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From the viewpoint of eigenvalue level statistics, harmonic-oscillator systems are unusual. Al-

though integrable, these systems are nongeneric, and a spacing distribution does not exist even as
the number of levels N~ ~. The origins of this pathological behavior are explored using methods
of number theory and ergodic analysis. However, such nongenericity is extremely fragile, and the
smallest nonlinearity asymptotically restores generic behavior. These results are of relevance to the
study of molecular spectra, as well as to the quasienergy spectra of integrable quantum maps.

I. INTRODUCTION

In the search for possible quantum parallels to complex
classical dynamical behavior, attention has increasingly
been focused on the statistical properties of quantum ei-
genvalue spectra. From the study of the spectral Auctua-
tions of bound systems with two or more degrees of free-
dom, the following picture emerges when the underly-
ing classical system has mainly chaotic motion, the eigen-
value spacing distribution falls into one of three random-
matrix universality classes, ' depending on the sym-
metries of the Hamiltonian. When the underlying
classical system is integrable, a different universality class
obtains. By using an elegant semiclassical analysis, Berry
and Tabor showed that so long as the constant energy
surfaces in the space of action variables was curved and
convex from above, then, in integrable systems, the
nearest-neighbor eigenvalue spacings were Poisson distri-
buted.

These connections —between the nature of the classical
dynamics on the one hand, and the resulting stationary-
state quantum-mechanical properties on the other —have
been the subject of considerable study. A host of applica-
tions to model systems which, classically, are chaot-
ic, ' " integrable, ' ' or mixed' have been made with
considerable success. These ideas, and in particular the
methods of random-matrix theory, have found several ap-
plications ' ' in the analysis of complex nuclear, atom-
ic, and molecular systems.

Within the class of integrable systems, however, there
is one important exception. ' The simplest integrable
systems, namely, uncoupled harmonic oscillators, are
nongeneric. The energy contours in action space have no
curvature, and this results in correlations among the lev-
els. The Berry-Tabor (BT) result of a Poisson distribu-
tion for the level spacings does not apply to harmonic-
oscillator systems, and such nongeneric behavior is the
focus of the present work.

One result in this paper is that for finite degrees of free-
dom, there is no stationary distribution for the nearest-
neighbor level spacings. That this might be the case was

already indicated by BT, who studied examples in two di-
mensions. They also noted that in contrast to generic in-
tegrable systems that showed level clustering, harmonic
oscillators with irrationally related frequencies exhibited
a level "repulsion. " While we confirm that this behavior
is only artificially similar to the level repulsion charac-
teristic of chaotic or complex systems, we also elucidate
the mainly number-theoretic origins of this phenomenon.

By confining attention to segments of eigenlevel spec-
tra, the energy eigenvalues can be generated through
iterative mappings. In addition, such eigenlevel maps
arise naturally in the quasienergy spectrum of integrable
quantum maps which obtain for periodically forced quan-
tum systems. ' These mappings can then be studied us-
ing methods of the ergodic theory of dynamical sys-
tems. We examine the level autocorrelation functions,
and show that this function does not decay only for
harmonic-oscillator systems. The specific case of two de-
grees of freedom can be analyzed completely. This is dis-
cussed in Sec. II, where eigenlevel maps for component
spectra are introduced. We show there that regardless of
the ratio of the two frequencies, there are at most only
three distinct spacings in any segment of the energy spec-
trum. We then consider the question of the asymptotic
spacing distribution which is obtained by superposing
different segments: even then there is no limiting distri-
bution.

Our results have relevance to the analysis of typical ei-
genvalue spectra. A harmonic-oscillator model is stan-
dard for a variety of systems, ranging from the normal-
mode description of polyatomic molecules to the pho-
non spectrum of solids. This is most pertinent in the
low-energy regime that is experimentally also the most
easily accessible. The lack of existence of a spacing dis-
tribution indicates the need for care in the analysis of
such data.

