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Previously published Monte Carlo molecular-dynamics data on the velocity autocorrelation func-

tion of the hard-sphere fluid are supplemented by data for the time-dependent transport coefficient
to yield estimates for the self-diffusion coefficient throughout the Auid regime, from 25 to 1.6 times
the close-packed volume. The dependence on system size is explored through results for 108—4000
particles. It is found essential to include long-time contributions to the Green-Kubo integral based
on the previously validated mode-coupling theory. It is shown that the calculations of Easteal,
Woolf, and Jolly [Physica 121A, 286 (1983)] fall significantly below the current estimates, which are
in qualitative agreement with the Alder, Gass, and Wainwright [J. Chem. Phys. 53, 3813 (1970)]
values.

I. INTRODUCTION

The study of transport coefficients through molecular-
dynamics simulation began with the investigation of hard
spheres and disks more than 20 years ago. ' That work
led to the discovery of the slow, algebraic decay of the
velocity-autocorrelation function (VACF, the time-
correlation function for self-diffusion in the Green-Kubo
formulation), and the associated enhancement to the
self-diffusion coefficient for hard spheres and its diver-
gence for hard disks. Theoretical derivations of the slow
decay have been given on the bases of kinetic theory
and mode-coupling theory. ' Similar slow decays have
been derived for the time-correlation functions for the
coefficients of viscosity and thermal conductivity,
and studied for hard spheres by molecular-dynamics
simulation. ' In addition, the divergence of the higher-
order ("super-Burnett, " etc.) self-diffusion coefficients in
both two and three dimensions have been predicted
theoretically' and verified for hard disks and spheres
by molecular-dynamics simulation. The present au-
thors ' greatly extended the studies of Alder and Wain-
wright in order to compare the VACF with the theoreti-
cal predictions. Nonetheless, we did not, at that time,
use the results to improve on the original estimates for
the self-diffusion coefficients by Alder, G-ass, and Wain-
wright (AGW), which were based on molecular-
dynamics calculations for systems of 108 and 500 parti-
cles, extrapolated to the infinite-system limit, including
corrections for the long-time tail.

Easteal, Woolf, and Jolly ' (EWJ) have challenged
the earlier values for the self-diffusion coefficient based on
their molecular-dynamics calculations for systems rang-
ing in size from 128 to 432 particles and even to 4394
particles for one density. It was implied in these studies
that the numerical results somehow disprove the ap-
propriateness of the long-time-tail corrections of AGW.
Speedy has suggested that all reliable results for the
self-diffusion coefficient can be fit within the statistical
uncertainty by the empirical expression,

D =D 1 — [1+n (0.4 —0. 838' )],1.09

30
8&V'arm P

n =no.

in which D is the diffusion coefficient, Dpp is the low-
density Boltzmann value in the first Enskog approxima-
tion, o. is the hard-sphere diameter, n is the number den-
sity, m is the particle mass, and P= 1/k&T with kii the
Boltzmann constant, and T the thermodynamic tempera-
ture.

In our study of the VACF, ' we used a combination
of Monte Carlo and molecular-dynamics (MCMD)
methods to extend the Alder-Wainwright calculations to
larger systems and more densities in order to compare the
VACF with the kinetic-theory and mode-coupling predic-
tions for the long-time tails. These studies strongly sup-
ported the theories with respect to the dominant shear-
mode contribution to the long-time tail, but with the in-
clusion of the less dominant acoustic-mode contribution
yielding quantitative agreement between the MCMD
data for the VACF and a finite-N (N being the number of
particles) version of the mode-coupling theory. As a re-
sult, we can extend the AGW study both with respect to
the system-size dependence of the VACF over the finite
range of dynamical time accessible in these calculations
but also with respect to the details of the long-time
corrections. Moreover, we are able to directly contradict
the implication of the EWJ and Speedy studies that the
long-time contributions are somehow not needed. In
fact, these corrections have been simply ignored in this
recent work, without any justification.

