and c„c3,and c~ are real constants. Later work derived
pulses as anlaytical solutions to this equation' and ex-
plained their existence using perturbation theory. " Re-
cently, Van Saarloos and Hohenberg showed that local-
ized structures are generic for complex Ginzburg-Landau
equations with subcritical bifurcations. Below @=0, the
equation can produce either a single front separating a
con vecting region from a conducting region, or a
"pulse, " which resembles experimental localized states.
There are several differences between the predictions of
these theories and the observed behavior, however. First,
in the model, pulses and fronts are stationary in the
comoving frame; that is, they drift at the group velocity
in the laboratory frame. Experimentally, pulses are sta-
tionary in the laboratory frame. The experimental pulses
are stable for e) 0, while the theory predicts a transition
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to a cell uniformly filled with traveling waves at @=0.
Another difhculty is that the theory is valid only for en-
velopes which vary slowly in space compared to the
wavelength of the traveling waves, while the experimen-
tally observed pulses are very narrow. Thus, the match
between the analytical pulse shape and the experimental
data appears to be fortuitous.

Deissler and Brand studied the effect of cubic non-
linear gradient terms (equivalent to fifth-order amplitude
terms) on pulse propagation in a complex Ginzburg-
Landau equation

+(1+ic3)~ A~ 3 —(1—ic5)~ A~

—(p„+i@;)A

where A,„A,, p„and p; are real parameters that control
the strength of the higher-order nonlinearities. The for-
mation of stable pulses with well-defined envelopes occurs
as in Eq. (1), but the velocity of the pulses is up to seven
times lower, depending on the parameters. The pulses
are also narrower and are asymmetric. However, in a
single-field Ginzburg-Landau theory, it is only possible to
obtain zero pulse velocity for a measure-zero set of pa-
rameters, while the pulse velocity is zero in the laborato-
ry over a broad parameter range. This problem is the
major obstacle to a theoretical understanding of experi-
mental observations, though, recently, Barten et al. have
found nearly stationary pulses in numerical integrations
of the full Navier-Stokes equations. ' In their calcula-
tions, a large-scale circulation of solute caused by the
convective flow weakens the buoyant force at the leading
edge of the front and enhances it at the trailing edge,
slowing down the pulse to a small fraction of the
traveling-wave group velocity.

While we do not understand the origin of the zero
pulse velocity, we may still study the stability of pulses as
a separate problem. Deissler and Brand have studied sta-
bility theoretically, examining the collisions between
pulses using a pair of quintic equations with cubic cross-
coupling terms. ' In their study, they find four basic
types of behavior: (1) a pair of oppositely propagating
pulses can interact, attenuating each other but regrowing
to their original saturated amplitude and shape; (2) the
two pulses can annihilate each other; (3) one of the pulses
can be annihilated while the other survives; and (4) both
pulses can survive, but the envelope of one irreversibility
alters to a lower-energy state with a different shape (a
transition from a double-humped two-particle state to a
single-humped one-particle state). While it would be in-
teresting to try to reproduce all of these interactions ex-
perimentally, the zero velocity of experimental pulses
makes it dificult to study pulse collisions.

We have performed an extensive series of measure-
ments focusing on the stability of nonlinear pulses in
binary-fluid convection. In particular, we have developed

a technique to study the stability of pulses by striking
them with propagating pulses of linear traveling waves
(wave packets). For small incident wave packets, we find
that the stationary pulses behave as perfect absorbers
with no reflected or transmitted traveling waves. For
larger-amplitude wave packets, the phase of the packet
resets the phase of the stationary pulse, and the incident
wave packet causes the emission of a weak wave packet
on the other side of the pulse. No reflection occurs, how-
ever, and the emitted wave amplitude is not a monotonic
function of the incident amplitude. Still larger incident
wave packets destroy the pulse a variable length of time
after the collision. We have also examined interactions
between nearly pairs of pulses. We find that they form
unstable bound states which eventually result in the
disappearance of one of the pulses. We find that the
phase structure of the pulses is crucial in determining
their interactions with wave packets and with each other.
We have also investigated the role of fluctuations and
convective instability in the transition to a cell filled with
convective rolls.

