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It is argued that phase transitions in finite systems are likely to exhibit level statistics ascribed to
quantum chaos. Apparent counterexamples become chaotic under generic perturbation. The
mathematical mechanism for this to occur lies in the abundance of exceptional points in the transi-
tional region. Exceptional points are singularities in the complex A plane of the spectrum E,(A),
where A is the parameter that effects the transition. Examples are given for illustration. It is shown
that the quality of the mean field is unaffected outside the transitional region whether or not the
transitional region is chaotic. Related properties of the eigenvectors are also discussed.

I. INTRODUCTION

Classical systems that are nonintegrable show generi-
cally chaotic behavior. The quantum energy levels of
such systems, if they can be straightforwardly quantized,
exhibit particular patterns that are denoted as quantum
chaos.! If a classical system is integrable it is usually due
to symmetries of the Hamilton function giving rise to first
integrals. When the symmetry is perturbed chaotic
motion can set in. The question arises whether a corre-
sponding pattern prevails in quantum mechanics.

The occurrence of energy-level statistics which are as-
cribed to quantum chaos? has been reported in a number
of cases relating to symmetry breaking. A particularly
well-studied situation is the problem of the hydrogen
atom in a strong magnetic field.>* There the transition
from the regime of the Coulomb potential to that of a
two-dimensional harmonic oscillator causes the energy
levels to obey essentially the Gaussian orthogonal ensem-
ble (GOE) statistics’ for an intermediate range of A
values. Since in this case the classical analogy is known
to be chaotic, the corresponding quantum-mechanical
features are expected. However, in quantum-mechanical
problems where the classical analogy is not easily at
hand, the question arises whether GOE statistics of the
energy levels, if they do occur in the transitional region,
are a generic pattern or just flukes of some particular ex-
amples. Situations of particular interest are phase transi-
tions of finite systems where a transition from one sym-
metry of the Hamiltonian to another is usually encoun-
tered.>

In formal language, the spectrum E, (A) of the Hamil-
tonian H,+AH, is investigated. If the symmetries relat-
ing to Hy and H, are incompatible or simply if the two
operators do not commute, there is a transitional region
of A values where the level statistics may or may not
display the characteristics of quantum chaos. The pre-
cise patterns, such as the energy ranges for which the
GOE statistics are established at a particular A value,
vary strongly from case to case. A general understanding
does not seem to be available. It is not even obvious
whether or not the different symmetries relating to H,
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and H, are responsible for bringing about possible GOE
statistics of the levels E,(A) at some range of A values.

In this paper we attempt to address this problem from
a different viewpoint. It is accepted that quantum chaos
is intimately connected to avoided level crossing. We re-
call that in a finite quantum system the phase transition is
characterized by a transitional region where much level
repulsion occurs. An example from nuclear physics of
such a phase transition is the transition from a spherical
to a deformed nucleus. When A is sweeping over the
transitional region the spectrum becomes soft, i.e., the
gaps between the levels become narrow while they are
wider for A values smaller or larger than those of the
transitional region. Here the signature of avoided level
crossing is encountered on a large scale which is nicely
demonstrated in the Lipkin model’ revisited below. The
crucial aspect of a phase transition is the dramatic
change of the ground-state structure and that of the ex-
cited states which is in turn closely related to the oc-
currence of avoided level crossing. The mathematical
mechanism which connects the two features, avoided lev-
el crossing and structural change of the states, lies in the
exceptional points of the Hamiltonian.®

Exceptional points are singularities of the functions
E,(A). Generically they occur in the complex A plane at
complex conjugate values. They are associated with
avoided level crossing.” That they are essential for the
occurrence of a phase transition of finite systems has been
discussed previously.!!! Whether or not the transitional
region gives rise to level statistics relating to quantum
chaos depend on the distribution of the exceptional
points and the shape of the energy spectrum is of a simi-
lar nature to the connection between the poles of a
scattering function and the resonance structure of the
cross section. In the same way as the poles of the scatter-
ing function give rise to the shape of the cross section,
the exceptional points bring about the shape of the spec-
trum, particularly the occurrence of avoided level cross-
ing. It is this aspect which forms the major aim of this
paper.

