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Simple model for the Benard instability with horizontal flow near threshold
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We present a simple model for Rayleigh-Benard convection with an imposed horizontal fIow of
Reynolds number R in a container of finite width and near threshold. The model consists of two
coupled envelope equations representing longitudinal and transverse traveling convection rolls.
Each equation is for a wave traveling in the direction of the imposed Aow. For small R, transverse
rolls are stable at the convective onset. For R )R, longitudinal rolls bifurcate from the conduc-
tion state. For a range of cross-coupling strengths and for R )R *, we obtain a transition from lon-
gitudinal to transverse rolls as the Rayleigh number is increased. This transition occurs via states
for which part of the system is occupied by longitudinal, and another by transverse rolls. The be-
havior is strongly inAuenced by the presence of noise since the system first becomes con vectively un-
stable, and therefore noise-sustained structures can play an important role. We also show that for a
range of parameters in the model, a mixed state (for which both envelopes assume a nonzero value
at the same location) is possible over part of the cell in a finite geometry.

I. INTRODUCTION

During the last decade or so, experimental physicists
interested in nonequilibriurn systems have placed great
emphasis' on the study of Rayleigh-Benard convection '

(RBC) and Taylor vortex fiow ' (TVF) in an attempt to
understand the formation of patterns and the evolution of
spatiotemporal chaos. This has been so because these
systems can be quantitatively controlled in the laborato-
ry. Although much has been learned from this work,
these systems differ qualitatively from the large class of
practically relevant open systems, such as shear, pipe, and
channel flows, for which there is a mean externally im-
posed flow. Both RBC and TVF can be modified readily
so as to add the major features of the open systems by im-
posing a horizontal flow in the former and an axial flow
in the latter case. In practice, these modifications are
possible without sacrificing the accurate control of
boundary conditions and stress parameters which have
been the hallmark of these two systems.

In the present paper, we concentrate on RBC with hor-
izontal flow. Relatively little experimental work seems to
have been done on this problem, " and the theoretical
analysis ' ' ' ' is also incomplete at this time. Here we
discuss the structure, and the nature of the solutions, of a
pair of coupled envelope equations for RBC with hor-
izontal flow which we expect to be relevant to the real
system in the weakly nonlinear region close to the first bi-
furcation. As did the work of Miiller et al. , ' these equa-

tions incorporate the shift of the bifurcation point of
transverse rolls due to the flow, and contain the convec-
tive nature of the instability at the first bifurcation and
the absolu te instability at larger Rayleigh numbers.
However, in addition, they also describe the effect of the
flow upon the competition between transverse and longi-
tudinal convection rolls which occurs in a finite con-
tainer.

In a Rayleigh-Benard cell, which is long and not too
wide, rolls are expected to align parallel to the short side
at the convective onset if there is no horizontal flow. '

This prediction has been confirmed experimentally in
several laboratories. ' ' We call this alignment trans-
verse rolls (TR). On the other hand, it is known from
theory' that the convection rolls in a laterally infinite
system align longitudinally, i.e., with the roll axes parallel
to the Row (LR). In the finite laboratory system with
flow parallel to the long side of the container, TR travel-
ing in the downstream direction are found at the convec-
tive onset when the flow rates are small, ' " and LR be-
come stable at onset for larger rates. " The range of
stability of TR depends on the width of the container.
The wider the cell, the smaller the range of flow rates
over which they are stable. Above onset, a transition may
occur also in certain parameter ranges between LR and
TR as the Reynolds and/or Rayleigh numbers are varied.
This transition can take place over a parameter range via
states for which both LR and TR exist, ' '" albeit in
different parts of the cell. Very recently, it has been ob-
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served experimentally that this transition is hysteretic. '

In addition the stable coexistence of LR and TR at
different spatial locations, a stable superposition of LR
and TR at the same spatial location was also found in the
experiments' for a small range of Reynolds and Rayleigh
numbers.

