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Polarization dynamics and interactions of solitons in a birefringent optical fiber
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Dynamics of vector solitons are studied within the framework of the general model of coupled
nonlinear Schrodinger equations. The analysis is based upon the perturbation theory for the case
when the system is close to the exactly integrable Manakov form. Evolution of the soliton's polar-
ization, coupled by the linear-birefringence terms (which take account of the difference in the group
velocity between two linearly polarized modes) to the positional degree of freedom of the soliton, is

studied. A four-dimensional dynamical system for the two coupled degrees of freedom integrates to
a two-dimensional conservative system. Depending on the value of an arbitrary integration con-

stant, there are four different types of the phase portrait of the latter system. For each value of the
polarization angle, there exist two stationary vector solitons, at least one of them being stable. Gen-
eric trajectories on the two-dimensional phase plane correspond to oscillations of the polarization
coupled to oscillations of the position of the soliton. A generalized model including the
polarization-rotating linear coupling is also analyzed. Next, interaction of two slightly overlapping
vector solitons is considered, and it is demonstrated that a stable bound state is possible. A stable

periodic chain of the slightly overlapping solitons is also found. Finally, radiative decay of a vector
soliton is investigated for the case when it has a large component in one subsystem and a small com-

ponent in another subsystem.

I. INTRODUCTION

The present paper is devoted to the study of soliton dy-
namics within the framework of a model describing prop-
agation of optical solitons in a nonlinear birefringent
fiber. This subject attracts great current interest (see,
e.g. , Refs. 1—16) owing to both its fundamental meaning
and potential applications in optical logic devices (e.g. ,
soliton switches' ). The analysis to be developed in the
present work will be based on the system of coupled non-
linear Schrodinger (NS) equations governing propagation
of envelopes of electromagnetic waves in the fiber. In a
general case, this system may be written in the following
dimensionless form

(1.2)

C C
u (z, r)—:U(z, r)exp i ——r+ z (1.3a)

(note that the sign of /3 is invariant, while the sign of /3 is
not, as it can be changed by the substitution u, v ~iu, v or
u, v ~u, iv) At last. , the linear birefringence coefficients c
and ~ take account of the difference in, respectively,
group and phase velocities between the two linear polar-
izations. In what follows, it will be convenient to remove
the group-velocity terms by means of the obvious trans-
formation

iu, +icu, ~u +u,.+—2(lul'+ lvl')u +2/3lvl'u

+2/3' uv* =0,
iv, —icv, +cov +v„+2(lvl + Iul )v +2/3lul v

+2/3'u v*=0,

(l. la)

(1.1b)

C C
v(z, r)= V(z, r)exp i —7+ z

2 4
(1.3b)

+/32' VU*exp(2icr) =0, (1.4a)

The corresponding coupled NS equations take the form

t U, wU+ U„+—2(I UI'+
I
VI'»+2/3l VI'U

where u (z, t) and v(z, t) are envelopes of the waves with
mutually orthogonal linear polarizations, z is the propa-
gation distance, and ~=t —z/v „where t is time, and

V, is a mean group velocity. The cross-phase-
modulation coefficients /3 and /3' are usually assumed to
be related as follows:

i V, +w V+ V„+2(IVI'+ IUI') V+2/31UI'V

+2/3'U V*exp( —2icr) =0 . (1.4b)

Equations (1.4) can be derived from the Lagrangian
density
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The Lagrangian representation of Eqs. (1.4) will play an
important role in the analysis developed below.

In the case P=P
' =0 (and co =0), the coupled NS equa-

tions (1.4) are amenable to application of the inverse
scattering transform. ' In this case Eqs. (1.4) possess a
family of the exact soliton solutions:

U„& =2ig(cosO)sech[2g(r —r' ')]

Xexp[i(P ,'P'—+——,
' Vr)],

V„,=2ig(sin8)sech[2g(r —r )]

X exp [i ( P+ —,
' t//+ ,' Vr ) ]—,

(1.6a)

(1.6b)

where g and V are arbitrary amplitude and inverse veloc-
ity of the soliton, the arbitrary parameter 0 (0 ~ 0 ~ 7r/2)
is a polarization angle, and g' is an arbitrary soliton's
internal phase. The common phase P and the soliton's
"coordinate" ~' ' evolve according to the equations

P=4g ——'V (1.7a)

(1.7b)

the dot standing for differentiation in z. In the general
case, when both U and V components of the soliton (1.6)
are different from zero, it will be called a vector soliton. '

The particular case sin(29) =0, when only one com-
ponent is present, will be referred to as a simple soliton.

To study the dynamics of the solitons in the noninte-
grable case /3, P'%0, it is natural to develop a perturba-
tive analysis, assuming that /3 and P' are small parame-
ters. ' An important feature of the nonintegrable case is
the fact that the soliton's polarization (the angle 9) may
vary in z. To investigate the polarization dynamics of the
vector soliton by means of the perturbation theory, let us
presume that in the case of small P and P' the soliton's
wave form remains close to that given by Eqs. (1.6), while
the parameters 8, r' ', and P' become slowly varying
functions of z. Then one should derive evolution equa-
tions for 8, r'' ', and g', and investigate the correspond-
ing phase space. For the particular case c =0 [see Eqs.
(1.1)], this has been recently done in Ref. 13. In this par-
ticular case, the parameter ~' ' does not suffer the slow
evolution, so that the phase space becomes two dimen-
sional (see below). It has been demonstrated in Ref. 13
that two qualitatively different situations are possible in
the case c =0: Either both simple solitons (0=0 and
0=~/2) are stable and no vector solitons exist, or one
simple soliton becomes unstable, and simultaneously
there appears a stable vector soliton (the instability of a
simple soliton has been first revealed in numerical simula-
tions performed in Ref. 1). In the latter situation, the
vector soliton has a uniquely determined value of 8 [in
the cw approximation corresponding to u = u (z),
U =U(z), i.e. , u, =U, =O, a vector state, if any, also has a
uniquely determined polarization, see, e.g. , the papers
quoted in Ref. 18].