In Sec. III of this paper, the ergodic analysis of
energy-level maps is presented. We explore the
differences between harmonic and nonharmonic systems,
and also address the question of how a transition from
the nongeneric case to the generic occurs. We find that
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this transition is rapid and discontinuous in the limit of
asymptotic energy, similar to what is encountered in the
analogous transition between the several universality
classes [Gaussian orthogonal ensemble (GOE), Gaussian
unitary ensemble (GUE), Gaussian symmetric ensemble
(GSE)] of random-matrix theory. ' Higher-dimensional
systems are briefly dealt with, in Sec. IV, using mainly
numerica1 methods. This is followed, in Sec. V, by a sum-
mary.

II. TWO-DIMENSIONAL HARMONIC
OSCILLATORS (TDHO's)

In this section the case of d =2 degrees of freedom is
analyzed. The analysis of the spacing distribution is re-
duced first to a geometric problem, the distribution of arc
lengths generated by an irrational rigid rotation of a cir-
cle. We also give a concise proof that this distribution is
singular and that there can be at most three distinct arc-
lengths.

For simplicity, the quantal energy levels of the two-
dimensional harmonic oscillator can be written as
E,=m +an, where a ~ 1 is the ratio of frequencies of
the two oscillators, m and n are the quantum numbers,
and energy is being measured in units of the larger quan-
tum.

A particular choice of rn gives the mth component
spectrum, which is uniformly spaced with spacing cx and
starts at E=m. Consider the unit segment of the TDHO
spectrum between E =M and E =M+ 1 for arbitrary in-
teger M. This segment contains N +1 levels with average
spacing 1/N, where

large M

a, = 1/I a, + 1/[a~+ I /(a 3+ ) ] ]

= a„a~, . . . , a/„. . . ]

[ ]| 2t t 1/+k] I

with

(2.3)

+k [ k k+1 (2.4)

~k+l=T&k =T ~l ~

k

+[ak ak+1 ' ' '] [ak+1 ak+2

(2.5)

(2.6)

which defines the Gauss sequence a „a2,. . . . Finite
products of the a's play a crucial role in the theory of the
spacings,

(2.7)

Note that truncating the infinite continued fraction at ak
gives the so-called kth convegent,

Pk /'qk [a 1 a2 ' ' ak ) (2.8)

(po =0, qo= 1). The convergents form an alternating se-

quence of rational approximations to a l, with errors
given by

1 Pk qk ~k + 1/'qk (2.9)

The a sequence is finite for rational a&, infinite for irra-
tional and eventually periodic for quadratic irrational.
An important operation in this context is the Gauss-shift
transformation T defined by

N= —[ —(M+1)/a] ~ M/a . (2.1) B. The three spacings

[x ] and Ix ] denote the integer and fractional part of x,
respectively. These levels are located at energies

with

E=M+xj, (2.2a)

x.= I ja], j=0, 1, . . . , N —1, (2.2b)

and the final level at E=M+1. Thus the levels in each
unit segment (except for j =N) are generated by a finite
orbit of 0 under the rigid rotation,

x~x+a(mod 1) . (2.2c)

A. Preliminaries

We first fix notation and recall some definitions. The
(arbitrary) frequency ratio a, which will henceforth be
denoted cx& for notationa1 consistency, and which we take
to be 1, is written as a simple continued fraction in
terms of positive integers ak

By the ordered spectrum we mean the sequence of x 's

arranged in increasing order. These will be denoted by
Xl (with X~—:x~= 1).

(2.10)

At the next iteration a third spacing, namely 6, —A2, is
created, with x, +i C [O, b, i] [see Fig. 1(b)]. Further

1

iterates x, + -,j &q2, fall in the intervals of length 5&
1

created by the first a, iterations of the map. Consequent-
ly, it is enough to restrict attention to the qlth composi-
tion of the map on the first interval [O, b, &], which mirrors
what happens in all other intervals of length 6&,

xk+, =xk —A2, 0(k ~a2, xo —6, ~ (2. 1 1)

For rational a& =p/q it is clear that the spectrum gen-
erated by the map Eq. (2.2) is uniformly spaced if N=q;
there is then only one distinct spacing which is 1/q. If
X)q then there are degeneracies as well, so that there
are two distinct spacings, 0 and 1/q. For N &q it turns
out that there can be at most three distinct spacings.
This result, surprisingly, also holds for arbitrary cz and ar-
bitrary X. We consider this general case.