From the theoretical point of view, most investigations
have been focusing on the determination of the onset
values of LR and TR, ' ' ' and it has been found, in
qualitative agreement with experiments, that TR are
stable at low rates and are replaced by LR as the Rey-
nolds number R is increased. ' ' Recently, ' an envelope
equation valid in the weakly nonlinear range near the on-
set of TR was derived. It was pointed out' that the first
instability is a conveetiUe instability, and that the question
of whether a pattern becomes absolutely or convectively
unstable' is important in the present connection.
These results have been complemented by two-
dimensional integrations of the Navier-Stokes equations
for TR, and by the evaluation of the coefficients entering
the envelope equation for TR. ' In the present paper we
give a simple model consisting of two envelope equations,
one each for traveling transverse and longitudinal rolls.

II. MODEL

To keep the model as simple as possible, we consider
slow spatial variations in the Aow direction only. In addi-
tion, we assume, consistent with all available experimen-
tal evidence, that the first bifurcation remains forward
(nonhysteretic) even in the presence of the horizontal
Aow. For that case, we get saturation to cubic order near
threshold. Using the methods of Newell et al. , we
write the dynamic equations for slowly varying envelopes
of LR and TR. Denoting the envelopes by A and A

respectively, we have

III. PARAMETERS AND BIFURCATIONS

@i=0.0504 (2a)

63 0.0227R —0.000 1 36R (2b)

The corresponding bifurcation lines are shown in Fig. 1

as the curves labeled 1 and 3. We identify the value of R
at which they cross as R *. For the remaining coefficients
of Eqs. (la) and (lb) no data seem to be available in the
literature. It was found in Ref. 13 that the imaginary
parts of the coefficients for the TR are very small. The
same can be expected to hold for these coefficients in the
equation for the LR. Indeed, there are no indications in
the experimental results " that significant effects come

0.5
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The coefficients ro, v, y„, y, , p, , and p; have been
determined in Ref. 13 for a system of infinite extent in the
direction perpendicular to the Bow. We define y =e—

e&

and g =e —e3, with e=R, /R,' —1 and R,' equal to the
critical Rayleigh number ' without How. Values for e

&

and e3 have been given in Ref. 6 as a function of the Rey-
nolds number R of the horizontal flow. For illustrative
purposes, we consider in the present paper the particular
example where the width of the cell is equal to twice the
height and where the Prandtl number is equal to 7. For
that case the results of Ref. 6 can be represented by

O.I—

and

T( g T+ Tg T) ~Tg T+yTg T 0
0

I I

I 2
RFYNOLDS NUM8FR R

Although for R =0, the lowest-order gradient term in the
equation for A would be A, „„, the anisotropy intro-
duced by the Aow leads to a second-order gradient term.
Since this term is of lower order than the A „ term, we

have neglected the latter. Although the fourth-order
term would become important as R goes to zero, it turns
out that the longitudinal mode does not have a finite am-
plitude at small R. Thus the details of Eq. (la) become
irrelevant to our model in that limit. We note that for
the onset of LR or TR the horizontal Aow introduces a
preferred direction into the system and that there are no
rolls which travel in the upstream direction. Therefore,
only rolls traveling in the positive direction are contained
in Eqs. (la) and (lb). The coefficients y, y, pL, p, 5~,
and 6 are complex and of the form a=o;, +in, .

