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Geometric dependence of the mean excitation energy and spectral moments of water
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The spectral moments S(k) and I.(k) of the dipole oscillator strength distribution of water have
been calculated in the random-phase approximation as a function of molecular geometry. Several of
the moments vary quite strongly with the 0—H bond distance, while the dependence on bond angle
is much less pronounced. In particular, the mean excitation energy is seen to change strongly with

RoH, being 72.92 eV when calculated at the molecular equilibrium geometry, and 71.61 eV in the vi-

brationally averaged ground state. Vibrationally averaged values of S(k), —6(k (1, are also re-
ported along with the mean excitation energy for straggling, I, .

I. INTRODUCTION

We consider the DOSD of a system defined by the set
of all excitations with excitation energies I Eo„j and asso-
ciated oscillator strengths t fo„I. The spectral moments
of the DOSD are then defined by

S(p)= JE" dE,
dE

L (p) = J E"lnE dE,d
dE

(2)

where the integral encompasses all excitations, discrete
and continuous. The associated mean excitation energies

In recent years the techniques used to measure the
stopping of swift, massive particles by material foils have
matured to the point where a reasonably small difference
in stopping due to the chemical and physical state of the
target can be measured. ' One possible basis for these
variations lies in the variation in the mean excitation en-
ergy (10) of the target system with geometry, for exam-
ple, that attendant on the geomentrical differences be-
tween the free molecule in water vapor and the bound
molecule in ice. Experimentally, differences in the stop-
ping of water and ice have been found to be some
10—12%. For a molecular solid such as ice, this is too
much to be explained by the usual plasma frequency ar-
guments. Perhaps it is a geometry-based problem.

There have been few studies of the effect of geometry
on mean excitation energies, and what work there is con-
centrated on diatomic molecules. We wish, then, to
investigate the dependence of the mean excitation energy
of water on molecular geometry. The variation is found
to be large enough so that comparison with experiment
should be with vibrationally averaged theoretical values,
and we report those values here.

The mean excitation energy is only one of the many

physical properties that can be extracted from the
dipole-oscillator-strength distribution (DOSD) of a sys-

tern, and consequently we report several other moments

as well.

II. METHODOLOGY

((r.;rb) &E= &
n&0

&olr. ln ) & nlr, lo)
E —E„+Eo
&0 r, ln ) & nlr. lo&

E+E.—Eo
(4)

where r, is a component of the dipole operator. From
the poles Eo„=E„Eoand the resi—dues (Olrln ) the di-
pole length oscillator strengths can be calculated

fo„=—', (olrln & (nlrlo&(E„—Eo),
where all quantities are in hartree atomic units.

We solve the equation of motion for the propagator
perturbatively, using the Auctuation potential as the per-
turbation. ' Experience shows ' ' ' that correlation is
needed in order to calculate reliable spectral moments of
the DOSD. One needs to calculate the propagator at
least in the consistent first-order approximation, which is
identical to the random-phase approximation (RPA).
The RPA adds correlation in both ground and excited
states in a balanced way.

The polarization propagator is evaluated using a finite
basis set, which yields a finite number of excitations equal
to the number of allowed particle-hole excitations. As a
result, we approximate the continuum with a finite num-
ber of discrete excitations placed such that they represent
the continuum. We have found this to work well for
cases such as the present one, where we evaluate quanti-
ties which depend on sums over all excited states. How-
ever, no physical significance can be attached to individu-
al continuum pseudostates obtained in this way.

The basis used in these calculations is the uncontracted
(15s,8p, 4d/10s, 3p ) Gaussian basis of Lazzeretti and

(in atomic units) can then be obtained as

I„=exp[L (p)/S(p) j .

To evaluate these moments one needs the complete sets
of excitation energies I EO„ I and oscillator strengths

If0„ I for the system. These we obtain, in the dipole
length formulation, as the residues and poles of the polar-
ization propagator, defined as ' '"
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A criterion of basis-set quality for calculations of
second-order dipole transition properties such as the
DOSD is the fulfillment of the Thomas-Reiche-Kuhn
(TRK) sum rule. For the dipole length oscillator
strengths [Eq. (5)] and their velocity formulation ana-
logs"

f „=—', &0IpIn & &n IpI0&l(E„E)—,
one then has

S (0)= g fo„,
n&0

S (0)= g fo„.
n&0

The TRK sum rule then states that, for a complete basis,

S (0)=S (0)=N, (8)

(7a)

(7b)

where N is the total number of electrons in the system.
For a finite basis, then, the agreement of S (0) with
S (0) indicates how well the tight and diffuse functions
in the basis are balanced, while agreement of the two for-
mulations with N gives an indication of the completeness
of the basis. In a complete basis set the fulfillment of the
TRK sum rule does not depend on geometry, and
changes in S (0) attendant on changes in geometry are at-
tributable to the slight changes in the basis set caused by
moving the atom centered functions. At a standard
water geometry' of R OH

= 1.811 096 a.u. and
e= 104.4489', we calculate S (0)= 10.007 and S (0)
=9.945 indicating that the basis is both well balanced
and (for dipole transitions) reasonably complete.