The eigenlevel map given in Eq. (2.2) is graphically
represented as in Fig. 1, from which it is clear that for
j a, there are only two distinct spacings [see Fig. 1(a)]
b, , and (1—jb, , ). For j=a„ the second spacing takes its
minimum possible value, 1 —j6l:1 q i 6 l

=A2. Note
here that
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O=x
0 X

cl alternately less than or greater than u1. The three spac-
ings that will occur for arbitrary number of iterates N can
be deduced easily. For t, ~ N ~ t;+„the spacings are

x0 x1 X2

Xa +1 a +2X
S1 =Ai +1

s2=5, —kA, +, , k (a,
S3 —51+S2

(2.16)

h, 3 (c)
The frequency of each spacing can be enumerated from
the unique (for integer k, z) decomposition

Xp X
a2 X2 Xp

N =q,. 1+kq, . +z, (2.17)

with 1~k ~a, +, and O~z ~q;. It is easy to show that
the respective weights for the three spacings are

X
1

X+1+2++1+1
w1=N —q;,
W2 =Z (2.18)

'3

(e} W3 —
qt Z

C. The limiting distribution

Upon rescaling by a factor —6, and shifting by 1, this
becomes another rigid rotation, however, now by the an-
gle cx2,

xg+1=xk +0'2, 0 k a2, xp —0 (2.12)

The only spacings that appear are 62, 61—kh2, and

bi —(k —1)b2 for j (q&+qi iterations of the original
map, Eqs. (2.2b) and (2.2c). For k =a&, there are again
only two spacings since 6, —a2b, i=bi [Fig. 1(c)], and
further

q252+q163=1 . (2.13)

The next iterate creates a new spacing, 62 —A3 with
x + H[x, 1], the first interval of length h2. Subse-q&+q2 q&

~

quent iterates fall only in the intervals of length A2, for
which it suffices to look at the map [following rescaling
and shifting as above; see Fig. 1(d)]

~a+, =xx+o.3, 0 k a, , ~o =0 (2.14)

That there can never be more than three spacings [Fig.
l(e), for example] derives from the fact that after
t; =q; +q, i

—1 iterations (i = 1,2, . . . ), there are only
two spacings, 6, and 6, +1, with the unit interval parti-
tioned as

A, q;+6, +,q, , =1 . (2.15)

Each interval of length 5, is first created at the left or
right extreme of [0,1] according as i is odd or even,
rejecting the fact that successive convergents of o. 1 are

FIG. 1. Graphical construction illustrating the existence of
at most three spacings. The irrational ratio of frequencies is

a, =[5,4, 3,2, 1, 1, 1, . . . ], and (a) —(d) show the successive
creation of spacings A„A2, 63, and A4. (e) shows a typical par-
tition of the interval [0,1] with only three spacings.

In each unit segment of the energy spectrum, the dis-
tribution (normalized to unit average spacing) is

3

Ptv(s) =—g tc;5(s —Ns;),
i =1

(2.19)

with w and s given as in Eqs. (2.18) and (2.16) above. In
the case of rational n =p /q and N ) q degeneracies dom-
inate the spectrum so that

N-~ ~
Ptv(s) ~ 5(s), (2.20)

which emphasizes the significance of degeneracies, but
does not give the correct average spectrum. A further
averaging,

max

NP~(s )

P(s;N;„,N, „)=
N min

N max
(2.21)

N min

yields the same result for N,„~oo.
For irrational n there are no degeneracies since none of

the s, 's in Eq. (2.16) can be zero. It is possible, however,
that for some o, and some resulting N, the probability of
observing two levels arbitrarily close to one another
remains nonzero. However, as the weight of these cases
can be made arbitrarily small in the average, the irration-
al TDHQ system will generically ' show "level repul-
sion. "

As N ~ cc, however, Ptv (s) does not approach a unique
limit, but changes continually with N „.Thus there is
no stationary form even as the energy increases. (If a is a
quadratic irrational with period 1, then a spacing distri-
bution can be defined in some sense; see Ref. 20.)