II. EXPERIMENT

We have described our apparatus elsewhere. The an-
nular cell is formed by a plastic disc and ring clamped be-
tween a rhodium-plated, mirror-polished copper bottom
plate and a saphire top plate. The cell dimensions are
d =0.301 cm height X1.73d radial width X80. 1d mean
circumference. Cooling water circulates azimuthally
over the top plate, and the bottom plate is heated electri-
cally. The temperature difference applied across the fluid
layer AT is typically 4.1 K and is regulated to +0.3 mK.
We used a solution of 1.4 wt. '~/o ethanol in water at a
mean temperature of 27.1'C, yielding a separation ratio
+= —0.069, a Prandtl number P =6.62, and a Lewis
number L =0.009. ' We fill the cell through two narrow
fill tubes located at diametrically opposite locations,
designated 90 and 270 . A metal bellows caps the end of
the 270' tube, and a plastic plug the 90' tube. The metal
bellows is mounted upright in the base of a vertical clear
plastic tube ruled at regular intervals and containing a
ball bearing. We inject controlled-amplitude wave pack-
ets by first raising the ball bearing to a measured height
with a small magnet and then allowing it to fall on the
bellows. The compression of the bellows forces a small
amount of fluid into and out of the cell, producing a
reproducible disturbance at the 270' fill tube which then
decomposes into two oppositely propagating wave pack-
ets. For large-amplitude disturbances, a smaller pair of
wave packets forms at the 90 fill tube as well.

We use standard shadowgraph techniques to observe
the wave pattern. ' A computer records the output from
an annular array of 720 photodiodes at periodic time in-
tervals to produce a space-time history of the pattern.
The convection is always one dimensional, consisting of
superpositions of waves which propagate azimuthally
around the cell in opposite directions (here called "left
going" and "right going"). We display the image intensi-
ty profile in real time. From the stored data, we can cal-
culate the total traveling-wave amplitude for each time
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step by spatial demodulation. We use hidden-line plots to
display the time development of these spatial patterns.
We can also determine the left-going and right-going
wave amplitudes by complex demodulation. ' Since com-
plex demodulation is in essence a narrow-band, phase-
sensitive filter, this technique also allows us to separate
high-frequency linear waves from low-frequency non-
linear waves.

If we begin with a quiescent state below onset and raise
the Rayleigh number to a small positive value of e, the
Auctuations present in the cell grow into a state contain-
ing both left-going and right-going traveling waves.
However, because the Auctuations are very small, it takes
a substantial amount of time for them to grow to
significant amplitude. Before this happens, we can study
the behavior of coherent traveling waves by injecting
wave packets whose amplitude, though small, is much
larger than background Auctuations. In each case, the
disturbance initially forms a nearly Gaussian wave packet
at the main fill tube at 270' and a smaller wave pocket at
the second fill tube at 90. The wave packets then split
into left-going and right-going components (Fig. 1). Be-
cause e is positive, they grow as they propagate, with a
growth rate proportional to e. Note that the space-
integrated amplitude of the pulses in Fig. 1 increases,
even though their peak height initially decreases.

We can separate the left-going and right-going wave
packets using complex demodulation and fit the resulting
envelopes to Gaussians to determine the positions of their
centers, their amplitudes, and their widths. We find that
the wave packets propagate with a dimensionless velocity
[Fig. 2(a)] of s =1.38+0.05, while linear stability calcu-
lations for traveling waves give a velocity of s =1.60. 16

The origin of this difference is not understood, but we
have observed similar discrepancies in group velocity in
narrow cells over a wide range of %. For small wave
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packets, the integrated amplitude grows exponentially in
time [Fig. 2(b)], and the width gradually increases [Fig.
2(c)], while the frequency stays constant. '

We did experiments of three basic types. Starting with
a quiescent cell below the onset of convection, we in-
creased the temperature difference to a positive value of e
and injected a controlled-amplitude disturbance. The re-
sult is the creation of one or more saturated nonlinear
pulses. We also began with one or two saturated pulses
and injected a controlled-amplitude wave packet to study
the interactions between pulses and wave packets. Final-
ly, we created multiple pulses and studied their interac-
tions.

