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Anomalous chaotic transients and repellers of the bouncing-ball dynamics
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An example of a strongly nonhyperbolic repeller with a continuous measure along the unstable
direction is demonstrated.

where M(n) is the number of trajectories that have not
escaped after n iterations and p is a well-defined mean
lifetime. Its value depends strongly on a control param-
eter A of the system

y(A) —(A —A, ) (2)

where A, is the critical control for which the bound-

It is well known that a chaotic transient is a com-
mon phenomenon in low-dimensional dynamical systems.
This has been reported in many numerical as well as ex-
perimental investigations. In contrast to a permanent
chaotic behavior, which is connected with a chaotic at-
tractor (defined in infinite-time limit), a chaotic transient
is only observed for a long but finite time. After this the
trajectory settles down on a periodic or aperiodic attrac-
tor and stays on it forever. Such behavior is associated
with the existence of a nontrivial chaotic repeller. A
chaotic transient trajectory may be viewed as a walk in
the close neighborhood of such a repeller. A trajectory
that starts exactly from a point on a repeller would never
leave it. This event has, however, zero probability. Any
real trajectory starting in the vicinity of a repeller will
follow it for some finite time after which it escapes from
this region and never returns to it. This is nicely seen
also in the present, study of the bouncing-ball dynam-
i.cs, where the similarity between a single long transient
trajectory [Fig. 1(a)] and the numerically constructed re-
peller [Figs. 1(b)-1(d)] is conspicuous. A particular re-
peller can be viewed as an ensemble of parts of transient
trajectories initiated at many diA'erent points. Thus all
important quantities characteristic of a chaotic transient
may be extracted from a systematic investigation of the
corresponding chaotic repeller.

Chaotic transients have some important characteristic
features. One of them is the exponential distribution of
lifetimes. Starting from diff'erent points inside the region
containing a repeller one can observe trajectories with
diA'erent durations distributed according to the law

ary crisis takes place and o is the divergence exponent.
Another characteristic feature of a repeller related to a
chaotic transient is its double-cantor structure. Typical
attractors can be viewed as a product of a continuum and
a fractal set with a smooth measure in the unstable direc-
tion. Contrary to this the measure on a chaotic repeller
has discontinuities and characteristic holes transversal
to the unstable direction. It is also a common belief
that typical repellers are hyperbolic since the vicinities
of t, angencies should be mapped out of the region of in-
terest. Thus if all nonhyperbolic points were mapped
out then the study of the remnant structure would be
easier and many diKculties which are present for typi-
cal, i.e.„nonhyperbolic, attractors can be safely avoided.
In this paper we demonstrate that these typical features
need not be rigorously true in every case and therefore
a chaotic transient may in fact be a more complicated
phenomenon.

The system that exhibits such unusual behavior is the
well-known bouncing-ball model, which can be viewed as
an extension of the dissipative Zaslavsky map. In. the
model a ball is jumping in a constant gravitational field
on a sinusoidally vibrating surface v, (0) = A sin 0/(1+0).
The moment of collision 0;(mod 2n) and the velocity v;,
with which the ball starts to fly just after the ith impact,
can be obtained by iterating the dimensionless map

vi+1: k(27i vi) + A sill t i+1 &
gi+1: gi + &i

where 7; denotes the time interval between two successive
impacts satisfying the equation

A—T + vi7~ — cos gi: — cos (gi + ri)1+& ' 1+6
Thus starting from a given (v, , 0;) we can solve numer-

