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Reformulation of nonperturbative density-functional theories of classical nonuniform systems
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It is shown that most nonperturbative density-functional theories of classical systems can be re-
formulated as second-order truncations of exact perturbative expansions, thus eliminating the ad
hoc nature of such theories. This reformulation is used as a basis for discussion as to why some
theories work better than others when applied to hard spheres, why most theories perform poorly
for continuous potentials, and in what direction they might be modified so as to improve their per-
formance.

I. INTRODUCTION

Density-functional theory (DFT) is an attempt to cal-
culate the thermodynamic properties of inhomogeneous
fluids (in this case including solids) from the known ther-
modynamics of the uniform fluid phase (for a review see
Ref. 1). Such theories divide naturally into two types:
the so-called perturbative and nonperturbative DFT's.
Although providing a qualitative understanding of the
hard-sphere freezing transition, the perturbative ap-
proach has been criticized on the basis of calculations
performed by Cutrin and Baus and Colot which seem to
indicate that the underlying perturbative expansion is at
best slowly convergent. This puts in doubt perturbative
calculations which, for reasons of practicality, necessarily
truncate the expansion at second order. The nonpertur-
bative theories are an attempt to circumvent this
problem by avoiding the perturbative expansion altogeth-
er. To do this, physically motivated ad hoc assumptions
are introduced to render the exact expressions for the free
energy of inhomogeneous systems calculable. Although
this approach has met with considerable success in
describing hard-sphere freezing, it has recently been
shown' '" that most nonperturbative theories fail, to a
greater or lesser extent, when applied to more realistic
potentials. This is not really surprising, and only serves
to exemplify the underlying uncertainty of the nonpertur-
bative approach: since the theories are based on uncon-
trolled approximations, one has no means to predict
when they will work and when they will fail.

A previous paper attempted to address the related
question of why several theories, all with difT'erent physi-
cal motivations, give more or less equivalently accurate
results for hard spheres. The conclusion was that most
nonperturbative theories introduce assumptions which in
one way or another result in the substitution of the direct
correlation function (DCF) of the liquid phase for that of
the solid. On the basis of this elementary observation, a
new theory was proposed, the generalized efT'ective-liquid
approximation GELA, which used this as the only as-
sumption and which was found to reproduce the thermo-
dynamics of the hard-sphere freezing transition to within
the uncertainty of the results of simulation. Some of the

II. NONPERTURBATIVE DFT

We consider a classical system enclosed at the inverse
temperature P = 1/ks T in a vessel of volume V and corre-
sponding to an (average) number of particles ps V, where

pz is the average number density resulting from spatially
averaging the local number density p(r) over the volume
V:

ps= drp r1
(2.1)

Here, any implicit dependence on T and V (of, e.g. , the
local density) will not be indicated explicitly. The quanti-
ty of interest is the (Helmholtz) free energy F of the sys-
tem. We will also denote the free energy per particle as
(5 =F I(pg V).

For a solid, which is our prototype nonuniform system,

other nonperturbative theories were then shown to be
derivable from the GELA given additional assumptions,
thus explaining their similarity. In this paper we go fur-
ther and show that several of the most commonly dis-
cussed nonperturbative theories, including the GELA,
can be derived as truncations of exact perturbative ex-
pansions, thus, in some sense, eliminating the distinction
between "perturbative" and "nonperturbative" theories.
More importantly, the consideration of higher-order
terms in the expansions for the first time provide a basis
for discussing why and when a particular theory will
work. It must be said, however, that the analysis of these
higher-order terms is a nontrivial task, and in this paper
we only attempt to draw fairly general conclusions.

In Sec. II we recall the exact density-functional rela-
tions on which all theories are based and review, briefly,
the assumptions underlying several of the most popular
nonperturbative DFT's. In Sec. III we introduce the gen-
eralized perturbative expansion and shown how each of
the previously described theories fits into this framework.
Section IV discusses some general conclusions drawn
from these reformulations, including what we see to be
the difficulty in applying DFT to continuous potentials
and in what way modification of these theories is possible
so as to remedy this problem.
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the density p(r) is nonuniform, and the dependence of P
on p(r) is thus a functional dependence. We will indicate
this by square brackets' as P=P[p], indicating thereby
that P depends on p(r) for all spatial arguments r belong-
ing to V. It consists of three terms,
/3P =/3P;d+/3P, „,+/3P, „: the ideal-gas contribution /3P;d,

/3P;d= f dr p(r)in[A p(r)] —1,1

p, v v
(2.2)