In Sec. II of the present paper, the dynamics of the
vector soliton are investigated in the general case (cAO).
It is demonstrated that the parameter c couples the "posi-
tional" degree of freedom ~' ' to the slow variables 0 and

Thus the original dynamical system for the two cou-
pled degrees of freedom (positional and polarizational
ones) is four dimensional. However, it can be
transformed into a three-dimensional system, which can
be further integrated once. Thus we arrive at a two-
dimensional conservative dynamical system with two in-
dependent parameters, one being a function of the ratio
g/c (recall q is the soliton's amplitude), the other being
an arbitrary integration constant. Investigation of the
stationary points of the two-dimensional dynamical sys-
tem demonstrates that there are two different stationary
solitons for every value of the polarization angle 0. This
is a drastic difference from the aforementioned particular
case c =0, where a vector soliton exists at a single value
of 0. At different values of the two parameters, there are
four different types of a phase portrait of the two-
dimensional dynamical system. Two of them resemble
the phase portraits revealed for the particular case c =0
in Ref. 13 (no vector soliton and two stable simple soli-
tons, or one stable vector soliton and two simple solitons,
one of which is stable). Two other types are new: Two
stable simple solitons and two vector solitons, one of
which is stable; or two unstable simple solitons and two
stable vector ones. Generic dynamical trajectories on the
phase plane correspond to oscillations of the polarization
of the soliton coupled to oscillations of the position of its
center.

In Sec. III, interaction between two slightly overlap-
ping vector solitons is considered (in the particular case
c =0). It is demonstrated that their bound state with a
nonzero "binding energy" is possible, and, under a cer-
tain condition [when co is small in comparison with P, see
Eqs. (1.1)], the bound state is stable against small pertur-
bations. In Sec. IV, a periodic array of vector solitons
with an arbitrary (but large) spacing is considered for the
same particular case c =0. It is demonstrated that the
array may be stable, a corresponding stability condition
being less restrictive than that for the two-soliton bound
state.

The analysis developed in Secs. II—IV is based upon the
Hamilton canonical equations of motion for slowly vary-
ing soliton parameters, which can be derived starting
from the Lagrangian (1.5). This analysis corresponds to
the so-called adiabatic approximation that neglects a dis-
turbance of the soliton's wave form (1.6). Beyond the
framework of this approximation, an adiabatically stable
vector soliton may be subject to radiative decay; i.e., it
may emit quasilinear waves (radiation) at the expense of
losing its energy. In Sec. V, the radiative decay is investi-
gated for the simplest case when the vector soliton has a
large U component and a small V component, the latter
one being described by the linearized equation (1.4b). A
law of the radiative decay of the soliton's amplitude g
[see Eqs. (1.6)] is found in an explicit form by means of
the perturbation theory based upon the inverse scattering
transform. ' It is also demonstrated that, in the general
case (c%0), the emission intensity is asymmetric. Owing
to this circumstance, the radiative decay of the vector
soliton is accompanied by its recoil-induced acceleration.

In the concluding section, Sec. VI, the one-soliton dy-
namics are analyzed within the framework of a general-
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ized model incorporating the optical activity efFect (i.e.,
rotation of the polarization induced, e.g. , by a homogene-
ous twist of the fiber). The optical activity is accounted
for by additional linear-coupling terms in Eqs. (1.1). In
this case, the general four-dimensional dynamical system
for the polarizational and positional degrees of freedom 0
and ~' ' can be again integrated to a two-dimensional
conservative system. Possible phase portraits of that sys-
tem are investigated in some detail. A general inference
is that it does not admit dynamical trajectories corre-
sponding to a permanent rotation of the polarization, i.e.,
going from 0= —~ to + ~. Only limited oscillations of
the polarization prove to be possible.

II. THE POLARIZATION DYNAMICS
OF A VECTOR SOLITON

To derive evolution equations for the slowly varying
quantities 0, r' ', and i/j' in the case when the parameters
/3 and /3' in Eqs. (1.4) are small, let us insert the unper-
turbed solitonic wave form (1.6), with z-dependent P, i/j',

0, and r' ', into the Lagrangian density (1.5). Next, one

should calculate the full Lagrangian L—:f + X dr and
define, with regard to Eq. (1.7b), the generalized momen-
ta p& and p conjugate to the independent generalized
coordinates i/' and r' '.

BL
p&

—— . =2i/cos(20),
aj
BL

87

(2.1a)

(2.1b)

m„„,= —~
I
&I'+~

I

UI' —2/31 UI'I VI'

/3
I V2( U. e )2 2icr

/3 ~( ye )2 U2e
—2icw (2.2)

corresponding to Eqs. (1.4) [the terms —+co in Eqs. (1.4)
are also treated as a perturbation]. The next step is to
define the full perturbation Hamiltonian

Proceeding from Lagrangian to the Hamiltonian descrip-
tion, one may introduce the density of the perturbation
Hamiltonian:

FI„„,—= f &dr=4'/co cos(20) —
—,'il sin (20) [8/3+/3'vr( /c/)i[(c/ /) r+4][sinh(vrc/2i/)] 'cos(2$) ), (2.3)

where

q= q'+cr"' .

The canonical equations of motion

~~pert ~, ~~pert

r)f Bp y

~~pert

C)7

(2.4)

(2.5a)

(2.5b)

yield, on inserting Eqs. (2.1), (2.3), and (2.4), equations of
motion which can be written in the following form:

In the particular case c =0, when, according to Eq. (2.4),
itt—:i/t', Eqs. (2.6) and (2.8) coincide with equations de-
duced in Ref. 13, while Eq. (2.7) becomes a corollary of
those two equations.

Obviously, Eq. (2.8) separates from the third-order sys-
tem of Eqs. (2.6) and (2.7). The latter equation can be
simplified if one substitutes the product sin(20) X sin(2$)
in the first term on its right-hand side by d0/dg [see Eq.
(2.6)]. After this substitution, Eq. (2.7) can be integrated
once to yield the following equation:

=K+2[B +cos(2$)]cos(20) (2.11)

dI9 =sin(20)sin(2$),

d2

d 2
4[B +cos(2$) ]—sin (20)sin(2it )

—4 cos(20)sin(2$) d
d

= K'+ 2[B '+ cos(2$) ]cos(20),

(2.6)

(2.7)

(2.8)

[cf. Eq. (2.8)], where K is an arbitrary constant of integra-
tion. Thus Eqs. (2.6) and (2.11) constitute the eventual
two-dimensional two-parametric (B and K) dynamical
system governing evolution of polarization of the vector
soliton.