ically Eq. (4) and find 7;. When substituted into Eq. (3)
the new point (v;+i, 0;+i) is determined and the whole
procedure can be repeated. A nice feature of the dynam-
ics is that they are demonstrable via mechanical exper-
iments, which makes quite accurate tests possible.
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FIG. 1. Phase figures (u;, 0;) for A = 4.95 and k = 0.86, u; is the relative velocity. (a) Single trajectory of length 5000; (b)
repeller obtained by means of the ensemble method with nz ——200, n2 ——1100, and number of different trajectories np —500
(we plot only trajectories reaching r; & b ); (c) trajectory of length 3200 generated by PIM so that it stays within a, small
distance e = 0.002 from the repeller; (d) overlap of stable and unstable manifolds of the unstable fixed point (u', 0'), the
position of which is marked by a small ellipse, the ploted points are centers of small boxes (width 0.01 and height 0.02) inside of
each we can find at least one point from the stable and one from the unstable manifolds, here m, = 10 and other parameters
as in Fig. 3. Note the similarity between (a)—(d) and Fig. 3(a).

The model has two parameters: A, which is proportional
to the amplitude of surface vibration, and k, which stands
for the coefIicient of restitution (all variables and param-
eters are rescaled to the dimensionless form). Our sys-
tem is dissipative due to nonelastic impacts with I(; ( 1.
In experimental study the latter one was kept constant
(k = 0.86) and amplitude A was changed as a control
par ameter.

For a given A the dynamics usually exhibit multiple
attractors. Hence when an initial condition from a given
basin of attraction is iterated forward it will asymp-
tote a particular coexisting attractor. However, besides
the permanent stationary motion there also exist regions
in the (v, 0) plane where the self-reanimating transient
chaos takes place. During this motion the ball may
temporarily stick to the surface when 7; = 0 and 0; g
[0i, 02], where

casey 2 = —21+&
The subinterval [0i, 0&] is the set of initial phases from

which the peculiar self-reanimating chaos can be initiated
with a zero relative velocity for a suitable A ) 2(1+ k)
(in the continuous motion the detachment occurs at the
first possible moment 0i). Although this is an important
part of the bouncing-ball dynamics we exclude this phe-
nomenon from the current consideration for the sake of
clarity. If r; 0 we can expand the right-hand side of
Eq. (4) up to the quadratic term [linear approximation
gives the trivial result v; —v, (0;)] and we obtain

1+ [A/2(l + k)] cos 0,

provided that 0; is not too close to 0i (if it is, then higher
terms are needed but still 0; must be kept aut af the
interval [0i, 02] ). Inserting Eq. (6) into (3) we get

tip+ y ~ kttg

where the relative velocity of the ball with respect to the
vibrating surface is u; = v; —[A/(I + k)] sin 0; . Equations
(6) and (7) mean that whenever the trajectory visits the
neighborhood of such a point (v;, 0;) for which r; 0,



43 ANOMALOUS CHAOTIC TRANSIENTS AND REPELLERS OF. . . 4233

~~

4

4~

n
1000

FIG. 2. Distribution of life times InM(n) vs number of
iterations n for A = 4.95. Number of initial points M0 ——600
Ãq (I)l.

we observe a sequence of points (vz, rz) monotonically
converging to the limit (v, (0), 0), where 0 = 0; +

& r;+z . The limit point (v, (0), 0) has a simple phys-
ical meaning. Namely, the jumping slows down and
the ball finally stops on the vibrating surface in con-
tact with it until the phase 0& is again reached. This
standstill is the system's natural ground-state attractor,
which is observed both in computations as well as in
experiments. In practical computation the sticking
to the surface takes place when 7; reaches some small,
finite number b.

Before the system starts to approach its ground state
it may evolve over a long time in a complicated way.
Figure l(a) gives an example of a single trajectory. It-
erations of the map (3) and (4) are ended when 7; be-
comes less than b = 0.01. Starting from another initial
point we can observe a trajectory which usually has a
very difFerent duration. In order to determine the dis-
tribution of lifetimes we take a large number of difFerent
initial points uniformly distributed on the (u, 0) plane
and iterate each of them as long as 7; ) b. As can be
seen in I"ig. 2 the resulting distribution satisfies the ex-
ponential law of Eq. (1) very well, with the mean life-

time p —1350. This value of y is relatively large, but
excellent, agreement with Eq. (1) may suggest that we

are dealing with a typical chaotic transient. Therefore
at the next step we try to find a chaotic repeller which
could be responsible for the existence of this transient.
However, we find a repeller which certainly does not look
typical. In order to be sure that its anomalous properties
are not caused by any particular numerical method used
in generating the repeller, we construct it by three difFer-

ent independent procedures: by the ensemble method,
by the proper interior maximum method with three line-
segment points (the PIM triple procedure), and by the
method of overlapping stable and unstable manifolds of
a saddle.