FIG. 1. Instability lines for transverse and longitudinal rolls
as a function of the Reynolds number R. Above these lines the
system is unstable for the corresponding type of instability and
rolls pattern: at curve 1 the zero-amplitude state becomes con-
vectively unstable to longitudinal rolls; at curve 2 the zero-
amplitude state becomes absolutely unstable to longitudinal
rolls; at curve 3 the zero-amplitude state becomes convectively
unstable to transverse rolls; and at curve 4 the zero-amplitude
state becomes absolutely unstable to transverse rolls. Curves
1 —4 are associated with linear properties only. Lines 5 and 6 in-
corporate the influence of the cross coupling between longitudi-
nal and transverse rolls on the instability lines as they arise for
the parameter values considered in the bulk part of this
manuscript. At curve 5 saturated longitudinal rolls become
convectively unstable to transverse rolls, and at curve 6 saturat-
ed longitudinal rolls become absolutely unstable to transverse
rolls.
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from the imaginary parts. We have taken all coefficients
to be real in most of the numerical runs presented below,
and have done some computations with small values of
the imaginary coefficients to check that these do no intro-
duce any qualitative differences. For our illustrative pur-
poses, we have also used v = v =R and ro = ro =0.05.
The former is roughly consistent with the result of Ref.
13 for TR, and the latter is typical of the value of ~o for
RBC without Aow. In addition, we chose the
coefficients of the diffusive terms y„and y„equal to 0.1,
which is of the same magnitude as the value of y for
RBC without Bow. We would expect y, to vanish as R
goes to zero; but, as we will see, this mode does not have
a finite amplitude for small R and thus the behavior of
the coefficient as R vanishes is irrelevant. Our choice
y„=0.1 is arbitrary, and we use it for illustrative pur-
poses only. We set the cubic coefficients P„and I3„equal
to 1.0. This choice does not inhuence the results, since
these coefficients can be changed at will by rescaling both
amplitudes separately.

The choice of the cross-coupling coefficients has a sub-
stantial effect on the patterns predicted by the equations.
In order to produce examples of some of the states seen
in the experiments, ' "we chose 5, =0.75 and 5„=1.5.
Most of the numerical work described below has been
done with these parameters. The thresholds e, and e3
calculated from the linearized stability analysis corre-
spond to the onset of a convectively unstable state for
which perturbations viewed at a fixed location decay,
whereas in a moving frame they grow. The onset of an
absolutely unstable state, in which perturbations viewed
at a fixed location grow, is shifted to higher values of e.
For the case of the envelope equation with complex
coefficients for waves traveling in one direction, this up-
ward shift has been shown to be (v roy„)/(4lyl ).
Thus, with y and y real, we obtain the two additional
bifurcation lines

ez=e, +(v ro) /4y (3a)

and

e~=e3+(v ro) /4) r . (3b)

These results are shown in Fig. 1 by the lines labeled 2
and 4.

The curves 1 —4 in Fig. 1 are relevant only when the
pair of bifurcations (convective and absolute) is the first
pair of instabilities as e is increased. They are modified
for the second pair by the finite amplitude of the first be-
cause of the cross coupling in Eqs. (la) and (lb). . Thus,
for R & R, where LR appear first, the effective growth
rate for a TR [see Eq. (lb)] is proportional to—5„~ A ~, and both the convective and absolute insta-
bility for the TR will be shifted upward. Therefore, we
plotted in Fig. 1 as curves 5 and 6 the convective and ab-
solute instability lines, respectively, for the TR, assuming
that the LR have reached their saturated amplitude. The
corresponding equations for real coefficients are

and

e, =(e,—5 e, /P )/(1 —5 //3i)

E,=e, +(vs-o)'/[4y (1—5 /0 )1 .

(4a)

(4b)

Equation (4a) was found by setting the effective growth
rate for TR in the presence of LR to zero and solving for

Here we have used
~

A
~

=y /P„. Equations (4a) and
(4b) permit a positive growth rate only for 5„/P~(1.
For 5„/P„) 1, transverse rolls will not occur above R"
for any value of e. We note that our curve 5 or 6 qualita-
tively reproduces the rapid rise of the corresponding ex-
perimental boundary between region III and IV in Fig. 18
of Ref. 10. A detailed comparison of these boundaries
with quantitative experiments could yield realistic values
of the coupling coefficients. Similarly, for R &R *, where
TR grow first, the effective growth rate of LR is propor-
tional to g —5„~ A