We restrict ourselves to finite-dimensional H, and H,
as for this case the analytic structure of the functions
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E, (1) is well understood.” We do not believe that this is
a crucial restriction since in all practical calculations the
problems are eventually reduced to finite-dimensional
matrices. We arrive at conclusions being guided by ex-
amples which we believe are relevant and significant al-
though at this stage our conclusions are by and large
empirical.

To render the paper self-contained we repeat some of
the results of earlier works.*° 12 The following section is
devoted to the discussion of exceptional points. This con-
stitutes the more formal and hence the more rigorous
part of the paper. In Sec. III we present results of partic-
ular examples. Aspects of mean fields and perturbation
methods are discussed in Sec. IV while certain properties
of the state vectors are discussed in Sec. V. The paper
ends with a summary and a discussion.

II. EXCEPTIONAL POINTS

We assume that H, and H, are N XN real symmetric
matrices. For the purpose of this paper we assume that
the spectra of both operators are regular, i.e., without
fluctuations.” We use the representation in which H, is
diagonal. The spectrum E,(A) of H; =H,+AH, is ob-
tained from the roots of the secular equation

det(E —H,)=0 . (1)

Exceptional points are the points A where two different
roots coalesce.®'>!* This implies the additional simul-
taneous equation

d
JE det(E —H,)=0. (2)
If we assume that H, is irreducible with respect to sym-
metries, the fulfillment of the two equations simultane-
ously is generically excluded for real A as this would
mean a genuine degeneracy of two levels. In turn, there
are always complex solutions. In fact, the two equations
are polynomials in E (and A) of Nth and (N —1)th order,
respectively. The variable E can be eliminated!® to yield
a polynomial of order N(N —1) in A.'® Since the
coefficients of the polynomial are real, the solutions, i.e.,
the exception points, come in complex conjugate pairs.
When taking the real and imaginary parts of Egs. (1)
and (2) separately the two equations above are four real
equations for the four real solutions Re, Im, ReA, and
ImA. A coalescence of two roots of Eq. (1) as enforced by
Eq. (2) will therefore not allow an additional condition.
We expect generically

2
dE?

which excludes coalescence of three roots of Eq. (1). We
also expect generically

det(E —H, )#0 3)

d ’
5 det(E —H;)#0 (3"

at the points where Egs. (1) and (2) are obeyed. As a
consequence, the polynomial
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N
[IE —E,(A)]=det(E —H,) 4)

n=1

vanishes linearly in A at the exceptional points. This im-
plies that, if E,(A) and E,, (A) coalesce at the complex
value A, and assume there the (complex) value E,, they
must have the form

E,(M)=E,+ § c(VA—A)k .
k=1

(5)

E,(MV=E,+ 3 co(—VA-T k.
k=1

Only then can be the determinant have a simple zero in A
and a double zero E and be regular in E and A. The ex-
pansions in Eq. (5) have a finite radius of convergence
which is determined by the next-nearest singularity.
From Eq. (5) we conclude that E, and E,, are the value
of one analytic function on two Riemann sheets which
are connected by square-root branch points at A, and, be-
cause of the reality condition, its complex conjugate
value A,.

The N(N —1)/2 complex conjugate pairs of exception-
al points connect analytically all possible pairs E; and E,,
ik of eigenvalues. In other words, the N eigenvalues
are the values of one analytic function (which is not ex-
plicitly available) on N different Riemann sheets. The
natural numbering of the levels is given by the order
E, = -+ =Ey on the real A axis.