In the ensemble method we plot many trajectories re-
sulting from forward iterations (as long as r; ) b) of a
large number of initial points but from each single trajec-
tory we discard the first n~ as well the last n2 iterations;
see Fig. 1(b). In spite of the fact that n2 p, we have
not found any holes transversal to the unstable direction
that are supposed to be characteristic of chaotic repellers.

A similar result is obtained when we apply the PIM
triple method. This procedure was successfully used to
construct repellers in many systems. Strictly speaking
this procedure allows one to generate an arbitrarily long
trajectory which stays arbitrarily close to the true re-
peller. In our calculations we keep the distance e from
the repeller equal to 0.002 (i.e. , for every point obtained
by means of PIM there exists at least one point belong-
ing to the true repeller within the distance smaller than
e). The plot in Fig. 1(c) obtained with this procedure
is consistent with the picture resulting from the previ-
ous method; see Fig. 1(b). Again we do not find any
characteristic repeller holes that would be transversal to
the unstable direction. Comparing the efFiciency of both
methods we see that the former one gives a better result—there are more points plotted in Fig. 1(b) than in Fig.
1(c), although both pictures are obtained with nearly the
same computational time. This is in accordance with
the remark of Nusse and Yorke, " who state that PIM

U

(b)
U)

15—

10—

~4
~ ~ ~ ~

~ ~
~$ %~~~la+

~ ~ ~ 4 ~ ~ ~ ~~ gJ ~
~ ~

~4

~ ~ ~ ~

w~t

SL~8 vmfPiN~~. ~. . , ~~+eene~~HWme -..
) I

6 Bi

FIG. 3. (a) Stable and (b) unstable manifolds of the unstable fixed point (center of small ellipse). We take a small interval
of length 0.02 tangentia1 to the unstable (stable) manifold at point (u', 8'). Next we choose a large number of initial points
m~ (m, ) uniformly spread along the interval(s) aud each of these points is iterated 14 times forward (backward). Additionally,
in the case of the stable manifold we end the backward iterations whenever u; escapes above 15. Here m„= 32000 and
m, = 44000.
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procedure works better for shorter transients, while the
former method, introduced by Kantz and Grassberger,
is adjusted for longer transients, which is precisely our
case.

At the third check we construct the repeller through
intersections of the stable and unstable manifolds of an
unstable fixed point. Both manifolds are shown in Fig.
3. They are obtained by forward (backward) iterations
of the primary (inverse) map. As initial conditions we

choose a large number of points spread along unsta-
ble (stable) direction in the close vicinity of the one-
impact period-1 saddle point (v*, 0') = (2x, x —P), where
sin P = (1 —k)2'/A. The overlap of these two manifolds
is shown in Fig. 1(d). The seemingly existing narrow
gaps transversal to the unstable direction are not a real
eA'ect but a result from a finite number of initial points
for the stable manifold calculation. This was checked by
plotting a few extra intersections for an increasing num-
ber of points. This caused a systematic decrease in the
widths of these gaps, which allows us to conclude that
the gaps result from a finite statistics. Besides this small
difference Fig. 1(d) is fully consistent with Figs. 1(b) and
1(c) obtained with the two other methods.