~
. For the parameters used in most

of our numerical calculations, 5„/P„) 1, and the cross
coupling leads to a negative growth rate for the longitudi-
nal rolls at all values of e. Therefore, for our example, no
further bifurcation lines appear in Fig. 1; but for
5„//3„( 1, a transition with increasing e from TR to LR
would exist for R & R *. The corresponding equations for
real coefficients are

~7=(e& —5 e3/p )/(1 —5 /p ) (5a)

and

e&=@7+(v ro) /[4y (1—5 /P )] . (5b)

IV. NONLINEAR STATES

In the following we report the results of our investiga-
tions of the patterns predicted by Eqs. (la) and (lb).
Since not all coefficients of Eqs. (la) and (lb) are known
for the system of interest, our aim is primarily to explore
the qualitative features of the predicted patterns. A
quantitative comparison will have to await the theoretical
calculations or experimental determination of the
relevant parameters. For the spatially uniform, time-
independent states, it is easy to show for real coefficients
that

A» X'/5' X'/n'—
pT/5 T 5L /pL

and

~A1.~2 X /5 X /P-
(6b)

pL/5L 5T/pT

These equations apply only if
~

A
~

and
~
A

~

are posi-
tive. These simple analytical results suggest that mixed
states, with finite amplitudes for both types of rolls,
should exist in this model for certain parameter ranges.
In order to explore the model with spatial variation, we
proceed numerically. Except when otherwise noted, we
used the parameter values discussed above. We usually
applied Gaussian noise of standard deviation o. to both
amplitudes at the left boundary of the container, thus
stimulating experimental noise contained in the inAow.
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In order to check whether the pattern observed is due to
noise or whether the system is absolutely unstable, we
sometimes reduced the noise strength to zero. An abso-
lutely unstable pattern should change very little when the
noise is removed, whereas the pattern should disappear
altogether at zero noise level if the system is convectively
unstable. In Fig. 2 we show results for R =2) R *. The
longitudinal rolls gradually fill in as e is increased from
0.0625 to 0.08. This run was done for a noise strength
o. =10 . For @=0.08, removal of the noise had almost
no effect upon the pattern, showing that this e value is
above the absolute instability. For the patterns shown in
Figs. 2(a) and 2(b) the pattern moved out of the system in
the downstream direction when the noise was removed,
and thus these patterns represent a noise-sustained struc-
ture, i.e., a pattern that is only stable in the presence of
noise. These results are consistent with the bifurca-
tion lines given in Fig. 1.

It will be most interesting to see whether some of the
patterns observed in experiments are also noise sustained.
This could be explored by deliberately increasing the
noise strength near the inAow boundary. Then the pre-
diction for a noise-sustained structure would be that the
pattern moves upstream, taking up a larger fraction of
the cell. The portion of the cell in which the amplitude
remains small should vary linearly with the logarithm of
the noise intensity. ' Another ~ay of exploring this issue
is to make quantitative determinations of the spatial evo-
lution in the downstream direction of the pattern ampli-
tude at constant noise level, but as a function of e. The
dependence of this evolution upon e—e2 or e —e4 in the
noise-free system differs considerably from the corre-
sponding dependence upon 6 6'& or E' c3 in the noisy
system. In the latter case, the amplitude grows initially

with a characteristic length given by

where we omitted the superscript I. or T because the
same equation applies to both modes. In the determinis-
tic case above the absolute instability, the e dependence
of the corresponding length is known only numerically, '

but seems to differ substantially from that given by Eq.
(7).