Let us investigate a phase portrait of the system (2.6)
and (2.11). First of all, the conservation of the Hamil-
tonian gives rise to the following integral of motion of
this system:

where

g—:—,'/3'r/ vr(c/r/)[(c/r/) +4][sinh(vrc/2i/)] 'z,
B'=8(/3//3')sinh(mc/2')[(c/r/) +4] '(mc/il)

B—:8(/3//3 '+ 3c2/16/3 'r/ )sinh( vrc /2i/)

X I~(c/il)[(c/il) +4] I

(2.9)

(2.10a)

K'—= 6(co//3')sinh(~c/2rI) [~cr/[(c/r/) +4] I
' . (2.10b)

K cos(20) —[B+cos(2$) ]sin (20) =C, (2.12)

sin(2i/j) =0,
cos(20) = —(K /2) [B+cos(2$) ]

(2.13)

C being an arbitrary constant. Setting C =+K in Eq.
(2.12), one finds the solutions 0=0 and m/2 correspond-
ing to the simple solitons. The vector solitons correspond
to the following stationary points of the system of equa-
tions (2.6) and (2.11):
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cos(2$)[B+cos(2$)]~0 . (2.14)

According to Eq. (2.14), both vector solitons [correspond-
ing to cos(2$) =+ 1 and to cos(2$) = —1] are stable in
the case ~B~ & 1. In the opposite case ~B~ ) 1, only the
soliton with cos(2$) = sgnB is stable.

Subsequent investigation of the phase plane ($, 8)
based on Eqs. (2.6), (2.11), and (2.12) brings us to the fol-
lowing conclusions. In the case

The expression (2.13) comprises two different vector soli-
tons with cos(2$) =+1, i.e., with /=0 and m. /2.

Since K is an arbitrary constant, Eq. (2.13) means that
there is a pair of vector solitons for each value of the po-
larization angle 0: One gets the solitons corresponding to
a given 8 setting K = —2(B+1)cos(28), where
+1—=cos(2$). This is a drastic difference from the partic-
ular case c =0 considered in Ref. 13 (and also from the
cw case corresponding to u, =v, —=0), where stationary
solitons were possible only for three special values of 0:
8=0, 8=sr/2, and cos(28)= —

—,'K'sgn(/3/P'), the pa-
rameter K' being defined by Eq. (2.10b). The reason for
this difference is that in the particular case c =0 the posi-
tional degree of freedom is decoupled from the polariza-
tional one. Formally, this is reAected by the fact that the
two-dimensional dynamical system for the variables 0
and g' [see Eqs. (2.6) and (2.8)] derived in Ref. 13 con-
tains the single parameter K' instead of the two ones K
and B in the system of Eqs. (2.6) and (2.11).

It is straightforward to investigate the stability of the
stationary solutions (2.13) against infinitesimal distur-
bances within the framework of the linearized system of
Eqs. (2.6) and (2.11). The stability condition takes the
form

C = —(sgnB) —,'[K +(~B~ —1) ]/(~B~ —1) (2.18)

in Eq. (2.12). It is noteworthy that the separatrix is very
"sensitive" to additional perturbations explicitly depen-

FICs. 1. The phase plane of the dynamical system of Eqs. (2.6)
and (2.11) in the case (2.15). The stable simple soliton corre-
sponds to the lines 0=0 and m/2.

IKI »( IBI+1) (2.15)

the vector solitons (2.13) do not exist, and both simple
solitons (8=0 and vr/2) are stable. In this case the phase
plane ($, 8) is trivial (Fig. 1). As a matter of fact, this sit-
uation (with ~B~ =1) has been already considered in Ref.
13.

At ~K~=2(~B~+1) there appears the vector soliton
(2.13) with cos(2$) =sgnB In the r.ange

S

2(IBI —1) & IKI &2(IB +1) (2.16)

the phase plane takes the form shown in Fig. 2: One of
the two simple solitons (corresponding to 8=0 in Fig. 2)
is unstable, and the vector soliton is stable. This situation
(with ~B~ =1) has also been considered previously in Ref.
13.

At ~K~ =2( ~B~
—1) there appears the second vector sol-

iton (2.13) with cos(2$)= —sgnB. This soliton is unsta-
ble. Simultaneously, the stability of the simple soliton
(the one with 8=0 in Fig. 2) is retrieved. In the range

IKI & 2(IBI —1) (2.17)

we have two stable simple solitons, the stable vector soli-
ton, and the unstable one (Fig. 3). This case was absent
in Ref. 13, as it was presumed there that ~B~ =1 (c =0).
The separatrix connecting the saddles S' (depicted by the
bold line in Fig. 3) corresponds to

FIG. 2. The phase plane of Eqs. (2.6) and (2.11) in the case
(2.16). For definiteness, it is assumed KB (0. The unstable
simple soliton corresponds to the saddles S with the coordinates
8=0, cos(2$) = —(B + —'K), and the stable vector soliton corre-

sponds to the center C with the coordinates sin(2$)=0,
cos(20)= —'~K~/1 ~B~+1), see Eqs. (2.13). The coordinate of the
point 0, is given by Eq. (2.20).



414 BORIS A. MALOMED 43

(the same expression for 0, pertains to Fig. 2). As follows
from Eqs. (2.20), the situation shown in Fig. 4(a) (8 & 8 )

takes place if
1 2

/IC/ ) 1 —B' (2.21)

and in the opposite case the separatrices are located as
shown in Fig. 4(b). Note that the inequality (2.19) is a

0

FIG. 3. The phase plane of Eqs. (2.6) and (2.11) in the case
(2.18). T). he stable vector soliton corresponds to the center C
with the same coordinates as in Fig. 2, and the unstable vector
soliton is the saddle S' with the coordinates sin(2$) =0,
cos(2e) =

—,
'

[SC( y((B( —1).

dent on the evolutional variable g [i.e., as a matter of fact,
on the coordinate z, see Eq. (2.9)]: A small g-periodic or
random perturbation can generate a narrow stochastic
layer in a vicinity of the separatrix (see, e.g. , Ref. 20). A
perturbation of this type may naturally arise if the
birefringent fiber is periodically or randomly inhomo-
geneous. Thus one may expect appearance of a vector
soliton with chaotically varying polarization in the re-
gime (2.17), provided a weak spatial inhomogeneity is
taken into account. '

It was implied above that ~B~ takes values ~B~ ) 1. In
the case P&0, the values ~B~ & 1 are possible too accord-
ing to Eq. (2.10). Let us consider the phase plane of the
system of Eqs. (2.6) and (2.11) with ~B~ &1. Using Eq.
(2.12) one can readily find that in the case ~IC~ )2( B + 1)
the phase plane takes the form shown in Fig. 1. At
2(1—