In dis ussing the N~ ~ limit we need to know wheth-
er u& and C& =

qk 1/qk have well-defined limits as
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k ~ ~. For quadratic irrationals this is indeed the case.
However, for almost all u's, a Gaussian theorem states
that the ak and Ck settle on the joint distribution

f(x,y)== 1 1 O~x, y ~1
»2 (xy+1)

from which one obtains

(2.22)

ln[(p+1) /p(p+2)]Prob ak =p =
ln2

(2.23)

lnkk in/ k—lim 11m
k k k 12 ln2

(2.24)

Now consider the piecewise continuous function

A(E) =5, (2.25)

where 5 represents the smallest (unnormalized) spacing in
the energy spectrum [O,E]. A(E) takes values

A3 . at energies E, =p, , the numerators of the
successive convergents. As a consequence, for large
stretches of energy, the smallest spacing remains con-
stant. It can easily be shown, using Eqs. (2.23) and (2.24)
above, that

A(E) ——1
(2.26)

Thus for a typical irrational number, any integer p is en-
countered infinitely often in the continued-fraction ex-
pansion. In the large-k limit

or (3.3)

xj+, =xj+(2j+1)a(modl )

in unit intervals of the (scaled) energy.
In higher dimensions d )2 similar maps can be defined

(see Sec. IV below) where analogous results show that, in
the typical case, the corresponding sequences of eigenval-
ues are uniformly distributed on d —1 dimensional tori.

The above cases cover a wide variety of integrable sys-
tems.

In d =2 dimensions, although the sequence of eigen-
values x„ that obtain from the rotation, Eq. (2.2), is er-
godic on the interval, we have shown above that a limit-
ing spacing distribution does not exist. Ergodicity alone
is therefore not sufBcient that such a distribution should
exist, although it would seem a necessary condition.

In order to highlight the diA'erences between generic
and nongeneric systems, we now compute the two-level
correlation function for a typical nonlinear map,
specifically the example given above in Eq. (3.3). Note
that the latter system satisfies the requirement that the
energy surfaces are curved in action space, and thus the
eigenvalue statistics are expected to be Poissonian. It is
convenient to consider the two-level density correlation
function

pression for the quantum eigenvalues, E, =n +o.m,
leads to the map

x, = [j'a],

for two degrees of freedom. In the generic integrable sys-
tem, however, the smallest spacing decreases much faster
with energy.

III. ERGODIC ANALYSIS OF LEVEL MAPS

R2(r) = g 5(r /N+x, —xk )= 1

1 g (N k)[Gk(r)+—Gk( —r)],
k)0

(3.4)

(3.5)

x„=[f(k)], (3.1)

where f (y) is the function appropriate to the problem. If
f is a polynomial of degree ~ 1,

The analysis of unit segments of component spectra
leads, as discussed above, to the study of the distribution
of [ja], j=0, 1, . . . in the case of the TDHO system.
Such analysis can be extended to a much wider class of
integrable systems, so long as one of the degrees of free-
dom remains harmonic. Then eigenvalues in a unit seg-
ment of the component spectrum can be generated
through a map similar to Eq. (2.2),

where we take
~

r
~

&&N and

G„(r)= g 5(r/N —x„+„+x„).1
(3.6)

G„(r)=f dt 5 —+r —[t+x„]

I

6 x ——+5 1 —x+-k k

For the TDHO, x„+&= [x„+xz j, so for large N (using
the property that the rigid rotation is ergodic),

f(y)=boy "+b,y" '+ +b„,
or exponential

(3.2a) 7"~6 ——x +6 —+1—xk k (3.7)

f (y) =her~, (3 2b) from which it follows that

then the sequences xk are uniformly distributed on the
interval [0,1] if at least one of the coefficients b above is
irrational, and for o. ) 1 and almost all b in the exponen-
tial case.

To give a specific example in two dimensions, consider
a particle moving in a potential which is harmonic in one
direction and consists of rigid walls in the other. The ex-

R (r)= g(N —k) 5 —x2 k
k

+6 —1+xk (3.8)

It is tempting to argue here that as k and xk are in-
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dependently distributed, R2(r)~1 for large N. This is
indeed true for large (but still much smaller than N}
values of ~r ~, but for finite r, the ergodic result does not
hold. The fiuctuations in R2(r), and in its integral,
remain large and consequently the limit does not exist.
This can be seen above for small values of ~r ~, for which
Rz(r) =P&(~r ~ }, but numerical experiments support this
for larger values of

~
r

~
as well.