For R )R *, a further increase of e can lead to trans-
verse rolls only for e values above curve 5 in Fig. 1. In
Fig. 3 we show what happens for R =2 as the value of e
is increased from @=0.23, where one has only longitudi-
nal rolls, to @=0.265. With increasing e, the fraction of
the cell filled with transverse rolls increases. The TR fill
in from the downstream end of the container, in agree-
ment with recent experimental observations. " In the
part of the system occupied by the TR, the LR are
suppressed due to the presence of the cross coupling in
Eq. (la). If the value of e is gradually decreased after a
pure transverse state has been reached at large e, we find
that the pure transverse state is stable down to a value of
e =0.235, showing that there is hysteresis with increasing
and decreasing e. However, if e is never increased
sufficiently far to reach the pure transverse state, then
there is no hysteresis upon decreasing e. These results
show that the effective threshold values plotted as curves
5 and 6 in Fig. 1 determine which patterns are going to
be observed, and not the linearized results shown as
curves 3 and 4. When hysteresis exists, then, upon de-
creasing e to 0.235, the TR are gradually replaced as a
function of time by the LR. This once more shows the
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FIG. 2. Flow patterns for fixed Reynolds number R =2 and
fixed noise level o. =10 as a function of e. Solid lines: the
modulus of the amplitudes of the transverse rolls (TR) ~ Dashed
lines: the modulus of the amplitudes of the longitudinal rolls
(LR). The data are in the vicinity of the absolute instability of
the zero-amplitude state to longitudinal rolls. (a) a=0.0625,
convectively unstable (noise-sustained structure); (b) @=0.07,
convectively unstable (noise-sustained structure); (c) e =0.08,
absolutely unstable.
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FIG. 3. Patterns for fixed Reynolds number R =2 and fixed
noise level o. =10 as a function of e. Solid lines: the modulus
of the amplitudes of TR. Dashed lines: the modulus of the am-
plitudes of the LR. The transverse rolls are noise-sustained
structures. (a) a=0.23; (b) a=0.24; (c) @=0.25; (d) @=0.265.
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importance of the cross-coupling terms in Eqs. (la) and
(1b). The present system is a particularly simple example
of coexistence of and competition between two different
types of patterns. We note that the hysteresis, and the
coexistence of different patterns in different parts of the
sample, have a strong similarity with regime IV given in
Fig. 18 of Ref. 10.

To check whether our model contains also the direct
transition to transverse rolls observed numerically and
experimentally at small R, we performed the same simu-
lations at the lower Reynolds number R =1.5. In Fig. 4
we show the resulting fully developed transverse roll pat-
tern for @=0.2 under otherwise identical conditions and
for the same choice of parameters as in Fig. 3. In this
case, there are only transverse rolls, and indeed we found
only transverse rolls up to @=1.0 in the present model.
If this should be different in the experiment, this would
give a good clue how to improve the model far above
threshold in a regime where envelope equations are no
longer expected to be applicable.

To see how a different noise strength influences the
pattern observed under otherwise identical conditions, we
have investigated the case arising for R =2 and @=0.255
for three different values of o. . From the results plotted
in Fig. 5 we can clearly infer that the position of the in-
terface separating longitudinal and transverse rolls de-
pends on o. under otherwise identical conditions: the
higher the noise strength, the higher the fraction of trans-
verse rolls. As expected, ' the length of the portion of
the cell with small amplitude varies linearly with ln(o ).

In order to check whether the patterns depend on the
path taken in the e-R plane, we investigated the evolution
of the pattern for fixed values of o. and e as a function of
R. The results are shown in Fig. 6. As in the case where
e was varied at constant R, we observed hysteresis, again
showing the importance of the nonlinear cross-coupling
terms. The magnitude of the hysteresis in R was about
5% for our parameter values.

All runs described so far were performed for the same
values of the cross-coupling coefficients. They yielded
coexistence of the two patterns in the same system, but at
different spatial locations. An interesting issue is whether
it is possible also to have the analogue of a mixed
state, ' ' that is of a state for which one has two en-
velopes coexisting at the same location, when other
values of the coupling coefficients are used. We explored
different values of the coupling terms and found that a
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FIG. 5. Flow pattern for fixed Reynolds number R =2, fixed
@=0.255, and variable noise level o.. Solid lines: the modulus
of the amplitudes of the TR. Dashed lines: the modulus of the
amplitudes of the LR. The transverse-roll patterns are noise-
sustained structures. The larger the noise level, the larger the
fraction of transverse rolls. (a) o.= 10; (b) o.= 10 ', (c)
o. =10
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mixed state does occur, and that its existence depends
sensitively on the values of the coupling coefficients. In
Fig. 7 we plotted a state for which one has longitudinal
rolls existing alone near the intro w, but a well-

pronounced mixed state in the downstream half of the
container. It turns out that the ratio between the two en-

velopes in the mixed state can easily be inverted by
changing one of the cross couplings by a few percent. To
our knowledge, mixed states have not been examined be-
fore for spatially inhomogeneous situations. Equations

