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Dimensionality dependence in the singular dynamic scaling in the dilute Ising model
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The relaxation time r and the thermal correlation length gr in randomly diluted Ising magnets
near the percolation threshold are related by the singular dynamic scaling 1nr= f(lngr), where
f{x)=Ax +Bx+C, with constants A, B,C. We investigate the dimensionality dependence of A

by Monte Carlo simulation and compare our observations with the theoretical predictions.

f (y) =zy +const, (2)

where the temperature-independent constant z is called
the dynamic exponent. The numerical value of z depends
not only on the space dimensionality d of the system but
also on its dynamics. The dynamic universality class to
which a system belongs depends crucially on the ex-
ponent z. In this paper, we are concerned with the nature
of dynamic universality in a particular critical
phenomenon in a class of random magnetic systems.

Theoretical activities in this field were triggered by the
inelastic neutron scattering study of the site-diluted anti-
ferromagnet RbzCo Mg, F4 with Co concentration p
near the percolation threshold p, . This system is a physi-
cal realization of (effectively) two-dimensional random Is-
ing antiferromagnets where nonmagnetic Mg ions sub-
stitutionally replace a fraction of the magnetic Co + ions.
Fitting the experimental data for the spin relaxation time
to the standard form (1) of dynamical scaling, Aeppli,
Guggenheim, and Uemura obtained z =2.4, which is
much larger than the theoretically expected value
z=1.67. Attempts were made to reconcile theory
with experiment by incorporating the fractal nature of
the percolating clusters within the formalism assuming,
however, that the standard form (1) holds near the bicriti-
cal point p =p„T=O. On the other hand, subsequent
theoretical works claim that the standard form (1) of
dynamical scaling breaks down at the bicritical point in
randomly diluted systems of interacting Ising spins and
the appropriate form is given by

f (y)= Ay +By +C, (3)

The dynamic scaling hypothesis states that as the tem-
perature T of a system approaches the critical tempera-
ture T, the relaxation time ~ and the corresponding
thermal correlation length gT are related through the
generalized dynamical scaling relation

Inr =f(lngT ) ( T~ T, ),
where f (x) is a function of its argument x. In most of
the critical phenomena studied so far ~ follows the "stan-
dard" form, ' viz. ,

where z'=( A Ing+B)~ ao as g~ oo.
Experiments at lower temperatures have been designed

for testing this claim. However, already there are strong
direct evidences in favor of the form (3) from Monte Car-
lo (MC) simulations. " There are also several indirect
numerical evidences' ' supporting the quadratic form
(3) instead of the linear form (2). It has been conjec-
tured' that the coefficient A in (3) is "universal" in the
sense that it depends only on the dimensionality and that
in d dimension

d(d —1)

2' (5)

where v is the exponent corresponding to the percolation
correlation length g . Our main aim in this paper is to
test the predicted form (5) for the dimensionality depen-
dence of A. The original theoretical treatments ' as well
as the MC simulations in d=2 by Jain ' were carried
out at p =p, so that at all nonzero temperatures

The numerical value of A in d=2 ob-
tained from these MC simulations is in good agreement
with the corresponding theoretical predictions. Howev-
er, to our knowledge, 3 has not been estimated so far in
d= 3 by this method, one of the reasons being the prohi-
bitively large computer time required in this approach.
In this paper we suggest an alternative (and, computa-
tionally, more efficient) method for estimating A. We es-
tablish the reliability of this method by computing 2 in
d=2 following this method and comparing its numerical
value with the corresponding value obtained earlier by
Jain. Then analyzing the existing MC data of
Chowdhury and Staufter" by the method proposed here
we also get 2 in d=3. Finally, using the values of 2 thus
obtained in d=2 and 3 we test the validity of da Silva and
Lage's conjecture, viz. , Eq. (5).

Let us now brieAy describe our method of computing
the relaxation time. The d-dimensional system simulated
consists of L" lattice sites with periodic boundary condi-
tions where a fraction pL" of sites are randomly occupied
by Ising spins. For a given p, we take the temperature T
of the system as that given by the relation

where 2, B, and C are constants.
Equation (3) corresponds to a temperature-dependent

effective dynamic exponent A Ing+B, i.e. ,

—2J/k~ T pe
pc

(6)
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0.86
1.66

Vp

1.33
0.9

2 (MC)

0.48
2.05

3 (Ref. 17)

0.75
3.33

TABLE I. MC estimate of 2 vs theoretical prediction.
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FIG. 1. ln~ for the DIM on a square lattice plotted against
ln(p, —p}. The curve is the best quadratic fit to the data.

We shall later use the fact that gT ——g along the curve
(6). Beginning with a configuration where all the pL"
spins are up we monitor the magnetization per spin m (t)
as a function of time t as the system evolves following the
Glauber single-spin-fiip dynamics. If m(t) vanishes for
time of the order of to, we stop the simulation after a
time t, ))to. The relaxation time ~ is then computed
from the definition

max

t=o
m(t) .

Most of the data were generated for 50 X 50 systems using
a main frame VAX 11/780 computer at the Jawaharlal
Nehru University (JNU). A few data points were ob-
tained for 100X100 systems using a CONVEX vector
computer at the International Centre for Theoretical
Physics (ICTP), Trieste. Since no significant di6'erence in
the values of ~ for L =50 and 100 was observed, we have
not attempted systematic study of the L dependence, if
any, of ~. Each of the data points shown in Fig. 1 was
obtained by averaging over a large number (typically 50)
of impurity configurations. The relaxation times ~ for
both d=2 and 3 were found to fit well with the expres-
sion (see Fig. 1)

In'= A '[In(p, —p )] +B'[In(p, —p)]+C',
where 3 ', B', C' are constants.

As mentioned earlier, the singular dynamical scaling
form (3) was originally derived under the condition

gT (g = oo whereas gT=g~ throughout in our simula-
tion. Therefore, instead of arguing that (8) follows from
(3) when gT —-g, we refer to Henley' for a derivition of
Eq. (8) directly under the conditions of our simulation. It
follows that

3'=Av

where A is the constant given in Eq. (3).
The numerical values of 3 ' for d=2 and 3 are listed in

Table I. From these values of 2 and the known values of
v from the literature, the numerical values of the con-
stant 2 have been computed in d=2 and 3; these values
are compared with the corresponding values of
d (d —I )/2v in Table I. Our estimate in d=2 is in good
agreement with that predicted by Harris and
Stinchcombe as well as with the MC estimations of
Jain. The real-space renormalization-group (RSRG)
technique used by da Silva and Lage' yields a much
larger value of v than the known exact value in d=2.
Substituting the value of v obtained from this RSRG
analysis into Eq. (5) they obtained A (d=2) =0.614 which
is not too far from the earlier MC estimates. However,
Eq. (5) actually provides a much worse estimate if one
uses the exact value v =—', in d=2 (see Table I). Our re-

sults convincingly demonstrate that da Silva and Lage's
conjecture, viz. , Eq. (5) is incorrect. Finally, we would
like to point out that our MC data indicate
A'(d =3)=23'(d=2) and A (d =3)=42 (d=2). We
hope that our observations would stimulate further
theoretical work on the nature of universality in singular
dynamic scaling.
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