~B~ ) & ~&~ &2( ~Bj+1) the situation is the same as in
Fig. 2. In the case

Il~
I

& 2(1 —
I
B

I ), (2.19)

which is only possible if ~B~ & 1, one reveals a qualitative-
ly new situation illustrated by Fig. 4: Both simple soli-
tons are unstable (they correspond to the saddles S and
S), and there are two stable vector solitons (the center C
and C), the one C appearing at ~%~=2(1—~B~). The
separatrices connecting pairs of the saddles S or 5 are
boundaries between confined and free dynamical trajec-
tories. The separatrices intersect the 0 axis (/=0) at
0=0, and at 0=02, where

cos'O, =-,' /IC/ y(I+ iBi),
sin'O, =-,' /Z

/
y(1 —iB/)

(2.20)
FICx. 4. The phase plane of Eqs. (2.6) and (2.11) in the case

(2.19): (a) 0, &02, i.e., 1 B& ~K~ &2(1—~—B~) [see Eqs. (2.19)
and (2.21)j; (b) 02 & 0„i.e. , K~ & 1 B—
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corollary of the one K~ ( 1 —B .
To conclude this section, let us discuss the meaning of

generic (oscillatory) dynamical trajectories on the phase
planes (Figs. 1—4). As follows from the definition of the
variable P [given by Eq. (2.4)] and the additional evolu-
tion equation (2.8) for the phase f', the soliton's "coordi-
nate" ~' ' evolves according to the following equation:

d
r' '=c '[(K —K')+2(B B')—cos(2O)] . (2.22)

According to Eq. (2.22), oscillations of the polarization
angle 0 are accompanied by oscillations of the position of
the soliton. Besides, the soliton moves with some mean
velocity. However, the mean velocity is, as a matter of
fact, an additional arbitrary parameter of the solution,
since the underlying equations (1.1) are invariant with
respect to the Galilean transformations. At last, in the
particular case c =0 considered in Ref. 13, when the po-

I

larizational and positional degrees of freedom are decou-
pled, the oscillations of the soliton s position are absent.

III. A BOUND STATE OF TWO VECTOR SOLITONS

In this section we will consider interaction between
two vector solitons with different (z-dependent) parame-
ters P~ , fJ,. O, and r' ' (j =1,2) [see Eqs. (1.3)], and with
close amplitudes g . The analysis will be confined to the
simplest particular case c =0.

The soliton-soliton interaction will be analyzed under
the fundamental assumption that overlapping between
the solitons is weak, i.e., e " && 1, where
L:—~r'i ' —rP'~ is proportional to the distance between
the centers of the solitons, see Eqs. (1.6). Straightforward
analysis following the lines of that developed previously
for slightly overlapping solitons in the single NS equa-
tion ' makes it possible to find an effective potential of
the soliton-soliton interaction:

W,~(L)= —128il e [cosO,cosO2cos[p —
—,'(g', —pz) ]+sinO, sinO2cos[p+ —,'(g', —gz) ]], (3.1)

2

H =H0+ g H'~, '„+W,ir,
j=1

where

H0= ——"(il,+il~)+il (r' ') +i)2(r'~ ')
3

(3.2)

(3.3)

is the unperturbed Hamiltonian, and H', '„are the
perturbation-induced terms (2.3) for both solitons. The
definition of the generalized momenta (p&) conjugate to
the generalized coordinates g' retains the form of Eq.
(2.1a),

(p&) =2il cos(2O~ ) (3.4)

[here, as well as in Eq. (3.1), a difference between i)i and

i)z may be neglected]. In the analysis developed in the

preceding section for the single soliton, we did not deal
with an equation of motion for the variable P, as it was
not coupled to Eqs. (2.5). This time, equations for the
phases P. must be taken into account. Using the underly-

ing Lagrangian density (1.5), it is easy to arrive at the
well-known expression for the generalized momenta con-
jugate to pJ:

where /=pi —pz, and it is implied that ili and ilz take a

common value g. In other words, the full Hamiltonian of
the two-soliton system is

the independent generalized coordinates g,', PJ, and rz
'

[see Eqs. (3.4)—(3.6)], one can immediately write the
canonical Hamilton's equations of motion. In a general
case, those equations have a rather cumbersome form.
However, it is easy to realize that there is the reduction

Oi = —Oz=O K =4'z= (3.7)

W, ir(L) = —128il e " (cosp)cos(2O) . (3.8)

Choosing the quantities g, P, and L =—rP'—&~2
' as new in-

dependent generalized coordinates, and redefining the
corresponding conjugate momenta, one can bring the
canonical equations of motion into the following eventual
form:

dO =sin(2O)sin(2$),

d
d

=K'+ir(cosP)e '+2[B +cos(2$)]cos(2O),

d l =
—,', ~ e '(cosi)) )cos(2O),

(3.9a)

(3.9b)

(3.9c)

compatible with the equations of motion. In what fol-
lows we will concentrate on this particular case. Inser-
tion of Eq. (3.7) into Eq. (3.1) yields the simplified form of
the interaction Hamiltonian:

(p~) = . = —4i1
BL

J

(3.5)
—i=

—,', v e '(sing)cos(2O), (3.9d)

At last, the generalized coordinates ~'- ' are conjugate to
the momenta [cf. Eq. (2.1b)]

where the quantities g, K', and B are defined by Eqs. (2.9)
and (2.10) (B =+1 and K'=3'/4p'il in the considered
particular case c =0), l —= 2ilL, and

(p, ), =2~,r,'" . (3.6) ~—:36/P' . (3.10)

Having the full Hamiltonian given by Eqs. (3.1), (3.2),
and (3.3) and the definition of the momenta conjugate to

Note that ~ is a large quantity as, from the very begin-
ning, the coefficient f3' was assumed to be small.
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The dynamical system (3.9) has a family of stationary
solutions

co ))g'cos P . (3.17)

cos(29}=0,
sin(2$) =0,
e '=K'/~ cosP

(3.1 1)

with an arbitrary relative phase P (recall /=Pi —P2).
Evidently, the stationary solution (3.11) describes a
bound state of two vector solitons. A very important is-
sue is stability of the bound state against small perturba-
tions. In the present work we will confine ourselves to
the perturbations that do not violate the fundamental
reduction (3.7).

Linearizing Eqs. (3.9) on the background of the station-
ary solution (3.11), one can obtain a sixth-degree equation
for the instability growth rate y. That equation has two
zero roots, and other four of them are determined by the
equation

(y ) cos P+8[B+cos(2$)]cos(2$)(cos~g)y2

+ —,'~ K'e 'cos(2$)cosg . (3.12)

To provide the stability of the stationary solution (3.11)
(Rey &0), one should demand that Eq. (3.12), regarded
as a square equation for y, must have only real negative
roots. It is easy to find that this requirement amounts to
the system of three inequalities:

cos(2$) [B+cos(2$) ] & 0, (3.13a)

(3.13b)K'(cosg)cos(2$) )0,
72[B +cos(2$)] & ~~~(K') Icos P . (3.14)

Note that the stability condition (3.13a) for the bound
state coincides with that (2.10') for the single vector soli-
ton.