While we have made the cell as geometrically and
thermally uniform as possible, some defects, which wor-
sened since the previous experiments performed with this
apparatus, had a minor effect on the results. First, as dis-
cussed below, the final location of pulses is not random,
and this probably represents some sort of asymmetry.
Second, measurements of the onset R, reveal a slow
downward drift at a fractional rate of approximately
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FICx. 1. Shadowgraph intensity as a function of position for
seven successive 200-sec time steps (from bottom to top). Be-
tween the first and second time steps, we create a disturbance in
an initially quiescent cell just above the onset of convection.
The initial disturbances at the fill tubes split into left-going and
right-going wave packets which propagate around the cell.

FIG. 2. (a) Position vs time of a typical linear wave packet
(@=0.0054) as in Fig. 1, showing its constant propagation ve-
locity. (b) Wave amplitude (height times width) vs time for the
wave packet, showing its exponential growth in amplitude. (c)
Width of the wave packet (in units of cell height) vs time, show-
ing its gradual spreading.
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(3—4)X10 per day, possibly as a result of the loss of
ethanol from the cell. This is not a serious problem, be-
cause the properties of the pulses are insensitive to the
exact value of e. Also, the drift in %' during the experi-
ment was negligible. We obtained the values of e used in
this paper by interpolating between measurements of R, .
We cross checked these results by measuring the growth
rate of small wave packets; the linear growth rate y is
equal to e times a measured proportionality con-
stant. "' We performed most of our experiments with
0.005 (e(0.007. To ensure that localized leaks do not
cause any large-scale asymmetries, we took data only
within two weeks of filling the cell. Since the original
submission of this article, we have reproduced many of
its results using an improved apparatus in which neither
a drift in R, nor a bias in the location of pulses was ob-
served.

III. RESULTS

and grow in amplitude and width, passing through each
other without interacting as long as their amplitudes
remain small. As the wave packets grow, they begin to
show nonlinear effects (Fig. 3). Though their integrated
amplitude continues to increase, their width begins to de-
crease (at t =2700 sec). Slightly later (t =3100 sec), the
wave packet stops completely and forms a stationary
pulse of the type described in Ref. 3 IFigs. 4(a) and 4(b)].
Since the demodulation is tuned to the frequency of
linear waves, the nonlinear frequency shift which accom-
panies the formation of the pulse causes the amplitude to
drop after t =3100 sec. With the formation of a pulse,
any remaining linear waves gradually disappear. De-

(a)

If we begin with a quiescent cell and inject a pair of
disturbances, propagating wave packets circle the ce11
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FIG. 3. (a) Position vs time for another growing wave packet
at @=0.0073. (b) Amplitude of the wave packet vs time show-

ing its exponential growth at early times. The apparent drop in
amplitude starting at t =3100 sec is due to nonlinear effects
which shift the oscillation frequency out of the bandwidth of the
demodulation. (c) Width of the wave packet vs time. The width
reaches a maximum at t =2700 sec, and a pulse forms at
t =3100—3500 sec.

FIG. 4. (a) Hidden-line plot showing the growth of a weak

disturbance injected into a quiescent ceil at @=0.0055. The two

resulting wave packets initially do not interact but grow up into

two stationary pulses. (b) A disturbance injected into a quies-

cent cell closer to onset (@=0.0015) grows up into a single sta-

tionary pulse. In these hidden-line plots, each trace shows the
total demodulated spatial amplitude profile at one instant in
time, with time proceeding upwards. in order to suppress the
contrast between the pulse and the weak wave packets, we plot
the scaled hyperbolic tangent of the wave amplitude, which
causes the pulses to appear fIatter than they are.
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pending on the amplitude of the injected disturbance and
the rate of growth, the final pattern may be a pair of
counterpropagating pulses [Fig. 4(a)] or a single pulse
IFig. 4(b)] with very small fluctuations in the rest of the
cell. In all hidden-line plots, we plot A, tanh(A/2, ),
where A is the demodulated wave amplitude, and A, is a
saturation amplitude chosen to emphasize the low-
amplitude waves. This clipping makes the pulses look
more Aat topped than they are. In these hidden-line
plots, horizontal arrows indicate the direction of wave
propagation under the stationary envelope of the pulse.