The importance of precise estimates for the transport
coefficients of hard spheres has increased in recent years
with the advent of variational approaches to the trans-
port coefficients, similar in some ways to the so-called
"modified" Enskog theory. This theory attempts to pro-
vide transport coefficients for both atomic and molecular
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Auids by establishing a correspondence between the sys-
tem of interest and the hard-sphere system. It is
essential that one begin with precise hard-sphere results if
one is to ascribe certain details of the difference between
the experimental and the hard-sphere transport
coeKcients to features of the intermolecular interaction.

In the present paper we report values of D as a func-
tion of volume ranging from 25 down to 1.6 times the
close-packed volume. This includes, then, essentially the
entire fluid regime from dilute gas to near solidification.
While the present calculations are based on our earlier re-
sults for the VACF, we also use the integral of the VACF
as a function of time, the so-called time-dependent self-
diffusion coefficient, which was not reported previously.
In Sec. II, then, we extend the general discussion of our
earlier work to include these additional features. In Sec.
III, we present our results and discuss in some detail the
methods used for our estimates. The results are com-
pared with the AGW estimates as well as the polynomial
fit given by Speedy.

II. SELF-DIFFUSION COEFFICIENT

D (t) = tlimD (t;N),

D(t;N)= f ds p~(s;N),
0

p~(t; N)=(u, (0)u, (t)),
where tlim denotes the thermodynamic limit of large sys-
tem size. The angular brackets denote the average over a
statistical mechanical ensemble of initial positions and
velocities {r;(0),v, (0)], which, for the present calcula-
tions, was chosen to be the microcanonical ensemble.
Here pz(t;N) is the velocity-autocorrelation function
and u;, the velocity of particle i in the center-of-mass
frame of reference, is given by

u, =v, —P/Xm,
P=m vt'

with P the momentum of the center of mass. If the sys-
tem is subject to periodic boundary conditions, as in this
as well as previous studies, then P is a constant of the
motion for a given trajectory.

For the evaluation of D it is valuable to rewrite D (t;N)
by taking the time integral through the ensemble average
in the last two of Eqs. (2). We have, then,

D(t;N)=(u, „(0)bR, (t)),
in which b, R, (t) is the displacement of particle i in the
center-of-mass frame of reference,

For a system of N hard spheres of diameter o. in a
volume V, the Green-Kubo formalism expresses the self-
diffusion coefficient as

D = lim D(t),

D~(t;N)=(u„(t)AR, (t)), (6)

The short-time contribution D
&

( t;N) is evaluated
through either of two expressions,

D' (t;N) =
—,
' [D (t;N)+D&(t; N) ],

D~"'(t;N)= — (AR'(t)) .
1 d
6dt

(10)

From the point of view of numerical calculation, it is
preferable to avoid numerical differentiation, so that D i'
would be the better route to the short-time contribution.
In all our calculations, we have evaluated the mean-
square displacement from which we obtain D',"'(t;N),
but in our earliest calculations we did not evaluate
D(t;N) and D&(t;N) so that D'&'(t;N) is not always
available. It is important to observe that, even though
D (t;N) and D&(t;N) are equal, their numerical estimates
will differ by virtue of the incompleteness of the ensemble
averaging which can be done numerically. Finally, we
observe that our inclusion of the long-time contribution
D2(t, ) is the source of most of the difference between the
present results on the one hand and those of EWJ and
Speedy on the other.