Let us recall that in the stationary states cos(2$)=+1
[see Eq. (3.11)], and in the case under consideration
B =+1. Thus the stability condition (3.14) cannot be
satisfied by the stationary state with cos(2$)= B As- .
for the state with cos(2$)=+B, it was stressed above
that the parameter a. was a large quantity -(P') ', see
Eq. (3.10). Thus, in a generic case ( ~co~

—~P~:—~P '~, c & g)
the right-hand side of Eq. (3.14) is large, while the left-
hand side is not. To satisfy the inequality (3.14), we
should assume that the parameter L'' is small, so that

~~~(K') /cos /& 1 . (3.15)

Inserting the definitions of x and K', given by Eqs. (3.10)
and (2.10b), into the inequality (3.15) (and assuming, as
above, c & il ), one arrives at the following condition
necessary for the stability of the bound state of two vec-
tor solitons:

(3.16)N + cos

It is important to note that the underlying assumption
e «1 means that the expression K'/ircosP must be
small, see Eq. (3.11). This requirement amounts to the
following inequality:

Evidently, the inequalities (3.16) and (3.17) are compati-
ble due to our underlying assumption that P is a small pa-
rameter.

It is relevant to analyze a possibility of coexistence of
the stable two-soliton bound state with stable one-soliton
states. The smallness of the parameter E', necessary for
the stability of the bound state, means that we deal with
the case (2.16), when one simple soliton and one vector
soliton are stable (Fig. 2) (recall that in the case c =0 K'
plays the role of K). According to Eq. (2.13), the small-
ness of E'' implies as well that the polarization angle 0 of
the free vector soliton is close to m. /4, i.e., the free soli-
tons are close in form to the bound ones whose polariza-
tion is exactly ~/4, see Eq. (3.11). To see which vector-
soliton state, free or bound, is "more stable" in the case
when both are stable against the infinitesimal perturba-
tions, it is natural to calculate the "binding energy" of
the bound state, i.e., a difference between the sum of the
Hamiltonians of the free solitons and the full Hamiltoni-
an of their bound state. As is well known, the single NS
equation has exact solutions (sometimes called breathers)
describing two-soliton bound states, but their binding en-
ergy is exactly equal to zero. To define the binding en-
ergy, we will deal with the Hamiltonian of the dimension-
less system (2.6) and (2.8), which is nothing but the quan-
tity C determined by Eq. (2.12), with K replaced by K'
(B'=B in the case c =0). It is important that a
coeScient relating the dimensionless Hamiltonian C to
the original one H defined by Eq. (2.3) be positive. Ac-
cording to Eqs. (2.9) and (2.10b) this implies P ' & 0. As
was mentioned in the Introduction, P' can always be
chosen positive, which will be assumed in what follows.
The full Hamiltonian (3.2) contains also the unperturbed
term (3.3) which is the same for the solitons in the free
and bound states, provided their amplitudes g are equal
[it is implied j ' ~=0], and the interaction potential W, fr,
which is equal to zero in the stationary bound state ac-
cording to Eqs. (3.8) and (3.11). So, it is sufficient to com-
pare the values of the dimensionless Hamiltonian (2.12)
for the free and bound states.

Insertion of Eqs. (3.11) into Eq. (2.12) yields

C = Cb —== [B+cos(2$)] (3.18}

for the bound state, and insertion of Eqs. (2.13) (with K
replaced by K') yields

C =Cf = —
—,'[(K') +4[B +cos(2$)] ]

X [B+cos(2$)] (3.19)

for the two free solitons. At last, the "binding energy" is

Eb ——Cf Cb 8(K') B, (3.20)

where it has been taken into account that we consider the
case ~B~ =1, and in the stationary stable state
cos(2$) =sgnB according to Eqs. (2.14) and (3.13a).

The full Hamiltonian is an integral of motion of Eqs.
(1.1) (in the optical-fiber theory, it has the physical mean-
ing of the conserved full modulation). If the binding en-
ergy is negative, i.e., B &0 according to Eq. (3.20), the
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bound state may, in principle, decay into free vector soli-
tons, shedding off the excessive energy in the form of ra-
diation (quasilinear waves), whose Hamiltonian is strictly
positive (of course, this possibility does not imply an in-
stability of the bound state against infinitesimal distur-
bances). The decay is not possible if the binding energy is
positive, i.e., B (0. According to the definition of B [see
Eq. (2.10a)], and to the fact that P ' has been chosen posi-
tive, this means that the bound state is absolutely stable
against the decay provided 18(0. Recall that the sign of
the cross-phase-modulation coefficient P in Eqs. (1.1), un-
like that of /3', is invariant.

IV. PERIODIC CHAINS OF VECTOR SOLITONS

Generalizing the analysis of the bound states of vector
solitons, it is natural to consider p=riodic chains of soli-
tons (the attention is again confined to the simplest case
c =0). We assume that in an equilibrium state the
chain's spacing 1.0, i.e., the time delay between adjacent
solitons, is constant:

[cf. Eq. (4.3)]

Q( t) —=1t'2„—$2„ (4.6)

are the same for all n, and the double phase shifts remain
constant:

02n 42n —2 42n+1 42n —1 240 & (4.7)

cf. Eq. (4.4). In the case (ii), the variable phase shift is
defined as follows:

P2„—1t'2„,=$2„—$2„+,=P(t) . (4.8)

dO

d
=sin(28)sin(2$), (4.9a)

Let us choose the variables it1(t), p(t), and l(t) as in-
dependent generalized coordinates. Using the expres-
sions for the full one-soliton Hamiltonian H, =H0+Hp
[where Ho and H„„, are defined, respectively, by Eqs,
(3.3) and (2.3)] and for the potential (3.8) of the soliton-
soliton interaction, one can derive dynamical equations
which take the following final form: In the case (i),

(0)
+n 0 (4.1)

r'„' being the coordinate of the nth soliton [see Eq. (1.6)].
Next it is necessary to specify the phase shifts P„—P„
between adjacent solitons in the equilibrium state [the
phases P„are defined according to Eq. (1.6)]. Two