Of physical interest is the effect of the singularities
upon the spectrum for real values of A. The coalescence
of two adjacent levels at the complex values A, and A,
signals avoided level crossing at A=ReA.. The further
away the next pair of singularities is, the better this ap-
proximate relationship is obeyed.'? It is exact for N =2
no matter how far away A, from the real axis. In other
words isolated singularities behave locally like a two-
dimensional problem. For N >2 it is important to keep
in mind the sheet structure connecting the N levels:
when two exceptional points A\ and A\?’ are near to each
other or even coincide, their mutual influence with regard
to the spectrum is immaterial if they lie in separate
sheets. If E; and E,, coalesce at Al and E, and E, ,,
at A2, ik, the two have no effect on each other even if
AMP=A>_ Hence only if they lie in the same sheet and
are near to each other, can they have an effect on avoided
level crossing in that the relationship A=ReA, is invali-
dated. In this case it is necessary and usually sufficient,
to study the appropriate three-dimensional situation
which is locally equivalent.!> To ascertain the pair
(E;,E;) that is connected at a particular branch point
one has to follow a path in the A plane from the real axis
to that particular exceptional point where only two of the
E, will coalesce. While the pair (i,k) so determined will
depend on the path chosen,'? the path of physical interest
is that of least distance to the real axis. In this way, the
shape of the spectrum as a whole and, in particular, its
statistical properties are determined by the positions of
the exceptional points together with the corresponding
sheet structure.
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There must be strong correlations among the
N(N —1)/2 complex conjugate pairs of exceptional
points. While their positions are determined by
N (N —1) real parameters, the problem as such contains
only N?/24+3N/2 parameters [N from H, and
N+N((IN—1)/2 from H;]. As a consequence, for
sufficiently large N any perturbation of either H, or H,
will affect the positions of all exceptional points, i.e., the
spectrum as a whole: there is no combination of parame-
ters that could affect one or only a few of the positions of
the exceptional points. In the following section we shall
see that many exceptional points can lie near to the real
axis in models describing phase transitions. Motion of
these singularities will cause great sensitivity of the an-
ticrossing levels and corresponding state vectors since, by
Eq. (5), the derivative of the anticrossing levels with
respect to A is infinity at A, and thus large in its vicinity.
Anticipating at this stage our conjecture that the transi-
tional region of a phase transition exhibits generically
quantum chaos, we expect by this mechanism a high local
sensitivity under perturbation as a signature of quantum
chaos. In turn, the global statistical properties will be
stable under perturbation.

Except for the last few remarks in the previous para-
graph, the presentation of this section is general. In Sec.
III we illustrate the relevance of our insights for the oc-
currence or absence of quantum chaos.

III. EXAMPLES

A. The Lipkin model perturbed

As one demonstration of physical interest we present
results obtained from a particular perturbation of the
Lipkin model.” In its simplest form the Lipkin Hamil-
tonian reads

A
N—1

with J;,i =x,y,z being the N-dimensional representations
of the SU(2) operators. The Lipkin model is of the form
Hy,+AH, with H, being a tridiagonal matrix. The model
simulates nicely the essentials of a phase transition of a
finite system. The spectrum shows no fluctuations!® after
proper unfolding, not even in the transitional region
which lies at about A=1.0 for sufficiently large N. The
larger N, the narrower the transitional region. We now
investigate instead the modified problem H, =H,+AH,
where H,=UH,U~' with U orthogonal. This
modification leaves the spectrum unchanged before the
phase transition (A=0 and vicinity) and after it
(A>>1.0). The eigenfunctions before the phase transi-
tion are left virtually unchanged while after the phase
transition they are subjected to the transformation by U.
The physical motivation for the particular modification
of the model lies in the turning on of couplings between
states that are uncoupled in the plain model, i.e., in ad-
mitting higher correlations. In a sense, we make the
model more realistic by the transformation H;—H,.
Since, for the purpose of this paper, there is no point in
trying to determine values of such coupling matrix ele-

H,=J,— (JI—=J2) 6
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FIG. 1. Schematic representation of the positions of the ex-
ceptional points of the plain N-level Lipkin model (further ex-
planation in text, Sec. ITI A).

ments, we chose them at random. In other words, the
N (N —1)/2 angles which determine U are taken at ran-
dom from the interval [ —¢y, @,]. Since the perturbation
is assumed to be small, the value of ¢, must be small. It
turns out that N¢3 <0.1 suffices to ensure that the over-
lap {Uw;|4; ) >0.9 when 1, is the ith eigenvector of H,.
This overlap indicates the extent to which the state vec-
tors are modified by the perturbation beyond the phase
transition (A >>1).