The choice of the crossover time t, is dictated largely
by the results of our earlier study of the VACF. ' It
was found that, for times greater than the acoustic-wave
transversal time,

t, =L/c

which can be shown to be equal to D (t;N) by transform-
ing the average in Eq. (6) from the phase [r, , v;] at time 0
to that at time t, transforming to the sign-reversed veloci-
ties, and using the time-reversal invariance of the trajec-
tory. In passing, we observe that the mean-square dis-
placement (b,R, (t)), which is the quantity presumably
computed by EWJ, is related to our D&(t;N) [and there-
fore to D (t;N)] through the obvious relationship,

D&(t;N)= — (bR', (t)) .=1 d
6 dt

Our calculations include the evaluation of D ( t;N)
D&(t;N), (bR &(t)), and pr (t;N) as functions of time.
While the first two, evaluated at long times, provide the
principal contribution to D, our calculations must also
take cognizance of the limits of large system size and long
time appearing in Eq. (2). It is in taking account of these
limits in our numerical calculations that knowledge of
the long-time behavior of pr (t;N) is essential. In fact,
we decompose D into short- and long-time contributions,

D =Di(t, )+D, (t, ),
D, (t) =tlimD, (t;N),

with the long-time contribution

Dz(t;N)= f ds pz&(s;N) .

ER, (t) =r, (t) —r, (0)—Pt/Nm

Closely related to D (t;N) is the quantity

(in which c is the sound speed and L is the period of the
cubical system), the periodicity of the system leads to
rather strong finite-system effects, with smaller but
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significant effects being present at earlier times. The
long-time effects can be accounted for by a finite-system
version of the mode-coupling theory. As a result, we
concluded that the mode-coupling theory was valid at
long times and could, therefore, be used to provide the
long-time correction, Dz(t, ), of Eq. (9), viz. ,

D~(t, )=J ds p' '(s) . (12)

The mode-coupling result includes both the well-known
dominant contribution from the shear modes, which be-
comes, in the thermodynamic limit,

pn(t)= 3/p 7

2
CXL)—

3nPm [4~(D+v)]
2A g)

D~(t, )=

(13)

y~(t) = 1

3n Pm [4~(D +I, /2) t]

c 2

4(D +I, /2)

D," (t, ) =@(t,)P~ ' 2
exp( —Put, )

(f3' t, )'

(14)

—4~' erfc[(Put, )' ]

in which yz(t) of Eq. (3.40) of our earlier paper has
been corrected. [The reader should also observe that Eq.
(3.39) of that paper is also in error; a minus sign should
precede Pz(t) as the third argument of &F&.] Here D and
v are the self-diffusion coefficient and the kinematic
viscosity of the Quid, and I, is the acoustic attenuation
coefficient,

r, =D, +(q —1)D, ,

D +
7ltB 3

(15)

D~=
nc

with g the bulk viscosity, k the thermal conductivity,
y =c /c„and c and c, the heat capacities per particle
at constant pressure and constant volume, respectively.
(For the present calculations in the microcanonical or
NVE ensemble, we identify P= 3N/2E, where E is the to-
tal energy. ) Thus, t, must be chosen sufficiently large
that pu(t, ;N) is in agreement with the finite-N version of
the pL', '=pv+pg~ long-time tail at least for the largest
N studied, typically N =4000.

Turning to the evaluation of D, , we note that our

as well as the more rapidly damped acoustic-mode contri-
bution, which is given in the thermodynamic limit by

pg(t) =yz(t)(1 —2Put)exp( —/3ut),

definition of D, Eq. (2), uses the velocity-autocorrelation
function in the center-of-mass frame of reference. This is
to be distinguished from that in the laboratory frame,

cu(t;N)=(, u, (0)v,„(t)) . (16)

The relation between the two VACF's is

p u( t; N ) =cu ( t;N) (u—,„)/N, (17)

Our calculations for self-diffusion consist of a Monte
Carlo average over the microcanonical ensemble of the
time-dependent quantities indicated above, the latter be-
ing evaluated through molecular-dynamics calculation of
the dynamical trajectory. The calculations, which in-
clude extensive time averaging on each trajectory as well,
were described previously ' in some detail. The results
for the self-diffusion coefficient reported here are from
the same MCMD simulations in the earlier paper; see
Table I therein for the values of the parameters. (We
take this occasion to note that the heading for the fourth
column of that table should read h /tz+o'. ) In our present
Table I are shown the values of the volume relative to the
close-packed volume, Vo =&2Ncr3/2, the number of par-