/3P, „,= f drp(r)u(r),1

Ps V v
(2.3)

and the excess term /3P, „, which is due to interatomic in-
teractions. The external field represents the effect of the
walls of the vessel and is responsible, e.g. , for fixing the
orientation of the lattice if p(r) represents a crystalline
solid. In practice, one assumes that all of the intensive
thermodynamic variables are independent of the external

with A being the thermal wavelength, the contribution
/3P, „, from the external field u (r),

a
p(r) =

7T

for a crystalline solid (see, e.g. , Ref. 1). Here R,
represent the lattice vectors of the solid, and the localiza-
tion parameter a is subsequently fixed by minimizing the
free energy with respect to it. Various asymptotic formu-
lae and numerical results are used to evaluate /3P;d (see,
e.g., Ref. 9).

Finally, the excess free energy is related to the hierar-
chy of direct correlation functions by

6"/3F,„[p]
5p(1) . 5p(n)

(2.5)

where we have introduced the shorthand notation in
which 1—:r„.. . , n—:r, . This equation can be function-
ally integrated to obtain

field except through its action on p(r). One therefore
drops /3P, „, and uses an ansatz for p(r) such as p(r) =ps
for a uniform liquid or

3/2

+exp[ —a(r —R, ) ] (2.4)

/3P [p]= /3$ (pL )+ 1 — /3p, „(PL )
PL PL.

Ps Ps

f dl d2 f dA(1 —A)c2(1, 2;[pL+A(p —
pL )])[p(1)—pL][p(2) —pL] .

Ps 0
(2.6)

In arriving at this result, we have functionally integrated in density-function space along a linear path from a uniform
state with p(r)=pL to an arbitrary value of p(r). The initial point pL is called the reference liquid density (not to be
confused with the density of the coexisting liquid). Equation (2.6) is the starting point used in DFT to develop approxi-
mations for the excess free energy of nonuniform states. Equation (2.5) can also be used to express the DCF of an inho-
mogeneous system in terms of that of a homogeneous system by means of a functional Taylor expansion:

oo

cz(1,2;[p])=cz(ll —2I;pL)+ g, d3 . dnc„(1,2, . . . , n;pL)[p(3) —pL] [p(n) —pL],
3 (n —2! (2.7)

where we have explicitly indicated the translational invariance of the DCF of the fluid phase occurring on the right side
of this expression. Combining Eqs. (2.5) and (2.6), one can immediately construct the usual perturbative expansion for
/3P, „, which is given by

1 1 d1 dnc„(1, . . . , n;pL )[p(1)—pL ] . . [p(n) —
pL ], (2.8)

ps V. =2 ~'W..[P]= W(PL )+
Ps

/3/ ..(pL)—PL.

Ps

and which was used in the original perturbative theory of Ramakrishnan and Yussouff. ' Normally, the reference-
liquid density PL is taken to be the same as the ps of the solid, although it has also been proposed' that the free energy
be minimized with respect to pL. The so-called second-order theory sometimes discussed in the literature is based on
Eqs. (2.1) and (2.8). For reasons to become clear below, we will refer to this as the elementary second-order theory
(ESO).

Having reviewed the basic DFT relations and sketched the perturbative approach, we turn to a description of some
of the most well-known nonperturbative theories.

A. The ELA

The effective-liquid approximation of Baus and Colot begins by choosing pL =ps in Eq. (2.6). The fundamental ap-
proximation introduced is that the unknown DCF for the inhomogeneous phase in Eq. (2.6) can be replaced by that of a
liquid at some as yet to be determined density p~LA:

1 1

/3$.„[p]=PP.„(pL)— f dl d2 f dk(1 —A)c2(ll —2I;pELA[ps+~(p ps)])[p(1) ps][p(2) ps]p, V 0
(2.9)
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The theory is closed by choosing pELA such that the first peak of the static structure factor corresponding to
c2(r;pEL~[ps+A(p —ps)]) occurs at the smallest reciprocal lattice vector of the solid prescribed by p(r). Thus, pEiA is
independent of A, and the excess free energy is given by

[p] =13&..(pl. ) — f d 1 f d2c2(l 1 2l pELA[p])l p(I) ps][p(2) ps]
1

&Os ~

which together with the specification of pE„A given above defines the ELA.

(2.10)

B.The M%'DA

The modified weighted-density approximation of Denton and Ashcroft was introduced as a simplification of the
weighted-density approximation of Curtin and Ashcroft. Because of the computational complexity of the latter, it has
not been as widely used as the MWDA and we shall not discuss it here.