For demonstration we illustrate schematically, in Fig.
1, the exceptional points of the unperturbed Lipkin mod-
el. The high symmetry of the plain Lipkin model is
reflected in the symmetrical arrangement of the excep-
tional points: each exceptional point denoted in the plane
represents the coalescence of two singularities which,
however, occur in different Riemann sheets. On the
imaginary A axis each point represents only one excep-
tional point. We discern N /2 groupings of exceptional
points. Starting from the real A axis and moving to the
imaginary A axis, the first group (squares) connects
the levels (1,2) and (N—1,N), (2,3) and
(N—2,N—1),...,(N/2,(N/2)+1). The second set
(circles) connects the levels 2,3) and
(N—2,N—1),...,(N/2,(N/2)+1) and so on until we
reach the N /2th group which consists of one exceptional
point connecting the levels (N /2,(N/2)+1) (dot). In
Fig. 2 trajectories are plotted for N =6 when a particular
random set of the 15 angles is turned on from zero to
¢0=0.2. While the U =1 the exceptional points are posi-
tioned very symmetrically, after perturbation the end-
points appear scattered around. This is reflected in the
change of the spectra. We show in Figs. 3(a) and 3(b) the
lower levels of the spectra for N =400, when U =1 and
¢,=0.015, respectively. Clearly the spectrum is strongly
affected in the transitional region. We recall that it is not
affected far beyond and, as can be seen, at and around
A=0. The state vectors are likewise virtually unaffected
in those regions while they are strongly affected in the
transitional region.
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FIG. 2. Exceptional point trajectories for the Lipkin model
(N =6) when a random set of angles is turned on from zero to
¢0=0.2. The first group of unperturbed exceptional points
(U =1) connect levels (1,2) and (5,6), (2,3) and (4,5), and (3,4) on
the imaginary A axis; the trajectories begin at the squares. The
second group (circles) connects levels (2,3) and (4,5), and (3,4).
The third group (triangle) connects levels (3,4).
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FIG. 3. (a) The lower end of the spectrum of the plain Lipkin
model for N =400. The ground-state energy has been set equal
to zero. (b) The lower end of the spectrum for the perturbed
Lipkin model using random angles ¢, from the interval
[—0.015,0.015]. The spectrum remains unaffected in the vicini-
ty of A=0.0 and for A >>2.0.
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FIG. 4. The nearest-neighbor distribution for the perturbed
Lipkin model. The data present an average over ten A values in
the transitional region. The data are in good agreement with
the GOE statistic.

While the spectrum of the plain Lipkin model is strict-
ly harmonic after proper unfolding, the perturbed model
exhibits, in the transitional region, fluctuations charac-
teristic of quantum chaos. In Figs. 4 and 5 the nearest-
neighbor distribution and the A;(L) function are
displayed. The results are obtained as average values of
ten A values in the transition region between 1.04 and
1.76. The averages are taken to improve the statistics. In
this context we report that the correlation between spec-
tra for two different A values decays rapidly with increas-
ing distance of the A values; the correlation length is
about 0.02 for the A range considered. In support of our
claim that the level statistics are of the GOE type, i.e.,
the statistic is independent of A over the A range con-
sidered, we compared the second and third moment of
the level distances and found them in good agreement
within the statistical error. Here we encounter the re-
markable pattern that on the one hand the energy levels
E,, and hence the spacings D,(A)=E, , (AL)—E, (1), are
analytic functions of A which are connected to each other
by the exceptional points. Thus, there is a mathematical
relation between D,(A) and D,(A+AA). On the other
hand the statistical evidence, as established by the tradi-
tional correlation function, yields a rapid decay of the
correlation with increasing AA. This is brought about by
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FIG. 5. The A;(L) values for the perturbed Lipkin model
(N =400). Note the good agreement with the A;(L) function of
the GOE.
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the seemingly random distribution of the exceptional
points producing the spectrum for real A. We believe
that this is the basic mathematical mechanism giving rise
to quantum chaos.