from which it follows that, while they become identical in
the limit of an infinite system, for finite N they cannot
both approach zero as t ~~. It seems reasonable to sup-
pose that it is pz( ~;N) which vanishes and our numeri-
cal results support this. It is for this reason that we have
defined D in terms of pz. However, in our earlier study
of the hard-disk system, we noted empirically that, ex-
cept at high density, cz(t;N) was substantially indepen-
dent of N for t less than a value t*-6to, where to is the
actual (density-dependent) mean free time. A similar be-
havior was found for hard spheres, although we did not
previously so note. Thus the infinite-system correction
to D(t*;N) is just t*(v&„)/N. While we use t* —6to at
moderate to low densities, at high densities this N in-
dependence of c~ breaks down and we use t*=0.

In either case, we require a second component of Di
between t' and t„ that is, AD& =D (t, ;N) D(t*;N)—.
For those values of the density for which calculations
have been performed for a number of system sizes, we
simply extrapolate this difference linearly in 1/N to the
thermodynamic limit. In other cases (where only 4000-
particle calculations were done), no such correction has
been made, but the quoted uncertainty in the reported D
has been inAated as seems appropriate based on the mag-
nitude of the correction observed at other values of the
density.

The uncertainty reported for D at a given density con-
sists for the most part in the standard deviation of the
mean for D&(t, ;N) for the largest N studied, plus that as-
sociated with the extrapolation of AD& to the thermo-
dynamic limit. In addition to the adjustment to the un-
certainty mentioned above, we have also inflated the un-
certainty somewhat at high densities where there is addi-
tional uncertainty associated with the choice of transport
coefficients to be used in the evaluation of the long-time
contribution Dz(t, ).

III. RESULTS



43 SELF-DIFFUSION COEFFICIENT FOR THE HARD-SPHERE FLUID 4257

TABLE I. Parameters and other quantities for the MCMD calculations of the self-diffusion
coefficient: V the volume, Vo the close-packed volume, N the number of particles. The column labeled
"D?" indicates whether D(t;N), Eq. {4), and D&(t;N), Eq. (6), were computed directly for the given
realization; t, is the acoustic-wave traversal time, Eq. (11). D~ {t;N) is defined in Eq. (10); t =6to for
V/Vo 4, t*=5.1444to for V/V0=3 (as shown also in Table II), and t =0 for V/Vo ~2. The values
of t, are given in Table III. The numbers in parentheses are the statistical uncertainties (one standard
deviation) in the low-order digit.

V/ Vo

25
18
10
10

5

5

5

4
3
3
3
3
2
2
2
2
1.8
1.7
1.6

4000
4000

500
4000

108
500

4000
108

1372
108
500

1372
4000

108
500

1372
4000
4000
4000
4000

D?

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
yes
no
no
no
yes
yes
yes
yes

12.30
15.07
10.66
21.32
9.26

15.44
30.88
10.31
24.06
11.71
19.52
27.33
39.04
13.71
22.85
32.00
45.71
47.39
48.28
49.20

D& (t*'N)/DF,

1.0011(6)
1.0080(3)
1.0116(11)
1.0345(7)
1.0396(4)
1.0186(8)
1.0476(8)
0.9885(11)
1.0137(10)
1.0136(9)
1.0184(3)
0.0
0.0
0.0
0.0
0.0
0.0
0.0

D l ( t„'N) /DF

1.0114(11)
1.0181(9)
1.0357(12)
1.0465(6)
1.0692(22)
1.1154(18)
1.1373(13)
1.1000(17)
1.1777(24)
1.1306(35)
1.2037(42)
1.2251(44)
1.2271(12)
1.0374(83)
1.1202(54)
1.1639(78)
1.1563(19)
1.0367(16)
0.9327(15)
0.7887(20)

9EVE—
nm

2
'9oo 2bny 48(bny)

5nmD oo
~oo

16 '9oo „z
5m

oo 3bny 32(bny) 2

5 25m

25nkaDoo
~00

2rr&2
3( V/Vo)

(18)

ticles N, and an indication as to whether the time-
dependent self-diffusion coefFicients were evaluated
directly. In order to indicate the onset of substantial
finite-system effects for each system, we also list the
values of the acoustic-wave traversal time, Eq. (11), ob-
tained from our [3/2] Pade approximation ' to the
hard-sphere equation of state.