Although not originally discussed in these terms, let us begin by asking what uniform liquid density pMwDA would
give rise to the same excess free energy as a given nonuniform density p(r) so that

W'exl P 1 =W'ex(PMwnA) .

Using Eq. (2.6) with PL =0, one can express pMwn~ as a doubly weighted density:

pMwna= f dl d2w(1~2;[p])p(1)p(2)
1

]os V

where the weighting function w (1,2; [p] ) is given by

f dk(1 —
A, )cz(1,2;[Ap])

w(1, 2; [p])= f dr f dA(1 —A)c2(rIkpMwnA)

(2.11)

(2.12)

(2.13)

Denton and Ashcroft begin with Eqs. (2.11) and (2.12) but, rather than attempting to evaluate Eq. (2.13), they fix the
weighting function by imposing several physically motivated conditions on it. First, it is required to be translationally
invariant: w(1, 2;[p])=w(

l
1 —2l; [p]). Second, it is required to be normalized:

1=fdrw(lrl;[p]); (2.14)

and, third, it is only to depend on p(r) implicitly via PMwn~. .

w(ll —2I;[p])=w(l 1 —2l;pMwn~[p]) .

Finally, it is required that Eq. (2.5) hold for n =2 in the uniform limit

(2.15)

(2. 16)

Together, these conditions are sufhcient to determine the weighting function uniquely. The MWDA may then be sum-
marized by the resulting specification of the eft'ective density

2PMwnAW'ex(PMwnA) +pspMwnAW'ex(PMwn~) f d—1 d 2p(1)p(2)cz( l I 2I ~ PMwnA»Ps~
where primes denote differentiation with respect to density, and Eq. (2.11).

(2.17)

C. The GEI,A

As mentioned in the Introduction, the generalized eA'ective-liquid approximation of Lutsko and Baus was introduced
in the attempt to minimize the number of approximations used to calculate the free energy. This was done within the
context of Eqs. (2.11)—(2.13) by introducing the single approximation that the DCF of the inhomogeneous phase is tak-
en to be the same as that of some homogeneous liquid

fd1 d2p(1)p(2)c, (l1,2l, [k ])=f d1d2p(1)p(2)c2(ll —2l,pGE„~[AP]), (2.18)

and where Eq. (2.11)becomes, more generally,

/3P [Ap]=f3/ „(poEL [Xp]) (2.19)

which is sufficient to completely specify the GELA. A simple method for solving Eq. (2.19) has been given previously
and need not be repeated here. Instead, we conclude with the observation, which shall be used later, that for fixed p(r),
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Eq. (2.19) only requires knowledge of poEL~ as a function of k so that the functional dependence on p(r) may be
suppressed. Equation (2.19) then becomes an ordinary integral equation for pGEi~(A. ).

D. Summary

This completes our brief survey of nonperturbative DFT's. Our aim has not been to criticize these theories or even to
discuss at any length their motivations and limitations. For this, we refer the reader to the original literature. As our
only comparison, we give in Table I the predictions of these theories regarding the hard-sphere freezing transition as
well as the results of the second-order perturbation theory.

III. PERTURBATION THEORY REVISITED

Let us now return ot the exact expression for the free energy given in Eq. (2.6). We wish to expand about a uniform
state, as is usually done. However, rather than expand about a fixed reference liquid density as in Eq. (2.8), we some-
what more generally write

c2(1,2;[pL +X(p —
pL )])=c2(~1—2;pL +5p(A))

1+ g fd3 . dn c(1,2, . . . , np I +6p(A))b p(3, A) . bp(n, A),
n —2! (3.1)

where

bp(r, A, ) =A. [p(r) —
pL ]

—5p(A, ) . (3.2)

Note that both pI and 5p(A, ) are as yet completely arbitrary and in general could be functionals of p(r). Taking
6p(A. )=0 we recover the simpler expansion given by Eq. (2.7), and used by Ramakrishnan and Yussouff, ' as a special
case. Substitution of Eq. (3.1) into Eq. (2.6) gives the perturbative expansion of the free energy:

W,.(p»+ 1 — 131,.(p»PI PI.

Ps ps

f dl dnf dA, (1—
A, )c„(1,. . . , n;pL+5p(A, ))

ps V„2 (n —2)! o

X [p(1)—pI ][p(2)—pL ]bp(3, A, ) hp(n, A, ) . (3.3)

We now show that all of the nonperturbative DFT's discussed in Sec. II can be expressed as truncations at second order
of exact perturbative expansions that differ only in their choice of pr and 6p(A, ).