B. Two simplified models.

In the following we report results of two matrix models
for which, in contrast to the Lipkin model, the unper-
turbed problem is trivial in that H, is chosen diagonal.
This means that there are no exceptional points or, we
may say, all complex conjugate singularities coalesce on
the real axis. The unperturbed problems are chosen in
such a way that the spectrum is harmonic in the one case
and obeys Poisson statistics in the other.!”

1. Beginning with a harmonic spectrum

For N even, the unperturbed spectrum is generated by

Hozkﬁk’k'
and (7)
H,= g——k}sk,k,, k=1,...,N

which yields the spectrum E®=k (1—A)+A(N /2) for
A<land E, =k(1—A)+AN/2) for A>1 as illus-
trated in Fig. 6(a). The ith components of the eigenvec-
tors are |k);=8,, for A<1 and |k);=8, 5, _, for
A>1. Similar to the procedure above we now consider
instead H XZHO—HJ? 1- The spectrum of this perturbed
problem looks qualitatively like the one of Fig. 3(b) and
the statistical properties are the same. The difference be-
tween this and the perturbed Lipkin model lies in the
much higher sensitivity of the present case. The value
¢,=0.003 is sufficient to turn the single line in the next-
nearest neighbor distribution into a Wigner curve. Ac-
cordingly tiny are the changes upon the state vectors for
A>>1. For N =400 and ¢, as indicated U4, and 9, are
indistinguishable for practical purposes. It should be
noted that in the limit of very large N, the spectrum of
the Lipkin model of Sec. III A becomes more and more
similar to the present matrix model in its unperturbed
form. This is related to the fact that the exceptional
points of the unperturbed Lipkin model move towards
the point A=1 for N— . In the present model the ex-
ceptional points emerge from this point under peturba-
tion.

2. Beginning with a spectrum obeying Poisson statistics

In this example we generate an unperturbed spectrum,
illustrated in Fig. 6(b), which obeys the Poisson statistic
for the nearest-neighbor distribution. We choose

Hy=kS, 1
and (8)
H,=7 %——k Sipn k=1,...,N

FIG. 6. (a) The unperturbed spectrum of the model in Sec.
IIIB1. In contrast to 3(a) and 3(b) the actual spectrum is
displayed in this and the figure below. (b) A section of the un-
perturbed spectrum of the model in Sec. III B2.

where P(k) is a random permutation of the integers k.
The spectrum is E{”=0(k +AP[(N/2)—k]) where we
denote by o(n (k)) the ordered sequence of the numbers
n (k). The nearest-neighbor distribution of the energies is
a Poisson distribution. The eigenvectors are all of the
form (O -+ 1---0)but their sequence is randomly distri-
buted. Only for A>A_,, are they ordered as in Sec.
IIIA 1 and given by |k)=8, i _s; by Ay, we denote
the most right intersection point of the levels. Again we
consider the modified Hamiltonian H }\=H0+7xﬁ - Itis
no surprise that the range of A values where avoided level
crossing occurs is now more extended than in the previ-
ous examples and essentially ranges from A=0 to
A=Apn.x The nearest-neighbor distribution for A=1 and
¢,=0.05 is in good agreement with the GOE statistic for
N =400. For smaller values of ¢, the distribution lies be-
tween the Poisson and Wigner curve. Note that the value
chosen for ¢, implies that the state vectors are changed
significantly also for A>>A_,,,, in contrast to the previous
examples. We will return to this point in Sec. V.