In computing the long-time-tail corrections, Eq. (12),
we have used (except at the four highest densities) the
Enskog-theory transport coefficients,

1.018 96Dpp

in which Doo, goo, and Zoo are the Boltzmann transport
coefficients, b is the second virial coefficient, and g is the
pair-correlation function at contact, for which we have
used the values from the [3/2] Pade approximant to the
equation of state. ' As discussed earlier, the agree-
ment between the molecular-dynamics results and the
mode-coupling theory is significantly improved at high
densities by using estimates for the actual transport
coefficients in the theory. We have, therefore, used the
AGW values of D, g, A, , and g for the four highest densi-
ties.

We express our results for the self-diffusion coefficient
relative to the Enskog-theory prediction, Dz, Eq. (18). It
should be noted that the latter is the value obtained in the
ninth Enskog approximation, as distinguished from the
first approximation apparently used by EWJ,
Speedy, and Alder et al. , in reporting their results.
We have, therefore, divided these earlier results by
1.01896 in comparing with ours. Table I shows the
values of D, (t*;N)/DF and D, (t, ;N)/DF obtained from
the simulations, with t*=6to for V/Vo ~4, t =5.144to
for V/Vo=3 (as shown also in Table II), and t*=O for
V/Vp 2. The values of t, are given in Table III.

To illustrate our extrapolation procedure for obtaining
our final infinite-system estimates of D, we consider in de-
tail our calculations for the volumes 3Vo and 2Vo. This
will also help in providing some understanding of the
differences between our results and those of EWJ and
Speedy. The various contributions to the self-diffusion
coefficient, as previously discussed, are shown in Table II.
For V = 3 Vo we list D

&
( t *;N), obtained from the first of
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TABLE II. Details of the calculation of the self-diffusion coefficient for hard-sphere systems at
volumes of 3 Vp and 2Vp. The time t, which is the upper limit of the time for which the VACF in the
laboratory frame of reference is independent of the number of particles N, is 5.1440tp for 3 Vp and zero
for 2Vp. The time t„which marks the split between the Monte Carlo molecular-dynamics contribution
to the self-diffusion coefficient D and the long-time-tail contribution, is 31.925tp for 3Vp and 51.000tp
for 2Vp. The column marked "(3)+(4)"is the sum of the preceding two columns.

V/ Vp

108
500

1372
4000

108
500

1372
4000

D& (t N)/DF

0.9885(11)
1.0137(10)
1.0136(9)
1.0184(3)

t*(v', „)/NDF

0.0313
0.0067
0.0025
0.0008

(3)+(4)

1.0198(11)
1.0204(10)
1.0161(9)
1.0192(3)

aD, /D~

0.1421(35)
0.1901(42)
0.2115(44)
0.2087(12)
0.2106(12)
1.0374(83)
1.1202(54)
1.1639(78)
1.1563(19)
1.1594(19)

Dp(tc )/D~

0.0908

0.0898

D, (t*;~) = 1.0190+0.0003 . (19)

For V =3Vo, our results for p~(t) were found to
agree rather well with the mode-coupling theory for
times greater than about 25to. We have chosen, then, a
crossover time t, ='31.925tp for this density, that being
the longest time for which the time-correlation functions
were computed for the 1372-particle calculation. The
contribution to D& for the time interval t* to t, was es-

TABLE III. Monte Carlo molecular-dynamics results for the
self-diffusion coefficient of the hard-sphere Quid, relative to the
Enskog value, in the ninth Enskog approximation, from the
present study and from Alder, Gass, and Wainwright (Ref. 3).
The time t, marks the time at which the long-time-tail correc-
tions, Eqs. (9) and (10), are used, and is scaled by the actual
mean free time tp.