The pulses do not occur in random locations in the
cell. Injected wave packets produce pulses located at
well-defined positions symmetrically located with respect
to the holes for the fill tubes. Frequently, left-going
pulses are found between 300 and 330 and right-going
pulses between 180' and 225', as seen in Fig. 4(a). This
symmetry is not surprising, since the fill tubes are the
source of the waves which grow into pulses in experi-

ments with injected disturbances. However, pulses which
grow up from fluctuations also tend to drift to these posi-
tions, even though they seem to appear initially in ran-
dom locations. The reason for these favored positions is
unclear; possibly it results from a weak concentration
gradient caused by leakage of ethanol from the fill tubes.
The fixed locations of the pulses makes it easy to produce
repeatable collisions and appears to have no other eA'ect
on the behavior of the system, so we have not attempted
to eliminate it.

We now examine the interaction of a wave packet with
a stationary pulse. In Fig. 5(a), we begin with two nearly
stationary pulses; a left-going pulse on the right and a
right-going pulse on the left. We then inject three distur-
bances of successively increasing amplitude. When the
resulting wave packets reach the pulses (with respect to
which their phase velocities are counterpropagating),
they are completely absorbed. Any transmission or
reAection would produce a growing wave packet, which
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FIG. 5. (a) Hidden-line plot showing the interaction between slowly drifting pulses counterpropagating wave packets. The third
disturbance is the largest we injected in any of our experiments. Note that, for the largest disturbance, the injection creates a smaller
pair of wave packets at the opposite fi11 tube. (b) Phase plot of the interaction in (a) showing space-time contours of constant phase.
Note that the phases of the counterpropagating wave packets penetrate the pulses but are advected out again. (c) and (d) Hidden-line
plots of the same interaction using complex demodulation at the linear wave velocity to separate out (c) right-going waves and (d)
left-going waves. Note that the absence of transmitted or rejected waves.
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is not observed: to within the resolution of our measure-
ments, there is no transmission or reAection of counter-
propagating wave packets up to the highest possible in-
jected amplitude.

We may follow the absorption process most easily by
extracting the amplitudes of the left-going and right-
going waves at the linear frequency IFigs. 5(c) and 5(d)].
The wave packets decay rapidly within the pulse. We
also present a phase plot of the position of the individual
wave crests versus time IFig. 5(b)] to show the phase
coherence of the pulses during the interaction. Even
though the pulses completely absorb the incident wave
packets, the higher-frequency wave packet's phase
penetrates deeply into the pulse. However, because of the
direction of wave propagation, the phase disturbance is
quickly advected out of the pulse. As described in Ref. 3
and shown in Fig. 1 of Ref. 4, the phase velocities of the
peaks grow as they propagate across the pulse, as shown
by the curved constant-phase contours.

In Fig. 6(a), we show the interaction between a weak

wave packet and a copropagating pulse. As in the case of
a counterpropagating wave packet, the pulse appears to
completely absorb the wave packet without reAection or
transmission. The round-trip gain for the propagating
wave packet in this case was 61. Thus, inspection of Fig.
6(a) shows that the transmitted wave is smaller than the
incident wave packet by a factor a of at least 100. Em-
ploying complex demodulation and filtering to isolate
possible transmitted and reflected wave packets gives a
lower bound o'. ~ 400 for the attenuation of both transmit-
ted and refiected amplitudes. Thus, in the presence of a
pulse, the linear convective instability is suppressed above
the onset measured with no pulse present by a fraction
e, =s~oI 'lna ~ 0.013, where s is the linear group veloc-
ity, ~0 is the time scale of the growth of linear traveling
waves, and I =80. 1 is the length of the system. ' '
Probably, the absorption is total, and the pulse suppresses
the traveling-wave instability completely.

Collisions between pulses and larger-amplitude wave
packets are not so simple. We show a typical interaction
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FIG. 6. (a) Hidden-line plot of the collision between a weak
wave packet and a copropagating pulse. We do not understand
the periodic rippling at the leading edge of the pulse. (b) Phase
plot the collision shown in (a). The phase of the incident wave
packets penetrates some way into the pulse but does not affect
its phase.