IV. MEAN FIELDS
AND OTHER APPROXIMATION METHODS

The Lipkin model and its extensions have served as a
testing ground for various approximation methods.'®!®
It is accepted that the mean-field approach with or
without projection performs well outside, but not within
the transitional region.?° This applies equally to the ap-
proximate calculation of excited states via the random-
phase approximation.

The Hartree-Fock ground state in the Lipkin model is
given by
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2i1/Jy

|¢HF>=e 10) 5 9)

where |0) is the noninteracting ground state, cos2A=1
for A <1 and cos2A=1/A for A= 1. These are the values
that minimize

Eyp(y)={t¢yplH; |¥ye)

N AN 2
= — — —_—— 1_
> cos2y 2 (1—cos2y)

(10)
with H, given by Eq. (6). It is expected that the

Hartree-Fock approximation is not greatly affected by
the perturbation H, —UH,U ! outside the transitional
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first order in the angles. Up to linear terms in the angles

we have the perturbed Hamiltonian
A .
HA:Jz_m{(J§"J§)+I¢'[R’J3_Jf]} (11)

where the vector product runs over all the N(N —1)/2
angles associated with the corresponding generators in N
dimensions

iR/iZ;:f’k,sSl,z_m,z&Ls
s=1,...,N—1,

(12)
t=s+1,...,N

and [, ] denotes the commutator. To get the additional
Hartree-Fock contribution we have to sandwich the com-

region as long as the angles in U are sufficiently small. mutator between the Hartree-Fock state. After some
Explicit expressions can be obtained for the energy to algebra we obtain
J
; st g2 2 — N 2 2 . —2iyJ 2iyd
i{Pyupl [R®,TI—JI] | Yup) =2V'N (cos*y —sin?y Jcosy siny[(e MNsle” ) = (sot)]
+2VIN(N + Deosyl(e '), (2, —(s1)] . (13)
The N-dimensional representation of the matrices exp(2iyJ, ) are well known,?! we have for instance
172
—2iypd, 2iyd - (N —1) 1, . _
(e Ms=(e" )= !m (cosy )* ~Usiny )N 5. (14)

The (2,s) and (3,s) elements are likewise polynomials in
the trigonometric functions with two and three terms, re-
spectively. The additional contribution towards the
Hartree-Fock energy is minute for two reasons: (i) The
powers of cosy are nonzero (s > 1) which can give a sub-
stantial contribution from exp(2iyJ,) only for y =0; (ii)
the angles ¢’ are chosen to be small. As a consequence,
for A>1 where y >0 the HF contribution is immaterial;
for A <1 the solution for the energy minimization yields
again cosy > 1 as it does for the unperturbed case where
all ¢! vanish. We conclude that only at the transitional
point could the additional term have a possible influence
upon the solution; it is not expected that this can improve
the quality of the mean-field approximation. The crucial
point is that before and beyond the phase transition the
mean field, and thus also its performance, remains
unaffected. This applies also to excited states when cal-
culated via the random-phase approximation. It confirms
the fact that the order prevailing in these regions is not
disturbed by the perturbation while, in contrast, the high
instability against perturbation is manifested in the tran-
sitional region where the mean-field approximation fails.
We mention the more involved generator coordinate
method. It can be implemented exactly'® for the plain
Lipkin model because of the high inherent symmetry of
the model. The symmetry is also reflected in the pattern
of the exceptional points as sketched in Fig. 1. Note that
the perturbation completely destroys the symmetric pat-
tern of the exceptional points and it is obvious that all the
advantages of the method disappear by the perturbation.
We belive that our findings are symptomatic for nu-
clear structure calculations. The success of approxima-
tion methods including the concept of collective states is

due to an order that is stable under perturbation. This
situation is associated with exceptional points which are
remote from the parameter range of interest. In turn, a
transitional region is necessarily connected with many ex-
ceptional points in the immediate vicinity of the real pa-
rameter values under consideration. They bring about
high sensitivity under perturbation. The instability can,
in principle, be so pronounced that only statistical infor-
mation can be extracted eventually from spectra and ma-
trix elements as it is this type of information that is
stable: this is the signature of quantum chaos. In this
context we stress that the regular behavior of the plain
Lipkin model is similarly nongeneric as is, say, the classi-
cal harmonic oscillator in more than one dimension. A
generic perturbation of either case leads into the chaotic
regime. Yet there is an important difference: the
quantum-mechanical transition from regular to chaotic is
smooth, albeit dramatic, when the perturbation is turned
on; classical systems switch from chaotic to regular be-
havior usually at isolated points of the relevant parame-
ter.

