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Class of exactly solvable master equations describing coupled nonlinear oscillators
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Through use of the notation of thermofield dynamics, an exact solution of a class of master equa-
tions describing coupled nonlinear oscillators is presented.

I. INTRODUCTION

In a recent work' we highlighted the usefulness of the
thermofield dynamics notation for master equations
that appear in studies of quantum optics. This notation
enables one to transcribe master equations as
Schrodinger-like equations, thereby making them amen-
able to algebraic techniques such as those used for solv-
ing the Schrodinger equation for quadratic parametric
processes in quantum optics and quantum acoustics. '

In a subsequent work we applied these methods to the
master equation of a nonlinear oscillator described by the
Hamiltonian

H =%co(a a)+fig(ata)

Various aspects of this nonlinear oscillator with or
without damping have been investigated by a number of
authors. ' In particular, an exact solution of the mas-
ter equation for this problem was obtained by Daniel and
Mjlburn and by Perinova and Luks by solving the cor-
responding Fokker-Planck equation for the Q function.
In our work we showed that this master equation can be
solved rather elegantly using the notation of thermofield
dynamics, and in a way that hardly requires more eA'ort

than is necessary for the linear case. An exact solution of
this problem along similar lines has also been indepen-
dently given by Perinova and Luks. The aim of the
present work is to generalize our earlier work on the mas-
ter equation for a single nonlinear oscillator to that
describing coupled nonlinear oscillators.

This work is organized as follows. In Sec. II we give a
brief summary of thermofield dynamics and discuss, in
the context of master equations, its connection with the
operators introduced by Davies. In Sec. III we use
the thermofield-dynamics notation to give an exact solu-
tion for a class of master equations describing coupled
nonlinear oscillators. Finally, in Sec. IV we consider
some special cases that have been discussed in the context
of wave propagation in a nonlinear medium and which
fall into the class of master equations discussed in Sec.
III.
II. BRIEF SUMMARY OF THKRMOFIKLD DYNAMICS

In thermofield dynamics one associates, with a den-
sity operator p acting on a Hilbert space &, a state vector

lp ), 0~ a ~ 1, in the extended Hilbert space &Cs&*, so
that

(A)=TrAp=(p' lAlp & .

The state lp ) is given by

where

in terms of a complete orthonormal set lN ) in &.
In dealing with bosonic systems it is natural to use, for

lN), the number states ln ) and to introduce creation
and annihilation operators a, a, a, and a as follows:

aln, m ) =v'n ln —l, m ),
aln, m)=&m ln, m —1),
atln, m ) =&m + 1 ln + l, m ),
atln, m)=&m+lln, m+1) .

(5a)

(5b)

(5c)

(5d)

The operators a and a commute with a and a ~. The re-
lations (5) are the analogs of the following relations in the
usual notation:

ln&&mlat=&m ln&&m —ll,
a' ln &&ml=&n+lln+1&&ml,

ln &&mla =&m+lln &&m+ll

(6a)

(6b)

(6c)

(6d)

In other words, a and a, respectively, simulate the ac-
tion of a and a on ln ) ( ml from the right.

From the expression for lI ) in terms of the number
states,

where lN ) constitutes any complete orthonormal set in
(We use the notations and conventions of Ref. 1.)

The relation (3) is simply the counterpart of the resolu-
tion of the identity

(4)
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~I) = g ~n, n),
n

it follows that

a~r&=at~S&,

a'~I ) =a ~1) . (8b)

(18)

and of the fact that K+, K, and K3 have simple actions
on

~ n, m ), enabling one to solve (11) and hence (9) purely
algebraically, as was shown in Refs. 1 and 7.

Given the evolution equation for p, the relations (8) en-
able one to transcribe it into a Schrodinger-like equation
for ~p ) associated with the density operator p. For dis-
sipative systems this is only possible for a = 1.

A. An illustration

B. Connection with the operators introduced by Davies

In the specific context of the master equation for a
linear oscillator (9) with n=0, Davies introduced an
algebraic technique for its solution. Extending his work
slightly, one may introduce the following operators

Consider, for example, the master equation for a linear
oscillator

A+p=a pa, A' p=apa

~3p= —,'(atap+paa ), Mop=[a a,p] .
(19)

a
at ' 2

p= —ice[a a,p]+ —'y(n+1)(2apa" —a ap —pa a)

+ —,'yn(2a pa —aatp —paat) . (9)

Applying ~I ) on (9) from the right and using (8), the mas-
ter equation (9), in the thermofield-dynamics notation
goes over to the following equation for the state

~ p ):

at (p) = —iH (p),

where

(10)

iH = i cu—KO+—y( n + 1)K +y nK+

—y(2n+1)K~+ —,'y . (13)

The operators K+, K, and K3 generate the su(1, 1) alge-
bra

[K,K ]=2K~, [K3,K+ ]=+K+, (14)

Ko is a Casimir operator. Use of the disentangling
theorem for su(1, 1) (Ref. 26),

exp(y+K++y3K3+y K )

=exp(I +K+ )exp[(lnI 3)K3]exp(I K ), (15)

—iH= —ice(a a —a a)+ —,'y(n+1)(2aa —a a —a a)

+ —,'yn(2a a —aa —a a ) .

Introducing the operators

K+ =a a, K =aa, K3= —,'(a a+a a+1),
(12)

Ko=(a a —a a),
we may rewrite (11) as

In terms of these, the master equation (9) may be written
as

a
at p = iXp, — (20)

III. EXACT SOLUTION OF A CLASS
OF MASTER EQUATIONS DESCRIBING COUPLED

NONLINEAR OSCILLATORS

Generalizing our previous work on the master equation
for a single nonlinear oscillator, we consider the follow-
ing master equation:

p= —i g co;[a, a, ,p] i g y,j[a; a;ai—aj,p)

+ —,
' g y, (n;+l)(2a, pa; —2a;a;p —pa, a;)

where

ice~—o+y(n+1)%' +yn%'++y(2n+1)%3+ —,'y .