different types of the chain are possible: (i)

~ =4o&

[cf. Eq. (4.1)], and (ii)

4. =
—,'( —I)"4o

Po being a constant.
The spacing Lo in both cases (i) and (ii), as well as the

phase shift Po in the case (i), are arbitrary parameters, i.e.,
a soliton chain must exist at any values of these parame-
ters. In what follows, only rarefield chains will be con-
sidered:

—e ' cos(2$o —P)]cos(28),
d'b =

—,', a [e 'sing

—e sin(2$o —P) ]cos(28),

and in the case (ii),

=sin(28)sin(2$),d0

d
d

=K' —a(e '+ e
—(21o —I)

)COS1t1

—t
—(2lo —1)

dg
=K' —1~[e cosP+ e ' cos(2$o —P ) ]

+2[B +cos(2$) ]cos(28),

d l
18

= —' i~ [e 'cosP

(4.9b)

(4.9c)

(4.9d)

(4.10a)

l0 ——2gL0 )) 1 (4.2)

I (z) —=2~(r,"„'—r,"„I,) (4.3)

are the same for all n, while the double spacings remain
constant:

In the case (ii), Po is not arbitrary; this parameter will be
found below from a stationary solution of equations of
motion.

Proceeding to analysis of dynamics of the soliton
chains, we will confine our attention to their internal os-
cillations of the simplest type: The variable parameter
it1(z) is the same for all the solitons, and the variable spac-
ings

+2[B +cos(2$) ]cos(28),

d l =
—,', a. (e ' —e ' )cosgcos(28),

(4.10b)

(4.10c)

d l 2 —1 (2O2

18
=—'x (e '+e ' )sin1t1cos(28) . (4.10d)

sin(28)sin(2$) =0,
K' 2ve cosPo+2[B—+cos(2$)]cos(28) =0 .

(4.11a)

(4.11b)

In Eqs. (4.9) and (4.10), the quantities K', B, v, and g are
the same as in Eqs. (3.9).

A general stationary solution to Eqs. (4.9) is

(0) (0) —(0) (0)
+2n +2n —2 +2n + 1 +2n —1 2 0 (4.4) Equations (4.10) have two stationary solutions:

At last, following Eq. (3.7), we set

8„=(—1)"8(t) . (4.5)

As for the phase shifts, in the case (i) it is assumed that

sin(2$) =0,
cos(28) =0,

lo
cosPo = (K'/2~)e ",

(4.12)
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and

sin(2tt ) =0,
sinPo =0,
cos(29) =

—,'(2ae 'cosPo —K')/[B +cos(2$)] .

(4.13)

2 0 1/2sinPo=+[ I (K'—/2~) e ']' (4.17)

when the solution appears, sin(t&=0, so that the nascent
solution is stable according to Eq. (4.15c). Moreover, ac-
cording to Eq. (4.12), at this point there appear, as a
matter of fact, two different solutions with

Recall that the parameters lo and Po in the solution
(4.11), as well as lo (but not $0) in the solutions (4.12) and
(4.13), are arbitrary. Note the similarity between the
solution (4.12) and the solution (3.11) of Eqs. (3.9) for the
two-soliton state.

Investigation of the stability of the solutions (4.11),
(4.12), and (4.13) within the framework of the linearized
equations (4.9) and (4.10) yields the following results. For
the solutions (4.11) and (4.13), the linearized equations for
infinitesimal disturbances of the variables l and P detach
from those for 0 and f, and straightforward analysis of
the subsystem for / and P demonstrates that it gives rise
to an instability. Thus the solutions (4.11) and (4.13) are
unstable.

For the solution (4.12), only the linearized equation for
the disturbance of I is detached from the other equations,
and it yields two zero roots for the instability growth rate
y (recall that two zero roots have also been obtained
when investigating the stability of the two-soliton bound
state in the preceding section). The other four roots are
determined by the equation

(y ) cos Po+8[B +cos(2$)]cos(2$)cos (toy

+ ', a K'e cos(2$—)sin (to=0 (4.14)

similar to Eq. (3.12). The stability conditions ensuing
from Eq. (4.14) (i.e., that y must be real negative) seem
similar to Eqs. (3.13):

and both are stable. The corresponding bifurcation dia-
gram is shown schematically in Fig. S. The unstable
branch with sin(to—=0 (depicted by the dashed line in Fig.

lo lo5), existing both at e )2la/K'I and at e ' (2lir/K'I, is
nothing but the solution (4.13).

Thus, according to Eqs. (4.15c) and (4.16), the stable
stationary solution (4.12) exists in the interval

2 0(K')—:e, ~@=4~ e

(4. 18)

In Eq. (4.18) it has been taken into account that Eq.
(4.15a), coinciding with Eqs. (2.14) and (3.13a), dictates
that one should choose cos(2$) =sgnB [recall
cos(2$)=+1 according to Eq. (4.12)]. In the generic
case, when K' is not especially small as in the case (3.16),
the interval (4.18) is narrow because a is large.

As follows from Eq. (4.14), the instabihty setting in at
e=e2 is oscillatory since the corresponding instability
growth rate y is complex. Thus it is natural to expect
that at e=e2 there appears some g-periodtc solution, the
corresponding frequency being coo=2&2 according to
Eq. (4.14). In principle, one can study that solution by
means of expanding in powers of (e e~), but —this issue
will not be considered here.

[B +cos(2$)]cos(2$) ~ 0,
K'cos(2$) ~ 0,
72[B +cos(2$)] ~ la. l(K') tan Po .

(4.15a)

(4.15b)

(4.15c)

Despite the similarity, the stability conditions (4.15) are
easier to satisfy. Indeed, let us recall that the difhculty
with Eq. (3.15) was in the fact that the coefficient II~I(K')
was large. In Eq. (4.15c), this can be compensated for the
smallness of tan (t o.

To interpret the solution (4.12) and its stability condi-
tions, let us note its difference from the similar solution
(3.11) for the two-soliton bound state. The latter solution
determines the equilibrium "distance" l in terms of the
arbitrary phase parameter ((). The former solution deter-
mines the phase difference (t o in terms of the given
chain s spacing $o. This solution exist in the range

e ~ 2la. /K'I (4.16)

[recall that v is a large parameter -/3 ' according to its
definition (3.10), so that the inequality (4.16) does not
contradict the underlying assumption (4.2)]. If one fol-
lows the evolution of the solution (4.12) with the growth—lo loof the parameter e, one notes that at e =2lic/K'I,

FIG. 5. The bifurcation diagram of the solutions (4.12) and
(4.13) describing stationary states of the soliton chain. The
quantities e, e„and e~ are defined by Eq. (4.18). The solid and
dashed lines depict stable and unstable solutions, respectively.
As a matter of fact, this figure gives a projection of the full bi-