V. EIGENSTATES

The effect of the exceptional points upon the spectrum
is reflected in the effect upon the eigenstates. Let us
denote by W,, ,(A) the orthogonal matrix which diago-
nalizes H,. It is an N-dimensional rotation which is
characterized by N(N —1)/2 angles. Clearly, W(0) is
the unit matrix while W(w) diagonalizes H,. The
column vectors of W (A) are the eigenvectors of the prob-
lem.
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A level repulsion in a two-dimensional matrix model is
associated with an interchange (and sign change) of the
two corresponding eigenvectors. In an N-dimensional sit-
uation the effect is essentially the same as long as the
complex conjugate pair of exceptional points is
sufficiently distant from further singularities. It can be
viewed as a rotation of the matrix W affecting only two
axes in an N-dimensional space where the angle of the ro-
tation is <|7/2|. When A changes from O to oo the axis
structure (by which we may visualize W) moves from the
initial orientation W(0) to its final orientation W( ) in a
particular way. In general, all possible combinations of
axes are involved in that motion.

Correlation coefficients of the form

N

n 2
zwm,nmwm'n(xﬂm——]l\; zwm,nm]
N 1 N 2
SWon MWy (M) =5 | ZWp, n(R)

were calculated and a pattern similar to that of the corre-
sponding spectrum was found: i.e., if there is a fast decay
of correlations for successive A values in the spectrum,
the same is found for the associated orientations of W(A)
for which the correlation length is 0.005. This is a
reflection of a “whirling” motion of the orthogonal axes
under variation of A. In the transitional region, the
correlation coefficient of W, , (1) is on average ten times
larger for the plain Lipkin model than for the perturbed
Lipkin model (N =400). In the latter case this corre-
sponds to a gentle motion without “wiggles” which is
describable by much fewer parameters as is reflected by
the high [SU(2)] symmetry of the plain model. Outside
the transitional region the spectrum and the correspond-
ing eigenvectors remain appreciably correlated for both
the plain and the perturbed Lipkin models.

In Secs. IIT A and IIIB1 the perturbation needed to
produce occurrence of quantum chaos in the transition
region was so small that the eigenvectors remained essen-
tially unchanged for A >>1. (Note, that they are strongly
affected as A is sweeping over the transition region.) In
other words W(« ) is almost identical for the plain and
perturbed cases. In the mathematical model in Sec.
III B2, where the unperturbed model obeys Poisson
statistics, the transitional region is drawn out and is
much more robust to perturbation. For sufficiently large
values of the angles the level statistics in the transitional
region also obey the Wigner surmise, yet in this case, in
order to obtain this result, W( « ) is significantly different
for the plain and perturbed models. The difference be-
tween these two cases in their response to perturbation
lies in the density of the exceptional points. In the first
instance (Secs. III A and III B 1), the density of the excep-
tional points within the transitional region is large and
hence there is an extreme sensitivity under perturbation
due to mutual influence of the singularities upon one
another. In the second case the exceptional points are
less densely distributed since the parameter range of in-
terest is now extended and thus the effects of surrounding
singularities become less important. While the local sen-

sitivity to perturbation remains unchanged, the global
sensitivity is now reduced with respect to the first in-
stance.

In all cases the level statistics remain unaffected ir-
respective of a further increase in the angles in U, once
the GOE statistics have been attained. Of course the de-
tailed pattern of the spectrum does depend on the precise
form of U, in fact it is a smooth function of the angles.