V/ Vp

25
18
10

5
4
3
2
1.8
1.7
1.6

t, /tp

19.955
22.223
20.000
30.000
30,000
31.925
51.000
50.809
50.609
65.505

D /DF

1.014(2)
1.021(2)
1.057(2)
1.177(3)
1.242(5)
1.320(3)
1.249(7)
1.129(11)
1.010(13)
0.843 (10)

DA~w/D~

1.14

1.32
1.25
1.13

0.82

Eqs. (10) for X = 108, 500, and 4000 and from the second
of Eqs. (10) for 1372 particles, at the time t*=5.1440to.
Up to this value of the time, the VACF in the laboratory
frame of reference appears to be virtually independent of
the system size, X. The early-time correction t*(u,„)IX
for each system is also listed and combined with
D, (t*;N) in the column labeled "(3)+(4)." The values
are seen to be in good agreement, except for the 1372-
particle system. The weighted average of the four
"(3)+(4)" entries from the table is taken to be

timated by extrapolating the difference hD, , also listed in
Table II, linearly in 1/1V to the thermodynamic limit.
We obtain

AD) =0.2106+0.0012,
DE

(20)

also shown in the table. Finally we compute the long-
time-tail contributions from Eqs. (13) and (14), using the
Enskog transport coefficients, Eq. (18), to obtain

D, (r, ) =D', (r, )+D,'i (r, ),
D', (r, ) =0.0908,

DE

II (t, = —1.3X10 '
DE

(21)

We note that the acoustic-mode contribution is at most
6X10 for all the cases we have studied. It is small
compared to the contribution of the shear mode and to
our final estimates of uncertainty, and could have omitted
except for an occasional effect on rounding. The final es-
timate for the V=3VO self-difFusion coefficient is there-
fore obtained by summing Eqs. (19)—(21) to obtain

=1.320+0.003,
DE

(22)

in which we have increased the uncertainty slightly in
view of the uncertainty in the N = 1372 contribution to
Eq. (19).

For V=2V~ and higher densities, the N independence
of ci, ( t; N) at early times breaks down. Therefore we
choose t*=0 and list in Table II only the values of
Di(t„X). Table II shows the extrapolation to the infinite
system as well as the long-time-tail contributions. The
latter are based on the AGW estimates for the transport
coefficients for this and higher densities. The final esti-
mate for D /DE is then 1.249+0.002. However, we
inAate the uncertainty by 0.005, because of the sensitivity
of the tail correction to the uncertainties in the AGW
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transport coefficients which determine aD, Eq. (13).
In Table III are listed the estimated values for D. The

values adopted for t, are also listed and can be correlated
with the actual comparisons of the VACF and theory.
It is important to recognize that the estimates for D for
V/Vo=25, 18, 1.8, 1.7, and 1.6 contain no finite-system
corrections for the interval t to t, because calculations
were done only for the single system size, N =4000. For
this reason, we have somewhat infIated the error esti-
mates. Some feeling for the likely magnitude of this error
can be obtained by noting that the difference in Table II
between the AD, /Dz values for N = ~ and N =4000 is
only about 0.002 —0.003. Also listed in Table III are the
Alder-Gass-Wainwright estimates, scaled by the same
Enskog-theory value as ours. The difference is seen to be
statistically significant for V = 5 Vo, but is otherwise
small. We should also mention that at V = 5 Vo the
N = 108 results are somewhat discordant with those for
the larger systems as regards both the value of
Di(t*;N)+t*(U &„)IN and a linear dependence of b,D,
on 1/N, and we accordingly omitted those results from
our reduction procedure.