I

180'
I

270
I )

0o

POSITION IN CELL

I

90
I

180

FIG. 7. (a) Hidden-line plot of the interaction between a
strong wave packet and a copropagating pulse at @=0.0055. (b)
Phase plot of (a). Between t =3000 and 4000 sec, the incident
wave packet resets the phase of the pulse. The phase carries
smoothly across the pulse for a few cycles. Note the extremely
weak transmitted wave which collides with the pulse at
t =6000—8000 sec but does not reset its phase. We have shifted
the horizontal axis by 180 for clarity.



INTERACTIONS OF NONLINEAR PULSES IN CONVECTION. . . 4275

20—

4l
CD

1 2
D

LLJ 8—

0—

Oo 90 180'
POSITION IN CELL

270 560'

small transmitted packet, etc.
The change between no transmitted wave and finite

transmitted wave amplitude is a qualitative one. It is not
that the transmitted waves of smaller incident wave pack-
ets are lost in the noise, but that the effective transmis-
sion coefficient increases from g=0 to 0.002(q(0. 005
for large incident wave packets, with g decreasing rapidly
for still larger incident amplitudes until it returns to zero
for the destructive regime described below. This
"negative-resistance region" in the transmission
coefficient plays a central role in the response of the sys-
tem to random fluctuations, as discussed below.

As we further increase the incident-wave-packet ampli-
tude, we find another qualitative change in the interac-

FIG. 8. Hidden-line plot showing that the transmitted ampli-
tude is not a monotonic function of the incident amplitude
(@=0.0073 throughout the run. ) At t =1500 sec, a pair of
copropagating pulses decays to produce a single left-going
pulse. At t =2000 sec, we inject a disturbance, producing a
strong left-going wave packet which then collides with the pulse
at t =5000—6000 sec. Smaller copropagating wave packets pro-
duce larger transmitted packets. These grow into larger packets
which, in turn, produce smaller transmitted waves.

between a wave packet and a copropagating pulse in Fig.
7(a). The phase plot [Fig. 7(b)j shows that the phase of
the packet resets the phase of the pulse, the packet's
phase carrying continuously across the pulse for a few cy-
cles at the peak of the interaction. During the collision,
the pulse broadens to a width intermediate between that
of the undisturbed pulse and the incident packet. The
wave packet, though attenuated, protrudes noticeably
from the far side of the pulse. The incident wave packet
eventually dies away, sometimes leaving the original
pulse shifted slightly in the direction of the source of the
wave packet.

Another important feature of the interaction is the
emission of a narrow, small-amplitude wave packet on
the other side of the pulse. In Fig. 7, the emitted wave
packet is too weak to be seen initially, but, since the sys-
tem is above onset, it grows up as it travels around the
cell, becoming visible on the right side of the pulse, be-
tween t =5000 and 8000 sec. The emitted wave packet is
initially narrower than the incident wave packet, so the
pulse does not simply transmit the incident waves. In-
stead, the phase resetting of the pulse causes the emission
of a wave packet. The same effect can also occur in other
circumstances, as discussed below. Nevertheless, we can
define a transmission coefficient Tt to be the ratio of the
amplitudes of the incident wave packet and the transmit-
ted wave. In no case is there any evidence for a reflected
wave. The transmitted wave amplitude is not a monoton-
ically increasing function of the incident amplitude. The
transmitted wave of a very large incident wave packet is
smaller than that of a slightly smaller incident wave