TABLE I. The Quid-fcc solid coexistence data as computed from various density-functional theories
of hard-sphere freezing and compared to simulation results. Here g=(m. /6)o p is the packing fraction
of the coexisting solid (S) and liquid (L) phases of hard spheres of diameter o. and density p. Further,
b g = rjs —gi is the density change, bs =sr —ss the entropy change per particle, p* =Ppo' the reduced
pressure at coexistence, and L the corresponding Lindemann parameter [root-mean-squared displace-
ment divided by the nearest-neighbor distance, ' L =(3/ea )' for a fcc crystal, with a being the lattice
constant ps =4/a']. All theories use the Percus-Yevick DCF to describe the solid, while the equation
of state used for the fluid is indicated in parentheses [Percus-Yevick (PY) or Carnahan-Starling (CS)].

L

0.545
0.545
0.534
0.542
0.567
0.601

0.094
0.092
0.088
0.122
0.083
0.157

MC' 0.494
GELAb (CS) 0.495
Eq. (4.1)' (CS) 0.487
MWDAd (CS) 0.476
ELA' (PY) 0.520
ESO (PY) 0.506

'From Hoover and Ree (Ref. 15).
bFrom Lutsko and Baus (Ref. 9).
'From this work.
From Denton and Ashcroft (Ref. 6).

'From Baus and Colot (Ref. 5).
'From Barat, Hansen, Pastore, and Waisman (Ref. 11).

1.16
1.15
1.04
1.35
1.36
2.47

1 1.7
1 1.9
1 1.0
10.1

16.1

15.1

0.126
0.100
0.110
0.097
0.074
0.06
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To recover the ELA, we very simply choose

A. The KLA

Pr. Ps ~ ~P(~) PELA Ps ~
(3.4)

with PELA chosen according to the criterion of the ELA given previously. Combining Eqs. (3.3) and (3.4), we then find
that

Pk..l p j =W'..[p ) I ELA

f d1 dn f dl(1 —
A, )c„(1,. . . , n;pELA)

ps V„3 n —2! o

X [p(1)—Ps j[P(2)—Ps j~pELA(»~) ~PELA(, ~), (3.5)

with

~PELA(r ~) =~[p(r) Ps 1 (P ELA PS ) (3.6)

where the notation used in Eq. (3.5) and the following is that pp, „[p]IE„Arefers to the free energy exactly as computed
in the ELA. The remaining terms are therefore the systematic corrections to the ELA.

B. The MWDA

In this case, both PL and 5p(A, ) are specified by nontrivial relations. First, we set

~P~ ~) PMwDA PL

Comparison of Eq. (3.3) with Eq. (2.17) then leads to the condition on pr that

(3.7)

Rex(pr. ) PL~dex(PL 2 PS~kex(PL ) W'ex(PMWDA) PMWDAW ex(PMWDA) 2PSPMWDAW'ex(PMWDA)
2ps

while pMwDA is still given by Eq. (2.17). The exact expression for the free energy then becomes

A'ex[p j =f Nex[P11MWDA

f dl dnf dl(1 —k)c„(l, . . . , n;pMWDA)psV„3 n —2! o

x
I p(1)—

PL j I p(2) —
PL l~pMwDA(» ~) ~PMwDA(n ~)

with

~PMwDA( ~) ~[P( ) PL I (PMwDA PL)

(3.9)

(3.10)

Although Eqs. (3.7) and (3.8) are deduced by comparing the perturbative expansion, Eq. (3.3), with the equations
defining the MWDA, Eqs. (2.11) and (2.17), they could be equally well derived by imposing on the perturbative expan-
sion the physical requirements of the MWDA.

C. The GELA

Like the ELA, the GELA follows very simply from the perturbative framework. We have only to choose

PI. =O

~P"(~)=or ELA( ~)

with p&ELA required to satisfy Eq. (2.19). The complete perturbative expansion is then

[p ~ f3rt' [p ~ I crELA

Vg fd1 dn f dA(1 —k)c„(1, . . . , n;pGELA(A. ))
p, „,(n —2)! o

xp( 1 )p( 2 )~PGELA( 3 ~ ) ~poELA( n

(3.1 1)

(3.12)
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with

~poELA(r ~) ~P(r) PGELA(~) (3.13)

One notable aspect of this expansion is that the bp(k)
term is proportional to A, [that pGEL~(A, ) is proportional
to A, is discussed in Ref. 9]. The nth term in Eq. (3.12) is
therefore proportional to (1—

A, )A,
" . Neglecting the

other A, dependence in the integral in Eq. (3.12), this gives
a factor, upon integration, of 1/n (n —1), which may well
be responsible for accelerating the convergence of the
series, and may account, at least in part, for the accuracy
of the GELA when applied to hard spheres (see Table I).