furcation diagram in the three-dimensional space
(e, sin(()o, cos(20)), see Eqs. (4.12) and (4.13), onto the plane
( e,tsinPo).
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V. RADIATIVE DECAY OF A VECTOR SOI.ITON

+2p i U 2 V4 —21cr—t4co z 0 (5.1b)

In this section we will deal with a vector soliton which
consists of a large U component coupled to a small com-
ponent in the V subsystem. Let us rewrite Eqs. (1.4) in
terms of the new wave fields U = Ue'"' and V= Ve

iU, + U„+2( I
UI'+

I
V I'»+2pl VI'U

+2p'V2U 4e2icr+4imz 0 (5

i V, + V„+2(
I
VI'+

I
Ul') V+2pl Ul'V

to Eq. (5.3), which in the zeroth approximation (P'=0)
has the following form.

V' (r, z) =b [sech(2r)r)]' '~tanh(2gr)e" '

(5.4)

where it is implied that p is small, and b is an arbitrary
amplitude.

To take account of the perturbation in the right-hand
side of Eq. (5.3), let us employ an equation of balance for
the energy (number of quanta) of the V subsystem,

d~ V~ (5.5)

In the zeroth approximation, the U component of the
soliton is taken in the form [cf. Eqs. (1.6) and (1.7)]

which is an integral of motion in the case /3'=0. Accord-
ing to Eq. (5.3),

U,',i'=2i risech(2gr)e '" ' . (5.2) XV=16P'q J drsech (2gr)
dz OO

For the V subsystem we employ the linearized equation
(5.1b),

iV, + V„+8(1+P)2) sech (2gr) V

X Im [ e
—2i cr 4i coz +—8i zi z

X [ V *(r,z)] ] . (5.6)

8p i 2 h2(2 )e
—2(cr 4icuz—+8&ri zV e (5.3)

The right-hand side of Eq. (5.3) will be treated as a pei-
turbation. We will deal with a weakly localized solution

I

Assuming that in the presence of the perturbation the
amplitude b in Eq. (5.4) becomes a slowly varying func-
tion of z, we insert Eq. (5.4) into Eqs. (5.6) and (5.5) to ob-
tain

b (z)=bo 1— 4~, z 2g —c ETC
(P '

) ( c /g ) 2
cos [4(2g —co )z] /sinh

2'g co 27/
(5.7)

q„s=CO/2 . (5.8)

So far, the last term in Eq. (5.la) was ignored. Let us
now take account of it as a small perturbation. Inserting
the expressions (5.2) and (5.4) into this term, it is
sufficient to take the expression (5.4) in the approxima-
tion P=O, i.e., V' '=b tanh(2gr). Thus we obtain the
following effective perturbing term in Eq. (5.1a):

where ho is a constant. As is seen from Eq. (5.7), under
the action of the perturbation the amplitude of the V
component performs small oscillations unless the ampli-
tude q is close to the resonant value

P = 4iP 'gb—sech(2gr)tanh2(2gr)e2icr+(4im 8iri iz (5—.9)

U„,d =B (q)exp[ i (q z +—qr) ] . (5.10)

A perturbation-induced evolution equation for the radia-
tion spectral amplitudes B(q) can be deduced by means
of the perturbation theory based on the inverse scattering
transform:

As is well known, a small perturbing term may give
rise to decay of the NS soliton into radiation. ' Far
from the soliton, the radiation is a superposition of the
small-amplitude (quasilinear) waves

dB (q) = —[(q/2) +g ] 'e ' 'f dr e '~'[[ q2/i talan(h2 —
r))r]

P* q2e 8'" 's—ech(2gr)P j,
dz OO

(5.11)

where P is the perturbing term (5.9). Inserting Eq. (5.9)
into Eq. (5.11), it is straightforward to see that the first
and second terms in the integrand give rise to generation
of radiation at the wave numbers, respectively, X„—:J «I U(r) I', (5.14)

balance equation for the energy (number of quanta) of the
U fie1d,

q =+qi

(provided g ) co/2) and

q =+q2, q2=2(co —421 )'~

(5.12)

(5.13)

cf. Fq. (5.5). In terms of the spectral amplitudes B(q),
the energy of the radiation field can be expressed as fol-
lows:

provided g (m/4.
The final aim of our analysis is to find a law of radia-

tive decay of the soliton. This can be done by means of a

dqlB (q) I

277 Qo

and the soliton's energy is

(5.15)
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~(sol) 4
EC

(5.16)

The emission intensity can be characterized by the rate of
emission of energy

dX„ dB (q)dqRe B* qdz dz
(5.17)

Insertion of Eq. (5.11) into Eq. (5.17) and straightforward
calculations following the lines of Ref. 23 yield an expres-
sion for d V„ /dz which has a rather cumbersome form in
the general case. If g ))co and q ))c, we may set
rv =c =0, and the expression (5.17) takes the form

d~(rad)
= W (p )2b'q-',

dz
(5.18)

d ~(sol) d y(rad)
dz dz

(5.19)

Inserting Eqs. (5.15), (5.16), and (5.18) into Eq. (5.19), we
obtain the evolution equation for the soliton's amplitude:

where 3 =1.17. In this case, the emission takes place at
the wave numbers q =+2i/2i), see Eq. (5.12).

In the presence of the perturbing term (5.9), the total
energy of the U field, X„—=X„'""+X„'""', is not an in-
tegral of motion (only N„+N, is a strictly conserved
quantity). However, it is easy to see that, both in orders
P ' and (P '), the perturbing term gives rise to an expres-
sion for dX„/dz which rapidly oscillates and results in no
systematic change of the energy. Thus, neglecting those
oscillations, we may find the law of the radiative decay of
the soliton from the balance equation

emission rate (4.17) becomes exponentially small
—exp( n—&—colil), and, accordingly, at z~ ~ the de-
cay becomes very slow:

i1(z) =iri/ —cv/ln!z/zo) . (5.22)

VI. EFFECTS OF THE OPTICAL ACTIVITY

It seems interesting to extend the analysis of the
soliton's dynamics developed in the present paper to a
more general model incorporating the polarization-
rotating effect (optical activity), which may be induced,
e.g. , by a homogeneous twist of the birefringent fiber.
The optical activity is described by the additional linear-
coupling terms A, v and A, u in Eqs. (l. la) and (l. lb), re-
spectively (A, is an optical-activity coefficient, which will
be assumed to be of the order P, see below). After the
transformation [Eqs. (1.3)], the additional coupling terms
give rise to the additional term

[the expression (5.22) satisfies the condition
~ il ~

&(rI ].
At last, it is worth noting that, if c&0, the emission be-

comes asymmetric: As follows from Eq. (5.11), in this
case the intensities of emission corresponding to
q =+q» and q = —q, 2 [see Eqs. (5.12) and (5.13)] are