packet. This can lead to the period-doubling behavior
shown in Fig. 8, where a small incident packet generates
a large transmitted packet, which in turn generates a
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FIG. 9. (a) Hidden-line plot showing the long survival of a
pulse after collision with a weak wave packet at @=0.0058. The
disappearing pulse emits a pair of wave packets which then
grow up into a pair of counterpropagating pulses symmetrically
located with respect to the original pulse. (b) Hidden-line plot
showing the shorter survival after collision with a stronger wave
packet at a=0.0053. Again, the disappearing pulse emits wave
packets which grow into almost symmetrical counterpropagat-
ing pulses.
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tion. The incident wave packet annihilates the pulse.
For very large incident wave packets, the annihilation
may be immediate. For weaker wave packets, the pulse
may take a considerable time to decay [Fig. 9(a)], the
time decreasing with increasing strength of the incident
pulse [Fig. 9(b)]. Even if the wave packet is not strong
enough to destroy the pulse, the transmitted wave it gen-
erates can grow enough when it circles the cell to annihi-
lation the pulse on a later collision [Fig. 10(a)]. While the
shape of the pulse does not change, just after the collision
its amplitude decreases slightly, and its phase is so
strongly reset by the incident wave packet [Fig. 10(b)]
that it loses stability and abruptly disappears. The wave
packet which actually destroys the pulse causes no
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FIG. 11. Hidden-line plot showing the creation of a cell-
filling state at @=0.0061 from a disappearing pulse. A weak,
left-going wave packet collides with the pulse between t =3000
and 4000 sec. The transmitted wave then grows into a wave
packet which destroys the pulse at t =10000 sec. The linear
waves emitted by the decaying pulse and background Auctua-
tions then grow up into a cell-filling state.
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detectable transmitted wave in any of our data. Rather,
the disappearance of the pulse generates counterpro-
pagating wave packets which can grow up into a state of
pulses [Figs. 9 and 10(a)] or a cell-filling state (Fig. 11).

So far we have described the effect of injected wave
packets on pulses. However, coherent propagating dis-
turbances which arise from random fluctuations cause
similar effects. These Auctuations determine the stability
of stationary pulses. We show an example in Fig. 12,
where random fluctuations cause a transition from a
pulse to a cell-filling state at @=0.0075. In this system,
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FIG. 10. (a) Hidden-line plot showing the annihilation of a
pulse by a wave packet growing up from a transmitted wave at
a=0.0053. The initial wave packet creates a transmitted wave
but does not destroy the pulse itself. The transmitted wave then
grows up to sufficiently large amplitude to destroy the pulse on
the next collision. (b) Phase plot of the interaction in (a). The
transmitted wave packet resets the phase of the pulse for many
cycles, causing the pulse to dissolve into weak linear waves.

FIG. 12. Hidden-line plot showing the destruction of a pulse
by spontaneous Auctuations at a=0.0075. In the first 8000 sec
left-going and right-going disturbances (indicated by arrows)
propagate in the cell. The fluctuations grow fast enough to des-
troy the pulse at t =9000 sec, creating a new state consisting of
slow traveling waves which fill the cell.
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FIG. 13. Hidden-line plot showing the interaction between a
pulse and background Auctuations at a=0.0071. The initial
counterpropagating pair of pulses decay into a single right-
going pulse {as in Fig. 15 below). The surviving pulse then in-
teracts with trailing wave packets arising from fluctuations.
Note the absence of left-going wave packets.

length of the system that their amplitude on collision
with a pulse is sufhcient to destroy it determines the
threshold for the cell-filling transition ef. We can there-
fore estimate ef. The wave-packet amplitude required to
destroy a pulse is three —eight times smaller than the am-
plitude of the full-cell state, which exhibits a spatial tem-
perature modulation of amplitude 0.08 K +50%.' Just
below onset, the level of Auctuations is approximately
0.07—0.2 mK. Thus, the system must be suKciently
above onset to produce a round trip gain y =40—400 for
fluctuations to cause the cell-filling transition. This gain
occurs for ef =s~or 'lny-0. 008-0.012, which is near
the observed threshold. We agree with Ref. 3 that the
absolute traveling-wave instability, occurring at
e, -0.06, plays no role in the cell-filling transition.

Figure 13 illustrates another eftect of fluctuation-
driven wave packets. This run began with a pair of near-
by counterpropagating pulses which decayed into a single
pulse of right-going waves (we describe this pulse-pulse
interaction below). Next, spontaneously generated,

(a)

random Auctuations are always present above onset. '

Because of the negative-resistance region in the transmis-
sion coefficient, these fluctuations tend to evolve into
coherent wave packets (marked by arrows in Fig. 12). As
noted previously, pulses absorb counterpropagating wave
packets, while copropagating wave packets produce
transmitted waves. These transmitted waves can build up
enough amplitude, via a period-doubling sequence similar
to the one in Fig. 8, to destroy the pulse, and thus lead to
a cell-filling transition.