We notice that the stable manifold in Fig. 3(a) appears
to be very "dense" and one can expect its capacity dimen-
sion to be close to 2. This can be checked independently
by investigating the structure of the basin boundary. The
basin boundary is a stable manifold of the saddle point
separating the coexisting attractors. Consequently the
basin boundary embodies the nontrivial repeller. Our
conclusion of the non-double-cantor-type repeller would
be consistent with the fact that the stable manifold is a
nearly two-dimensional band practically embodying the
unstable manifold. For A = 4.95 the lowest phase-plane
attractor coexisting with the self-reanimating mode is the
once-bifurcated Zaslavsky-Rachko mode of the two-
impact period-6 type. A practical computational prob-
lem is that the boundary is so densely tangled that the
distinction of borderlines is really an arduous task. In
Fig. 4 we have demonstrated this difhculty by blowing
up the seemingly solid black basin. By using various re-
fined grids (10 vertical steps) x (10,50, 100,1000 horizontal
steps) on the same region [Au, 40] = 0.01 x 0.5 at around
the lower left corner u = 16.7, 0 2.56, more and more
striped borderlines emerge out of the black (Fig. 4). To
analyze quantitatively the quality of the stable manifold
we have calculated the uncertainty exponent o. by the
method of Grebogi and co-workers. First we iterated
500000 points on a regular grid with Do = 10 on one
horizontal line 2.56 ( 0 ( 3.06, u = 16.7. Despite this
amount of points we could not produce more than about
20000 borderlines out of the black region. Conceivably
this small 4% yield may increase the error bars in the
calculation. The size of the uncertainty region was cal-
culated as a function of the initial condition inaccuracy
n x AO up to four decades (n = 10 ) consistently giv-
ing the value n 0.15 for the slope. This corresponds
to the basin boundary box dimension D~ 2 —0.15
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FIG. 4. A stripe of the basin structure at A = 4.95,
(2.56, 3.06), u g (16.7, 16.71). The black and white de-
note the basin of the self-reanimating mode and the tmo-
impact period-6 mode [a once-bifurcated Zaslavsky-Rachko
mode (Ref. 16)j, respectively. To show the structure inside
the seemingly solid black basin four refinements of the hori-
zontal grid are made: from the top 10, 50, 100, and 1000 steps,
respectively, are included in the calculation. The vertical grid
contains 10 steps.

= 1.85 . The constant emerging of borderlines out of the
black (Fig. 4) together with the high boundary dimension
indicate that the unstable manifold is nearly embedded
in the stable one and their intersections, i.e. , the repeller
points, must lie on the unstable manifold very densely.
This again lends support to the conclusion that the asso-
ciated repeller has no transversal holes and consequently
no double-cantor structure.

It should be emphasized that the stable manifold
touches the unstable one tangentially (Figs. 3 and 5) in a
vast region of the phase plane and for wide ranges of the
control parameter A: not only at peculiar isolated val-
ues of A but inside the whole investigated range 4.9 & A( 8.5 . Such a situation is well known for typical non-
hyperbolic attractors, but is anomalous for repellers. V~e

conclude that the bouncing-ball model is a paradigm of
systems exhibiting repellers with strong nonhyperbolic-
ity. A similar anomaly also arises in the familiar Henon
map for the parameter ranges that are slightly diferent
and possibly less explored than the conventional ones.
Consequently the present results should be a warning
against a straightforward use of such powerful methods as
the thermodynamic formalism and the cycle expansion in
chaotic transient studies. Moreover, qualitatively similar
pictures showing strong tangencies in invariant chaotic
sets were recently detected also in a EIamiltonian system
of the chaotic scattering. Therefore it remains an open
question what one should call a "typical" chaot, ic repeller
and whether the "anomalous" properties of chaotic tran-
sients found here are at all exceptional. For the strange
attracting sets a generic example is the Henon map at its
classical parameters rather than the strictly hyperbolic
attractors of the baker's map. Maybe the situation for
typical repellers is not so complex and maybe most of
them are hyperbolic, but certainly one should be aware
of the possible diKculties.