0.5— (d)

—0.5—
C3

C3

0

30 60
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FIG. 4. Flow pattern for the smaller fixed Reynolds number
R =1.5 for the same noise level as in Fig. 2 at @=0.2. Only
transverse rolls are present.

30 60
POSI T ION x

FIG. 6. Flow pattern for fixed noise level o. =10 ' and fixed
@=0.255 as a function of Reynolds number R. Solid lines: the
modulus of the amplitudes of TR. Dashed lines: the modulus
of the amplitudes of the LR. The transverse-roll patterns in (a),
(b), and (c) are noise-sustained structures. (a) R =2.05; (b)
R =2.0; (c) R =1.975; (d) R =1.95.
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FIG. 7. Mixed pattern as it arises for slightly different values
of the cross-coupling coeScients between longitudinal and
transverse rolls. Solid line: the modulus of the amplitudes of
TR. Dashed line: the modulus of the amplitudes of LR. For
this example 6, =0.5, 5„=1.4, @=0.165, R =2, and o.= 10

V. SUMMARY

In the present paper we have shown that a simple mod-
el consisting of two envelope equations with slow spatial
variations in one direction can reproduce the ob-
served' ' " spatially inhomogeneous states with different
patterns in different parts of an experimental cell. For a
certain parameter range, we have also found coexistence
of two amplitudes at the same spatial location. We ex-
pect the model to be applicable to the Rayleigh-Benard
system with an externally imposed horizontal How. This

(la) and (1b) provide a particularly simple model for this
phenomenon. It seems likely that state V in Fig. 18 of
Ref. 10 has common features with the mixed state shown
in Fig. 7.

We want to emphasize that both the coexisting LR and
TR and the mixed states described here are qualitatively
different from the various types of confined states ob-
served recently in binary Quid convection near the oscilla-
tory onset. ' In the latter case, one has a coexistence of
amplitude zero over part of the cell with a finite ampli-
tude over the remainder, and this phenomenon is linked
to an inverted bifurcation. In the present case, we have
investigated a model in which both the bifurcations to
longitudinal and to transverse rolls are forward. In this
case, the nonlinear cross couplings are responsible for the
variety of states which exist.

system is a good candidate for the investigation of con-
vectively unstable longitudinal- and transverse-roll pat-
terns near threshold, and of the competition between
these patterns above threshold. The addition of noise at
the inlet, as well as the measurement of the amplitude
profile as a function of e, could show whether the experi-
mentally observed' '" long influence length is indicative
of noise-sustained structures. It will also be important to
check, for example, by varying the width of the convec-
tive cell, whether it is possible to get a mixed state in this
system which consists of a superposition of longitudinal
and transverse rolls. Furthermore, it would be very in-
teresting to study the hysteresis effects found in the mod-
el by quantitative experimental Aow visualization of the
entire cell.

Several of the results presented here can be expected to
carry over to the case of thermal convection in a tilted
cell. In that case one also observes —as a function of
tilt angle —a transition from transverse to longitudinal
rolls. It should be kept in mind, however, that one has
the superposition of a large convective roll and of the TR
or LR, which makes the analysis more complicated than
for RBC with horizontal Aow and for the simple model
presented here. We close by pointing out that some of
the phenomena discussed here are also useful for Taylor-
vortex How with axial flow. The equations applicable in
that case are, however, only uniaxial on length scales
large compared to the pitch of the spiral How-state which
forms in that system.
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