IV. DISCUSSION

Our results are plotted against the relative density in
Fig. 1. They are well represented LI' (7)=3.27;
P (y ) 3.27) =0.86] by the third-degree polynomial fit

Vo V.
'

DE
=1+0.05403449 +6.365 616

V V

Vo—10.942 539
V

3

which is plotted as the dashed curve in the figure. The
Speedy expression, Eq. (1), for the density dependence of
the self-diffusion coefficient, after conversion to D/DE, is
also shown in Fig. 1. It is clear that it does not include
the full enhancement arising near V = 3 Vo. The
differences between our results and those of EWJ (and
therefore Speedy) can be traced rather clearly to the de-
tails of the method employed by EWJ. In particular,
EWJ calculate D by differentiating the mean-square dis-
placement with respect to the time for values of t up to
the time that the VACF "goes to zero. " It is seen from
Eq. (7) that this derivative is just our Df(t;N), Eq. (6), so
that both their calculations and ours consider essentially
the same quantity. However, since the VACF is not
known exactly, presumably the longest times considered
by EWJ were those for which the VACF drops to the lev-
el of its statistical uncertainty. This cutoff time depends
strongly on the precision with which one calculates the
VACF and effectively ignores the tail of the VACF
beyond the cutoff time.

It appears that EWJ hoped to force the inclusion of an
increasing contribution from a long-time tail, if one were
present, by extending their calculations to larger system
sizes. In actual fact, if the statistical precision of their
VACF calculations were essentially independent of N, the
cutoff time would then approach (for large N) the time at

i I I i I I I I I
I

I I I I I I I I I
I

I I [ I I I I I i
l

I I I I

1 %2

Ld
C5

Cl 1.0

0.8

I I I I I i I I I I I I I I I I I I I I I I i I I I I I I I I I I

0.0 0.2 0.4
v /

0.6

FIG. 1. The hard-sphere self-diffusion coeKcient relative to
the Enskog prediction, as a function of the density; the volume
V is reduced by the close-packed volume Vo. The circles are
from the present study, while the dotted line is the empirical ex-
pression of Speedy, Eq. (1) (Ref. 29). The dashed line is the
third-degree polynomial fit to the present results, Eq. (23). The
vertical lines through the points extend one standard deviation
above and below the mean.

which pD(t; ~) decayed to the level of the statistical un-
certainty, a value which is relatively insensitive to the
length of the molecular-dynamics calculation by virtue of
the square-root dependence of the standard deviation of
the mean on the trajectory length. It is clear, then, that
their values of D for 2Vo which include system sizes of
from 128 to 4732 particles behave as expected in ap-
proaching an asymptotic value, even though the long-
time-tail contribution has been severely truncated.

While the actual values of the time cutoff used by EWJ
were not reported, one can see quite reasonable agree-
ment between the EWJ results and our partial results at
V = 3 Vo. In Table I we have, for N = 108,
D i (t„108) /Dz = 1.13 compared to their 1.13 (for
N =128); for N =500, we have 1.20 compared to their
value 1.19 for 432 particles. For V=2VO, EWJ obtain a
value for D/DE of 1.10+0.01 for N~2000. This is
significantly sma11er than the value of
Di(t, ;4000)/Dz =1.1563+0.0019 given in Table I. It
would appear that the EWJ cutoff was smaller than our
t, =51to.

The importance of the long-time-tail contribution to D
can be seen by comparing the EWJ result of 1.10 at
V =2 Vo with our infinite-system extrapolation, 1.251.
Beyond the acoustic traversal time of 45.71to (see Table
I) for the 4000-particle system at this density, finite-
system effects are expected to become important, and
such effects tend to damp the VACF to zero more rapidly
than its decrease in an infinite system. The contribution
of the infinite-system long-time tail to D/DE for t ) t, is
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about 0.0949 at this density. This alone accounts for
about 63% of the difference between our values. The
contribution of the finite-system, long-time tail
D&( r; N/DE [obtained from Eq. (9) and the finite-X
mode-coupling result ] is found to be only 0.0363. Thus
we see that systems as large as 4000 particles, which
naively may seem large, are in fact small as regards the
contribution of the long-time tail. We also note that our
V/ Vo =2, X =4000 calculation actually extends to
t =196.53to, at which point our uncorrected value of
D/DE is 1.184, which considerably exceeds the EWJ
value of 1.10. We also note the consistency of the finite-
X tail and our MCMD results in that the values of
D( ~;Ã=D&(t;8')+Dz(t;X), whether determined with
t =t, [yielding (1.1879+0.0019)Dz] or with t =196.53to
[yielding (1.186+0.004)Dz], are in good statistical agree-
ment.