It is interesting to notice that the high value of D~



43 ANOMALOUS CHAOTIC TRANSIENTS AND REPELLERS OF 4235

~ ~

(b)

12

~ ~

12—

~ ~

~ ~ ~

10 — * ~ ~

10 —.

4.0

~ r

I

4 5 5.0 4.0
I

4.5 5.0

FIG. 5. Enlargement of one of the regions on (u, 8) plane, where the (a) stable and (b) unstable manifolds are tangential.

in a wide range of A is not the only unexpected fea-
ture of the basin boundary in the bouncing-ball dy-
namics. In Fig. 6 we present a kind of smooth-fractal
metamorphosis of the black-white boundary between
the permanent mute mode (7; = 0) and two-impact
period- 1 mode basins for a representative A. More-
over, in both structures we have an infinite number of
accumulating black bands exhibiting both smooth [Fig.
6(a)] and fractal [Fig. 6(b)] black-white boundaries. No

gray-black boundary exists. With increasing control the
bands first increase, but finally the fractal fingers of the
basin boundary suddenly intrude in the basin diminish-

ing its size drastically. This behavior is important in the
technical safety analyses of the stable motions against
d isturbances. We will return to these questions in a fu-
ture report. 2 Finally, we note that this geometry (Fig. 6)
is very similar, at least up to the first few magnifications,
to the truncated fractal and nonfractal structures found
recently in the driven pendulum and in the Josephson

junction, respectively.
Finally, we want to discuss one anomaly found here

in the present study of chaotic transients. At a brief
glance the absence of the double-cantor structure of the
repeller does not seem to be so exotic. Namely, if even in

an ordinary case we would choose the control parameter
suKciently close to and beyond the critical value A, of
the boundary crisis, the resulting repeller would have an
arbitrarily long mean lifetime [Eq. (2)] and the possible
transversal holes could be made arbitrarily narrow. Con-
ceivably this would be the case only in the limited neigh-
borhood of the critical control ~ Moreover, for an ordinary
chaotic rep eller we would find diminishing lifetimes and
wider transversal holes by increasing the control. On the
contrary, in the present anomalous dynamics the calcu-
lated mean lifetime p is an increasing function in a wide
range of A as is evident from the plot in Fig. 7. Physically
this can be understood as follows. The shapes of the sta-
ble and unstable manifolds in the subregion of a small
relative velocity n;, where sticking to surface takes place,
do not change significantly with the increase of ampli-
tude A. Simultaneously the unstable manifold occupies
the regions of larger and larger u; . Consequently a single
transient trajectory spends more and more time far from
the regions where 7.; ( b and where Eqs. (6) and (7) are
valid. Therefore we observe an increasing dependence of
the mean lifetime y on the amplitude A; see Fig. 7.

In conclusion, we have demonstrated th at the
hyperbolicity, the double-cantor structure, and the
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FIG. 6. (u, 8) basins at (a) A = 2.604 and (b) A = 2.79.
The lower left corner coordinates (u, 8) are (a) (4.768, 5.36)
and (b) (4.687, 5.52). The white, gray, and black denote
the basins of the mute mode, one-impact period-2 Zaslavsky-
Rachko mode, and the exotic two-impact period-1 mode, re-
spectively (Refs. 15 and 16). Both black basins exhibit an
infinite number of narrow bands accumulating at the gray
boundary. Irrespective of the infinite number of the border-
lines the black-white boundary is (a) smooth or (b) fractal.
No black-gray bound ary exists.

FIG. 7. Mean lifetime p vs control parameter A. For each
value of A we have Mu = 250 [see Eq. (1) and Fig. (2)j.
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monotonously decreasing dependence of the transient
mean lifetime on the control beyond the boundary cri-
sis, which are supposed to be characteristic features of
ordinary chaotic repellers, need not be generally valid.
The present study of a realistic mechanical system, the
bouncing-ball model, gives a paradigm of such an anoma-
lous chaotic transient dynamics.
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