(21)
These operators are clearly similar to the operators K+,
E K3 and Eo introduced above and obey the same
algebra, as can easily be verified. Thus, from an algebraic
point of view, the two techniques are the same. However,
by introducing tide operators to replace the action, from
the right, of a and a on p, the thermofield-dynamics no-
tation enables one to carry out certain algebraic manipu-
lations that, at first sight, may not be apparent in the
method of Davies. This may be clearly seen from our
treatment of the master equation of the nonlinear oscilla-
tor.

where
+ —,

' g y, n, ( 2a, pa,. —a; a;p —pa, a, ) .
i = I

(22)

2y+sinhP
r+

2P cosh/ —y3sinhg
(16)

In the therrnofield-dynamics notation, the master equa-
tion (22) goes over

2
2P cosh/ —y3sinhg

2

(17)
where

~p&= —iH~p&, (23)



4056 BRIEF REPORTS 43

N N
i—H= i—g co;(a; a; —a ta) —i g y,)(a,.ta,.ata. —a ta,.a ta )

i=1 ij =1
N N

+ —,
' g y;(n;+1)(2a, a; —a, a, —a ta, )+—,

' g y, n, (2ata t —a, at —a, a t) .
i=1 i=1

Rewriting the second term on the right-hand side (rhs) of (24) as
N

we find that —iH may be expressed in terms of K+, K 3 and K o as follows:

N N NiH=—g i —co; —g y; Ko+ —,'y;+y;(n;+1)K' +y;n;K'~ — y;(2n;+1)+ g 2iyJKJO K3
i=1 j=1 J =1

From (23) and (25) we have

(24)

(25)

(26)

lp(t) =exp( —iHt)lp(0) ) = + exp(yoKO+ ,'y;t)exp—(y'+K'+ +y' K' +y3K3 )lp(0) ), (27)

where

N

yo t
j=1

(28a)

where I + and I 3 may be calculated from y+ and y3
given by (28) using (16)—(18).

Consider now an arbitrary initial condition for p(0)

lT+ =7'n. ~

y' =y;(n;+l)t,
(28b)

(28c)
p(0) = y p „(0)lm) (nl, (30)

y', = — y;(2n, +1)+ g 2iy, KJO t .
j=1

which for lp(0) ) corresponds to
(28d)

Since Eo's are Casimir operators, the disentangling
theorem (15) may still be used to write (27) as

lp(0))= y p „(0)lm, n) .
m, n=O

(31)

N

lp(t)) = g exp(y KO+0,'y, t)e p(xI'+K'+ )—

X exp[(lnI 3)K3]exp(I' K' )lp(0) ), (29)

Substituting this in the rhs of (29) and successively apply-
ing the operators on

l m, n ), we obtain, in exactly the
same manner as for a single oscillator, the following ex-
pression for p „(t):

p „(t)

min( m n) oo N

q=O p=O i =1
'
exp[yo(m; n; )+ ,'y;—t]—m,. +p; —

q;
1/2n+p, . —q; m; n;

q.

X[1'~(m —n)] '[I 3(m —n)] ' ' ' [I' (m —n)] ' 'p ~p q, „~p q(0) .

For the Q function

Q(a, t)= (alp(t)la),
we then obtain

Ul . Pk.

(a,*) ' (a, )
'

I 2 i [~;+&;+1~~2Q(a t)= g Q exp[yo(m; n)+ ,'y t—], ,
exp[(I + ——1)la l ](I 3)

' '
g „(0),

m, n=O i =1 t i

where

(33)

Iv (I '

g (0)= g +, Q(m;+ p)!Q( n, +p, )!p „. „(0) .
p=O;=1

(34)
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In particular, for the initial condition

one finds that

(35)
C =

and

a +ib
v'2

a —ib a —ib — a+ib
v'2 ' v'2 'C= (40)

N

g „(0)=Q I(ao;) '(cto;) 'exp[(l" —i)lcto;I']I (36)
C—a+b a+b a+b

d a —b
v2 v2 v2 v'2 (41)

which when substituted in (33) yields the expression for
the corresponding Q function.

the two master equations, in the thermofield-dynamics
notation, can be cast into the form discussed earlier and
may therefore be solved exactly.

IV. SOME SPECIAL CASES

H =p(at +bt )(az+bz)+ 9 .(ata +btb)z.2'

and that due to Tombesi and Mecozzi' is given by

(37)

II =A(a b+ab )+ (a b+a—bt)
2

(38)

Two Hamiltonians involving two modes have been dis-
cussed in the literature in the context of propagation of
electromagnetic waves through a nonlinear medium. The
one due to Agarwal and Puri is given by

V. CONCLUDING REMARKS

We have presented a class of exactly solvable master
equations describing coupled nonlinear oscillators. The
solution was obtained by first transcribing the master
equation as Schrodinger-like equation in the thermofield-
dynamics notation and then using purely algebraic tech-
niques. This method of solution for the problem at hand
turns out to be much simpler and much more elegant
than attempting to solve the Fokker-Planck equation for
the P function or the Q function, which in this case turns
out to be multivariate Fokker-Planck equation with non-
linear drift and nonconstant diffusion coe%cients.

y, =yb, n, =nI, ,

by defining

(39)

If dissipation is included via the usual master equation
techniques, then for the case
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