We believe that pulse destruction by coherent,
Auctuation-driven wave packets imposes the fundamental
limit on pulse stability. If so, the condition that such
spontaneous Auctuations experience enough gain over the
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FIG. 14. Hidden-line plot showing the growth of an injected
right-going wave packet into a right-going pulse at @=0.0070.
The new pulse and the existing left-going pulse form a bound

pair .

FIG. 15. Interaction between the counterpropagating pulses
formed in Fig. 14. {aj Hidden-line plot showing the interaction
of the pulses and the destruction of the right pulse. {b) Phase
plot showing the phase singularity at the boundary between the
pulses, the phase coherence of the final pulse with the left pulse,
and the phase of the emitted left-going wave packet resulting
from the interaction.
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right-going wave packets appeared intermittently behind
the pulse. Finally, these trailing wave packets produced a
new stationary pulse (which is beginning to form at the
top of Fig. 13, at location 110'). The processes revealed
by our injected-disturbance experiments explain this be-
havior. There are no left-going (counterpropagating)
waves because the pulse absorbs them completely, giving
this space-time plot an asymmetric appearance. The
state remained stable for a long time because of the
"negative-resistance region" in the transmission
coeKcient q. If the pulse simply transmitted incident
wave packets with a transmission coefTicient that did not
decrease above some amplitude, the cell would fill with
rolls when the net round-trip gain exceeded the transmis-
sion loss. The nonmonotonic transmission coe%cient sat-
urates the wave-packet amplitude and gives the output
leading edge of the pulse the appearance of a clipt border-
ing a plane. Finally, the trailing wave packets have a
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FIG. 16. Interaction between two copropagating pulses at
m=0. 0078. (a) Hidden-line plot showing the interaction be-
tween the pulses and the destruction of the leading (left) pulse.
(b) Phase plot showing the phase dislocations caused by the
phase-velocity mismatch between the leading pulse and the
trailing pulse. Note the emitted wave packet, which is too small
to see at erst, but which becomes visible around t =6000 sec,
after it has nearly circled the cell. We have shifted the horizon-
tal axis by 180 for clarity.
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FIG. 17. Interaction between a pulse and a copropagating
wave packet which grows into a pulse before collision, at
@=0.0062. (a) Hidden-line plot of a wave packet growing up
and interacting with a pulse to form a double-humped pulse.
The double-humped pulse then decays back into a single-
humped pulse. (b) Phase plot showing the coherent phase
across the double-humped pulse. Note that the frequency shifts
during the formation and destruction of the double-humped
pulse. (c) Hidden-line plot showing the right-going low-
frequency component of (a), calculated using frequency-sensitive
complex demodulation.
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higher phase velocity than the waves inside the pulses,
creating phase dislocations at the boundary between the
states. We do not display these phase dislocations here,
because they appear in Fig. 5 of Ref. 4.

Our final category of experiments studied interactions
between pulses. Since the pulses are stationary, they tend
to drift together and interact only rarely and by chance.
However, injected wave packets can create new pulses
next to existing ones, and the resulting pair can interact.
In Fig. 14, we show an injected right-going wave packet
which grows up into a pulse next to an existing left-going
pulse to create a counterpropagating pair. In Fig. 15(a),
we show the subsequent evolution of this counterpro-
pagating bound state. After a relatively long time, the
right-going pulse annihilates the left-going pulse, leaving
a single right-going pulse at the position of the original
left-going pulse. The phase plot [Fig. 15(b)] shows the
phase singularity at the intersection between the pulses
and a left-going wave packet emitted at the time of the
interaction.

In Fig. 16(a), we show the interaction of a pair of slow-
ly drifting, copropagating, left-going pulses. The right
pulse annihilates the left pulse and moves to the center of
mass of the original pair. Because of the change in phase
velocity across the pulse (mentioned above), there is a
mismatch in phase at the boundary between the pulses
[Fig. 16(b)] which creates phase defects. These defects
propagate into the leading pulse, making it unstable. The
phase of the surviving pulse is coherent with that of the
trailing pulse that gave rise to it. The disappearing pulse
also emits a wave packet, as in the counterpropagating
case. It is not visible initially but grows as it circles the
cell and collides with the surviving pulse.