IV. DISCUSSION

We have shown that many of the so-called nonpertur-
bative DFT's can, in fact, be expressed as second-order
truncations of exact perturbative expansions. Although
they were originally proposed in order to circumvent
such an expansion, in reality their success or failure is not
qualitatively different from that of the elementary
second-order perturbative theory. In the present context,
they can all be described as perturbative theories, which,
by altering the reference state of the perturbative expan-
sion, attempt to accelerate the convergence of the expan-
sion. This is done by fixing the parameters of the refer-
ence state(s) by forcing the truncated expansion to fulfill
certain physically motivated conditions. This is, of
course, not unusual. For example, Lado' improved
upon the WCA (Ref. 17) thermodynamic perturbation
theory by requiring term-by-term thermodynamic con-
sistency. This also answers a question raised in the Intro-
duction: why do theories with such different physical
motivations give such similar results? Clearly, from the
present viewpoint, the theories are all just second-order
truncations of the same perturbative expansion, albeit be-
ginning with different reference states.

Besides placing the "nonperturbative" theories in a
more familiar context, the present interpretation allows
us to ask new questions about these theories. For exam-
ple, why do the GELA and MWDA work as well as they
do for hard spheres? In both cases, the effective density
at which the direct correlation functions are evaluated
(for the fcc solid) is quite low —about half the solid densi-
ty for the MWDA. In the GELA, the effective density is
A. dependent and varies in the integrals from a maximum
value of about half the solid density to zero (at A, =O).
(An additional factor in the case of the GELA is its
unique A. dependence, as discussed above. ) In contrast,
the ESO evaluates the correlation functions at the solid
density, while the ELA evaluates them at nearly 90% of
the solid density. (Indeed, within the perturbative frame-
work presented above, this would lead one to conclude
that there is little difference between the ELA and the
second-order perturbative theory, at least for the fcc
phase. ) That this explains the success of these theories is
consistent with two other facts. First, correlations are

known to be weak in the hard-sphere solid. In
parametrizing the pair distribution function for the
hard-sphere solid, Weis' found that beyond the nearest-
neighbor shell, his data, from computer simulations,
could be fit by a product of one-body densities of the
form given in Eq. (2 4), thereby indicating a complete
lack of correlations. Second, the GELA fails for inverse
power potentials, where the effective density turns out to
be much larger than for hard spheres. One is tempted to
conclude that the underlying idea of the nonperturbative
theories is to force the reference density to be relatively
small in the solid state. This is not that easy, however,
since whatever condition one imposes on the reference-
state density must, for a uniform system, give the correct
free energy if we are to have any hope of describing
liquid-solid coexistence. The ELA, MWDA, and GELA
all satisfy this property. There are, obviously, an infinite
number of such conditions. For example, consider the
condition that

bzp(A)= , J d 1 d2p(1)p(2)
2ps V

X [ I —exp [
—Pv (

~
1 —2

~
) ]], (4.1)

where b2 is the second virial coefficient of the liquid and
v(r) is the interatomic potential. This is just the low-
density limit of Eq. (2.19) and, used in place of Eq. (2.20)
of the usual GELA formalism, gives the correct free ener-
gy of the liquid phase. (It is also identical to a condition
used by Stoessel' in a DFT-like theory. ) We have recal-
culated the freezing point using Eq. (4.1), and otherwise
following the procedures of Ref. 9 for hard spheres and
the results are shown in Table I. Notwithstanding its
rather unphysical nature, we see that this condition per-
forms respectably well (and in fact gives a better value for
the Lindemann parameter than the other theories).

Notwithstanding its success in the case of the hard-
sphere system, DFT is still far from providing a predic-
tive theory of liquid-solid coexistence for arbitrary pair
potentials. ' The present work is an attempt to remove
some of the arbitrariness of the most successful theories
so as to allow one to identify why they do or do not work
and to make possible their extension or modification. It
is clear from the proceeding that much of the formalism
of these theories is tied to the basic perturbative expan-
sion given in Eqs. (3.1)—(3.3) and, as such, it is difficult to
imagine in what way this could be modified systematical-
ly. Rather, we believe that attention should be focused
on understanding the subsidiary conditions used to fix the
parameters of the reference state; conditions which at
this point appear as more or less arbitrary.
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