One final fact pointing to the necessity for including
the long-time-tail contribution is provided by the non-
equilibrium molecular-dynamics (NEMD) calculation of
Holian and the present authors ' ' for which we re-
ported D/DF = 1.268+0.017 (based on the ninth Enskog
approximation for DF) for a system of 4000 particles at
V =3Vo, significantly greater than the value of 1.22 given
by Speedy for an infinite system. This computer simula-
tion of an actual self-difFusion process is independent of
the Green-Kubo formalism and was undertaken as the re-
sult of a question by E. G. D. Cohen as to whether one
could in such a way confirm that the long-time tails of
the VACF do indeed contribute to the self-diffusion
coefficient. Furthermore, in our X =4000, V=3VO cal-
culation at the maximum time t = 123.46to at which we
calculated the time-correlation functions, the value of
D(t;4000)/DF is 1.267+0.029, in excellent agreement
with the above NEMD value. Addition of the finite-X
tail D2(123.46to, Ã) =0.0045Dz does not materially affect
this agreement.

We close with the following observations.
1. The EWJ calculations of the self-diffusion

coefficient are based on evaluating the proportionality
constant between the mean-square displacement and the
time. Their discussion includes no reference to the length
of the dynamical time used in obtaining their results nor
any attempt to demonstrate the absence of a long-time
tail. Instead, they have concentrated on the X depen-
dence of their results out to some unspecified time, in the
apparent belief that all corrections are thereby included.

2. The force of the argument requiring the inclusion of

the long-time tail in the self-diffusion coefficient, which is
explicitly dismissed by Speedy, seems overwhelming in
view of the agreement of the numerical results with
mode-coupling theory previously demonstrated both in
two and three dimensions as well as the above-
discussed agreement of the NEMD and Green-Kubo re-
sults. However, some qualifications are necessary. First
as we previously emphasized, ' while our VACF re-
sults are certainly broadly consistent with the theoretical
long-time tails, the statistical power of the comparison
tests is quite low with respect, say, to a significant change
in the value of aL, at a given density, or even to a hy-
pothetical change in the exponent —d/2 of the time de-
cay. Some measure of comfort that we have not gone
badly wrong in this regard is provided by the above-
mentioned agreement of the NEMD and Green-Kubo re-
sults at V/ Vo =3. Second, there is little theoretical
justification for our use of the actual (AGW) transport
coefficients in calculating o.~ at high density. The kinetic
theory sums a certain class of collision events to obtain
the expression for o.z containing the Enskog transport
coefficients. As we previously noted, ' it may be that
in using the actual coefficients at high density, we are
simply making a crude allowance for collision events
which have not been considered in the theory. See de
Schepper and Ernst for a discussion of this question in
the two-dimensional case.

3. While the present results are somewhat more accu-
rate than the AGW estimates, it is noteworthy that they
agree so well.

4. The uncertainties in the present estimates for D at
densities for which data are available for N =4000 only
could be reduced somewhat if the X dependence of the
contribution to the Green-Kubo integral to time t, were
checked through calculations for, say, 500 particles. Un-
fortunately, we do not foresee being able to do such cal-
culations in the immediate future and choose instead to
publish the existing data. There would, however, still
remain appreciable uncertainty in the values of aL, at
high density, due to the uncertainty as to the appropriate
values of the transport coefficients used in its calculation.
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