In Fig. 17(a), we show another example in which an in-

cident wave packet grows into a pulse next to a copro-
pagating existing pulse. If we demodulate at the non-
linear frequency to isolate the right-going traveling waves

[Fig. 17(c)], we see that the collision with the incident
packet creates a double-humped nonlinear pulse compa-
rable to Deissler and Brand's two-particle state. ' After a
short time, the double-humped pulse decays, and a single
pulse reforms at the position of the original pulse. The
demodulation also shows that the frequency of the sta-
tionary pulse shifts brieAy away from its natural frequen-
cy both before the reassembling of the incident pulse and
after its disappearance. The phase plot of the interaction
shows that the incident wave packet resets the phase of
the stationary pulse [Fig. 17(b)] and increases its frequen-
cy. When the double-humped pulse disappears, the fre-
quency returns to normal, and a wave packet appears.

IV. DISCUSSIQN

We have observed three basic interactions between
pulses and wave packets, depending on the amplitude of
the wave packet. For small incident amplitudes, the
pulse absorbs the wave packet completely without
transmission or reAection. Similarly, below the threshold

ef, pulses completely absorb the weak random fluctua-
tions present in the ce11, which therefore cannot grow
into cell-filling rolls. Slightly larger wave packets reset

the phase of the pulse and create weak transmitted waves,
though no reAection occurs. The amplitude of the
transmitted wave first increases and then decreases with
the amplitude of the incident wave packet. Still larger
packets destroy the pulse, often long after the collision.
The destruction appears to be a consequence of the phase
resetting which occurs during the collision. In the case of
counterpropagating waves, the phase disturbances creat-
ed by even the strongest incident wave packets propagate
out of the pulse without destroying it.

The presence of fully absorbing pulses partially ex-
plains why the annulus is not immediately unstable to
cell-filling convection above onset. For a range of posi-
tive e, the quiescent state is convectively but not abso-
lutely unstable to traveling-wave convention. A pulse,
however, completely absorbs traveling waves generated
by random fluctuations before they have time to grow
into stationary pulses themselves. Only if the growth rate
is large enough that these traveling waves can grow from
the typical fluctuation amplitude to saturation over a
length smaller than the separation between pulses can the
cell-filling transition occur.

The reason that the pulses do not themselves spread to
fill the cell for e )0 must be sought in an extension of the
existing Ginzburg-Landau theory. ' The zero velocity of
the pulses suggests that a single-field theory cannot pro-
vide a complete explanation. A possible extension is to
add an additional field rejecting the vertical concentra-
tion gradient in the quid and its nonlinear interaction
with the convection amplitude.

We have also observed interactions between copro-
pagating and counterpropagating pulses. In both cases,
the pulses form a bound state. In the copropagating case,
there are phase dislocations caused by the increase in
phase velocity across the pulse. In the counterpropagat-
ing case, we find a grain boundary. In both cases, the
bound state is unstable, with one pulse swallowing the
other to leave a centered pulse which is phase coherent
with one of the original pulses. Both events generate
bursts of linear traveling waves.

These bound states of pulses and the destruction of one
stable pulse by another are somewhat similar to effects
seen in the model of Deissler and Brand. ' However,
they find that the fate of the colliding pulses depends pri-
marily on pulse amplitude, with the larger pulse always
surviving. We find instead that the pulse structure of the
pulses is critical. ' The pulses are a robust solution of the
governing equations, with well-defined amplitudes and
phase profiles. They can recover from small disruptions
of phase caused by weak incident wave packets. Howev-
er, larger phase disruptions make them unstable and lead
o their disappearance, resulting in the emission of linear

traveling waves. These effects are both seen clearly in
Fig. 16(b), where the shift in phase velocity across the
trailing pulse creates phase defects at the boundary with
the copropa gating leading pulse. These defects then
propagate into the leading pulse, disturbing its phase
structure and destroying it. However, the small phase
disturbance caused by the collision with a wave packet
[Fig. 7(b)] can be equally destructive. The long survival
of the counterpropagating pulses seen in Fig. 15(b) results
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from the inability of the phase defects of either pulse to
propagate into the other, because they disturb the phase
only at the leading edge. It would be useful to examine
the case of counterpropagating pulses with the source of
phase at their common boundary. Therefore, we must in-
clude phase structure, as well as non-Ginzburg-Landau
efFects, in any successful model of nonlinear pulses.
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