In contrast, the map specified in Eq. (3.3), with

x„+k = Ix„+2nka+xk I, is not only ergodic, but in ad-
dition, both I n a I and I n a I are independently distribut-
ed. We therefore obtain for large N and k & 0

Gk(R)= fdt, Idt2o(r IN —(t, + ti —xi, ))

(3.9)

so that

(3.10)

implying Poisson statistics. Note that the function Gk(r)
is essentially a measure of the correlation between xk and
x„+k. The correlation coefficient can be shown to be
1 —6xk(1 —xt, ) and 5ko for the maps (2.2) and (3.3), re-
spectively. For the harmonic system which is nongener-
ic, correlations survive —indeed they oscillate about
zero —for arbitrary k, whereas in the latter, generic case,
they die down immediately. (Note that for the map
x = I2jaI, the correlation coefficient dies as 2 ", but
even for this case, the BT results apply. ) This contrasting
behavior of correlation coefficients is, we believe, the

main diA'erence between generic and nongeneric integra-
ble systems.

Consider, finally, a nonlinear perturbation of the rota-
tion (2.2),

x, = Iaj+pj I, (3.1 1)

with a and p (the perturbation parameter) mutually in-
commensurable. This, for example, describes the
quasienergy spectrum corresponding to the unitary
operator exp[i (aJ,+pJ, ) ] for fixed total angular
momentum J (see also Ref. 27). Since aj+pj is a con-
vex function of j, one should expect Poisson statistics for
the spacings for any nonzero value of p and sufficiently
large N. In particular, there should be a transition from
nongeneric behavior for small N to the generic for large
1V.

To quantify this assertion, we proceed as follows. Con-
sider small p; then the ordered spectrum can be written
as Xk(a, P) =Xk(a, O)+PYk, where 0( Y'k (N is an in-

teger such that Lk =x~ . By inspection of the spacings

X&+&—X& one can see that the degeneracy in the spec-
trum of spacings is completely broken for any nonzero p.
(If the perturbation were linear, then degeneracies will
survive. ) As p increases, the levels will cross and the
spacing distribution will make a transition to the Poisson
with the crossover value of the perturbation parameter
determined by the condition that the level shift due to
perturbation is of the order of the spacing itself. In this—3

~ pcrossover
In Fig. 2 we show the results of numerical studies of

the spacing distribution for the map (3.11) with fixed a
and N=1000, and p varying. As argued above, the

81010

p(s)

/=10 /=10

p (s) p(s)

3.5

FIG. 2. Illustration of the crossover behavior when the levels are given by Eq. (3.11). In all cases, o. is the golden mean, X= 1000,
and the value of P is indicated in the panels. The spectrum has been unfolded such that the mean spacing is unity.
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crossover occurs for /3=10 . The transition to the gen-
eric case is extremely rapid, and discontinuous for
N~ co as a function of /3, but smooth as a function of
X.
This fragility of the nongenericity of harmonic-

oscillator systems is similar to that in random-matrix
theories where discontinuous changes are encountered
when a symmetry of the system is broken. '

IV. HIGHER-DIMENSIONAL HARMONIC SYSTEMS

Extension of the above ideas to the study of spacing
distributions in higher-dimensional harmonic systems,
where the energy eigenvalues are given by

x,.„=~,j+~,k(mod 1) if [~,j+~,k] &M+ I . (4.2)

N,

Since the levels arise from the intermeshing of two
different subcomponents, the spacings "numerology" de-
pends strongly on the number-theoretic properties of ~,
and m2. Unlike the three-spacing result for TDHO's, it
turns out now that any number of diA'erent spacings N,
can occur. Furthermore, N, has a complicated depen-
dence on M as well as on the ratio ~&/co2. In general,
though, ther e continues to be a high degree of degeneracy
as for TDHO's, so that X, is much less than the number
of levels in the interval [M,M+ 1], and the distribution
is

P(s)= g w, 6(s —s, ) (N, &3) . (4.3)
d

E=n+ g co, m,f r

I =2
(4. 1)

yield ergodic maps on (d —1)-dimensional tori. We re-
strict attention to the case when all frequencies co; are ir-
rational and mutually irrational as well, since for rational
ratios, degeneracies will ultimately dominate the spec-
trum.