VI. SUMMARY AND DISCUSSION

Quantum chaos is associated with avoided level cross-
ings. Level repulsion in turn is associated with the singu-
larities of the spectrum E,(A), namely, the exceptional
points of the Hamiltonian H,. In this paper we investi-
gate Hamiltonians of the form H(A)=H,+AH, where
either the symmetries of Hy, and H, are incompatible or
the two operators do not commute. For a certain A range
a transitional region is found. Here avoided level cross-
ing occurs on a large scale and therefore there are also
many exceptional points. Generically phase transition re-
gions are associated with increased level density, this
affects, in particular, the region of our interest, i.e., the
lower end of the spectrum. We conjecture that it is the
distribution of the exceptional points that gives rise to the
occurrence or absence of quantum chaos in the transi-
tional region. Although no quantitative statements are
made in this paper about the actual distribution of the
singularities, there appear to be indications that the de-
tailed nature of the distribution is of lesser importance.
Further investigations focusing, in particular, on the
change from order to chaos, when the angles of U are
turned on, are expected to shed more light onto this as-
pect. It should be noted that determining the precise lo-
cations of the exceptional points is practically impossible
for large systems. However, first attempts have been
made to determine their distribution.’

Insight has been gained about the local sensitivity of
the spectrum and corresponding eigenvectors in terms of
the motion of closely lying singularities. Strong correla-
tions exist between the N (N —1)/2 complex conjugate
pairs of exceptional points. As a consequence, for
sufficiently large N, the spectrum is affected by any per-
turbation of H, or H,. The transitional region is charac-
terized by many exceptional points close to the real A
axis. Any motion of the exceptional points cause great
sensitivity of the anticrossing levels and corresponding
wave functions since, as seen in Sec. III, the derivative of
the anticrossing levels with respect to A is infinity at A,
and thus the variation of the spectrum and wave function
is strongly affected in its vicinity. We conjecture that the
high local sensitivity under perturbation in the phase
transition region is a signature of quantum chaos. A gen-
eric perturbation of the system will cause a redistribution
of the exceptional points, but will not necessarily change
the global statistical properties except for a situation like
the plain Lipkin model. In this context, the absence of
GOE statistics in the transition region of the plain Lipkin
model must be seen as an isolated case reminiscent of the
nongenericity of regular behavior of, say, the classical
harmonic oscillator in more than one dimension. Note,
however, that sensitivity prevails in the plain as well as in
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the perturbed Lipkin model.

The examples in Sec. IIT highlight the relationship be-
tween sensitivity to perturbation and the energy-level
density in the spectrum. It is known?? that the sensitivity
depends on the ratio of the average coupling matrix ele-
ment and the mean level spacing. In Sec. IIB1 at one
value of A the mean level spacing is zero in the unper-
turbed problem and hence the sensitivity to perturbation
is infinite. In Sec. IIIB2 the average level spacing is
finite and constant; accordingly, a comparatively larger
perturbation is required to obtain GOE statistics in the
transitional region. This can be understood in terms of
the accumulation of exceptional points in a narrow win-
dow of the A range in Sec. IIIB1. Due to mutual
influence of closely lying singularities, there is an
enhanced global sensitivity to perturbation. In contrast,
the exceptional point distribution is diluted in Sec.
III B 2, hence there is little mutual influence. Although
local sensitivity to perturbation is retained the overall,
global sensitivity is reduced and a larger set of angles is
required to produce statistics obeying the Wigner sur-
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mise.

In conclusion, the mathematical mechanism connect-
ing the level repulsion and the dramatic change of the
ground-state and excited state structure present in the
phase transition region lies in the exceptional points of
the Hamiltonian. In this region where the mean-field ap-
proximation fails, the positions of many exceptional
points in the parameter range of interest are highly sensi-
tive to perturbation. We conjecture that the signature of
quantum chaos is the resultant pronounced instability un-
der perturbation, which results in statistical information
being the only stable information drawn from the spectra
and matrix elements.
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