different. The asymmetry gives rise to a radiative recoil
force which accelerates the soliton. The joint analysis of
the balance of energy and momentum makes it possible to
investigate this effect in detail. For instance, in the par-
ticular case co= —c the asymptotic law of motion of the
decaying soliton takes the form d~' '/dz =4@, where the
soliton's coordinate r' ' is defined according to Eqs. (1.6).

d i g (pi)2b4 —i

dz
(5.20) ~=—U* Ve"'—UV*e (6.1)

The solution of Eq. (5.20) is evident:

rI (z)=iso —
—,'A (P') b z, (5.21)

in the Hamiltonian density (2.2). On inserting the unper-
turbed solitonic waveform (1.6), the term (6.1) generates
the one

bII = —[real c /sinh(irc /2i1 ) ]sin(20)cos+ (6.2)

go being an initial value of the amplitude at z =0. Ac-
cording to Eq. (5.21), before the complete decay the soli-
ton travels the finite distance Z =(2/3 )BIO(P 'b )

However, Eqs. (5.20) and (5.21) become invalid when the
amplitude is very small. Indeed, the analysis based on
the balance equation (5.19) implied that the decay rate

'
~ d il/dz~ was much smaller than the sohton's frequen-

cy 4i), i.e., ~dilldz~ &(i) . As follows from Eq. (5.21),
this assumption requires il ))(P') b . As a matter of
fact, the analysis developed above needs a stronger as-
sumption g ))b, to guarantee that the soliton's ampli-
tude in the U subsystem is much greater than in the V
subsystem.

To derive Eqs. (5.20) and (5.21), we have set cv=c =0.
If co is not zero, Eqs. (5.12) and (5.13) demonstrate that
the soliton with the amplitude lying in the interval
co/4&rj (cv/2 [provided co) 0, cf. Eq. (5.8)] does not de-
cay in the lowest order of the perturbation theory. How-
ever, the radiative decay in this interval will take place in
higher orders. If cu(0, the decay takes place at all
values of g. The analysis based on the general equation
(4.11) demonstrates that at F1~0 (and cv &0) the energy

do =-sin(20)sin(2%)+p sin%',

d%' =K+2[B +cos(2%)]cos(2e)+2@cot(28)costi,

(6.3a)

(6.3b)

cf. Eqs. (2.6) and (2.11). Here

P—= —,'(RIP'i1 )[(c/rI) +4] (6.4)

[cf. Eqs. (2.10)], and the quantities g, 4, K, and B are the
same as in Sec. II. The system of Eqs. (6.3) conserves the
integral of motion

in the perturbation Hamiltonian (2.3). Investigation of
the generalized model including the additional perturbing
term (6.2) demonstrates that, as well as in the case A, =O
(Sec. II), the four-dimensional dynamical system of the
Hamilton's equations of motion for the polarizational
and positional degrees of freedom 0 and ~' ' can be in-
tegrated to the following two-dimensional conservative
system:
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"~ =( —1)"M —+, (6.1 1)
dO 6I

where g—=g —1'„, the index n is the same as in Eq. (6.10),
and M =—(K +28 —2)/p. As follows from Eq. (6.11), the
trajectory intersecting the axis 0=0 has, at the intersec-
tion point, the slope

=
—,'( —1)"M .

0=0
(6.12)

FIG. 9. The chain of the separatrix loops of Fig. 3 after the
"period doubling" at the boundary of the parametric region
(6.13).

and
0, = —p(cosg)(K +28 +2)

02 =~/2 p(cosg)(K— 28 ——2)

(6.8a)

(6.8b)

(K+28) 4~0 . — (6.9)

It is important to note that the condition (6.9) is opposite
to that under which, in the case p=0, there exist the sad-
dles S shown in Figs. 2 and 4. Quite analogously, the sta-
bility condition for the stationary point (6.8b),

(K —28) —4 0

[cf. Eq. (6.9)], is just opposite to that providing the ex-
istence of the saddles S (Fig. 4).

In the case p=0 the dynamical trajectories could not
intersect the vertical lines sin(20) =0 (see Figs. 1—4). At
p&0, the intersection is possible at the points where cos1ij
vanishes, i.e., at

(recall cosg=+I ). In the limit IM~O, the vector solitons
(6.8) go over into the simple ones.

At p suIIiciently large, Eq. (6.6b) may lose two roots.
In this case, either root (6.7) merges with one of the roots
(6.8), and both disappear. It follows from Eq. (6.6b) that
the merger bifurcation takes place at

sin (20)= —p(cosf) /(8 + 1) .

At small p, it is also easy to investigate the stability of
the stationary point determined by Eqs. (6.6a) and (6.6b).
The linearized equations (6.3) yield the stability condition

Using these results, one can construct a phase portrait
of the dynamical system (6.3). At small p, a modification
of the phase planes investigated in Sec. II at p=0 is
significant only at small values of sin(20) (i.e., near the
simple-soliton states). In the case when the condition
(6.9) holds, or, according to what was'said above, when
the stationary point (6.8a) is stable (a center), and the sad-
dles S (Figs. 2 and 4) do not exist, a vicinity of the line
0=0 takes the form shown in Fig. 6.

In the opposite case, when the stationary point (6.8a) is
unstable (a saddle), the phase plane of Fig. 2 or 4 is
modified as shown in Fig. 7.

To conclude this section, let us briefly discuss possible
bifurcations of the phase portraits at larger values of p.
As was mentioned above, one of the points (6.7) may
disappear together with either of the ones (6.8). In terms
of Fig. 7, this implies annihilation of the saddles S, with
the mate centers C. Thus we arrive at the phase portrait
of Fig. 8.

At last, it is easy to see that the stationary points (6.5)
exist provided

p ~4 K!(1 8—)— (6.13)
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¹teadded in proof. Figure 7, where the separatrices
connect the nearest saddles S&, represents the simplest
variant of the phase plane (0, $) in the case when p is
small and the inequality (6.9) does not hold. More com-
plicated variants, when each nth saddle is connected by
the separatrices with the (n —X)th and (n +X)th ones,
are possible for any X ~ 2 as well.

g=f„=——(2n+1), n =0,+1,+2, . . . .tl (6.10)

Using Eqs. (6.3), one can readily find that, in a vicinity of
the intersection point (0=—0, it =g„), the dynamical tra-
jectories are governed by the asymptotic equation
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