Classical systems of an infinite number of uncoupled
harmonic oscillators are routinely used to model stochas-
tic phenomena, most notably as a source of random
noise. One might therefore speculate that although the
TDHO {or other low-dimensional harmonic oscillator)
does not have a limiting spacing distribution, for a typical
distribution of oscillator frequencies, co, a spacing distri-
bution might exist in the d ~ ~ limit.

It may also be mentioned that the harmonic level spac-
ing problem is dual to the generalized quasicrystal prob-
lem. Recall the quasicrystal construction: Lattice
points of a d-dimensional hypercubic lattice contained
between two parallel (d —1)-dimensional hyperplanes
which intersect the axes with irrational slope are project-
ed onto one of the planes. This gives a lattice with quasi-
periodic ordering in (d —1) dimensions. We are, howev-
er, interested in the energy, which for these harmonic
systems is measured as a distance along the direction
(1111.. . 11). By fixing the segment [M,M+1] of in-
terest, the two hyperplanes are fixed, and the sequence of
levels, [x [ are the projections of the lattice points on the
diagonal ( 1111.. . 11 ), measured from the hyperplane
determined by E =M.

For d =2, both projections have identical properties,
and the three-spacing result quoted in Sec. IIB is valid
both for the resulting quasiperiodic one-dimensional (1D)
lattice, as well as for the level spacings. When the slope
is the golden mean, a=(+5+ 1)/2, this gives the well-
known Fibonacci construction of a one-dimensional
quasiperiodic lattice with only two lattice spacings. Our
result in Sec. II B shows that with a judicious choice for
the irrational o. and appropriate N, one can generate lat-
tices with only two spacings in any desired sequence; of
course, in general, there can be at most three lattice spac-
ings.

For d =3, the eigenvalue map is

In numerical experiments, we have noted that regardless
of the exact value of N, the spacings themselves have a
three-dimensional basis: each individual spacing can be
expressed as a linear combination of three "fundamental"
spacings.

It is not clear whether further analysis along the lines
of Sec. II B is possible. Pairs of mutually irrational irra-
tional numbers do not have convenient (or unique) simul-
taneous best rational approximations, except for particu-
lar cases. ' This is one impediment to the development of
a complete number-theoretic treatment of the spacings
degeneracy in the d = 3 case.

As the number of degrees of freedom increases, the
combinatorics gets even more complicated since the num-
ber of frequency ratios that must be taken into account
increases. For small d, though, the spacings distribution
tends to remain, as in Eq. (4.3), a sum of 5 functions so
that there is no limiting distribution as N~ ~. The
question of whether a distribution exists even as d ~ ~
remains an open one, although for typical irrational fre-
quency ratios, it seems unlikely. Recall that for d =2,
the smallest spacing scaled as 1/E with energy [Eq.
(2.26)]. In d dimensions, this result generalizes to
b, (E)—1/E '. Since the average spacing also scales in
the same way, the normalized smallest spacing is still —1.

In this paper we have explored the pathology of
harmonic-oscillator systems in the context of level spac-
ing statistics. In the case of two degrees of freedom, it is
possible to see the origins of such behavior very clearly in
a variety of ways: the lack of curvature for constant en-
ergy surfaces in action space, the "at most three distinct
spacings" result in any unit interval of energy, or the per-
sistance of correlations between energy levels as typified
by the ergodic analysis.

In higher dimensions, the pathological behavior
remains, but the analysis is not as transparent as for the
two-dimensional case. It seems, however, that the con-
clusions are not very difterent from that in two dimen-
sions. The nongenericity of such systems is delicately
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poised, inasmuch as the addition of the smallest nonlinear
term suKces to guarantee that the spacing distribution
and other spectral correlations revert to the Poisson, and
the system regains all the features of generic integrable
systems. We have derived here simple estimates for when
and how the transition from the nongeneric to the gener-
ic occurs.
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