The sum rules S(k) and L (k) have been calculated at
20 different geometries with R =R OH and e =e„o„be-
ing varied separately and jointly. In Table I we present

TABLE I. Variation of S(p), ' L (p), ' and I„"with molecular
geometry.

Zanasi, ' which we have previously used for calculations
on water. The set consists of 101 functions and admits
418 particle-hole excitations.

III. RESULTS

data at several representative points' for S(p), L(p),
and I„calculated in the dipole length formulation. It is
clear that there is significant variation of the spectral mo-
ments of the DOSD with geometry, and that the varia-
tion is more strongly dependent on R than on e. Howev-
er, the TRK sum rule [S(0)] is nearly geometry indepen-
dent, thus substantiating the completeness of the basis
set. In Fig. 1 we plot ID(R) for fixed e, and Io(e) for
fixed R to illustrate the difference in R and 6 dependence
of one of the spectral properties. Although the R and e
coordinates are in no way equivalent, they are both plot-
ted approximately +10% from equilibrium.

The moments with large negative k are most sensitive
to geometrical variation. This is because the large nega-
tive powers of Eo„place most emphasis on the low-lying,
or valence, excitations, and it is the valence and low-lying
virtual orbitals that change most with geometry.

We expect the moments with p ~ 0 to be most reliable
since the moments for p )0 place emphasis on the high-
energy excitation involving high-lying virtual orbitals,
and those are the most poorly represented in a finite basis
set. Similarly, the moments with smaller I@I should be
most reliable, as large

I p I magnifies any error in the
valence excitation energies, for example, those arising
from lack of second- and higher-order electron correla-
tion effects in RPA.

As there is a significant variation of Io and the spectral
moments with geometry, comparison with experiment
should be made with vibrationally averaged theoretical
numbers. Thus we vibrationally averaged the mean exci-
ation energies and spectral moments using the Morse-
oscillator —rigid-bender internal-dynamics (MORBID)
approach of Jensen, ' employing a potential energy func-
tion determined by fitting to experimental energy spac-
ings. ' In this method the values for a particular mo-
ment are fitted to a polynomial of the form

f(p, r, , r3)= g g Ckisinp(cosp, —cosp)~
j k~1

X [(r, r, )"(r3 r, )'— —
+(r, r, )'(r, r, )"]—,

—

0
R (a.u. )

104.5'
2.10

104 5
1.811

104.5' 95.0
1.775 1.775

120.0'
1.775

Ip(eV)

95.689
10.008
7.787

10.750
18.870
38.341
88.229

224.222
339.107

9.302
—1.152
—4.945
941.504
68.930

S(1)
S(0)
S(—1)
S( —2)
S( —3)
S( —4)
S( —5)
S(—6)
L(1)
L(0)
L( —1)
I ( —2)
I,
Io

96.016
10.007
7.042
8.500

12.968
23.341
47.838

109.010
388.751

9.863
—0.152
—2.738
926.780
72.915

96.118
10.006
6.953
8.267

12.440
22. 133
44.907

101.371
339.273

9.940
—0.045
—2.542
926.305
73.482

'In a.u. , dipole length formulation.
In eV.

'Standard geometry for the isolated molecule.
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FIG. 1. Variation of Io with molecular geometry. Io(R) for
fixed e=104.5 and IO(O) for fixed R=1.775 a.u.
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TABLE II. Vibrational averages (J=O) of the mean excita-
tion energies' and various moments of the DOSD for the
ground and fundamental levels.

State' A, (0,0,0) A, (1,0,0) A, {0,1,0) 8 (0,0, 1)

Energy"
Io
Il
S{1)
S( —1)
S( —2)
S( —3)
S( —4)
S( —5)
S( —6)

0
71.61

920.90
94.89
7.04
8.66

13.55
24.98
52.48

123.38

3656.32
71.32

927.97
94.99
7.12
8.95

14.37
27.17
58.66

143.07

1594.25
69.42

892.99
92.04
6.84
8.44

13.23
24.43
51.44

121.48

3755.72
71.51

926.14
95.26
7.14
8.96

14.39
27.17
58.51

142.94

'In eV.
In a.u.

'States labeled by their total vibrational symmetry and by the
number of quanta in the v&, v~, and v3 modes.
In cm ', above ground state.

where r& and r3 refer to the two O—H bond distances,
respectively, p is the supplement of the angle 0, and sub-
scripts e refer to quantities at the equilibrium geometry.
The J=O vibrational wave functions are calculated by the
MORBID method' and the appropriate matrix elements
are then determined. '

The resulting vibrationally averaged quantities are
given in Table II for the ground state and the fundamen-
tals. Comparing the vibrationally averaged ground-state
values to the values calculated at the fixed standard
geometry, we find the same trend as before: the greatest
changes are for largest ~p~. Comparison of the vibration-
al averages for the fundamentals to those for the ground
state shows that the vibrational average changes much
more by exciting the stretching vibration than the bend-
ing. This is independent of which of the stretching
modes is excited, and is consistent with our earlier obser-
vation that the moments are more strongly dependent on
R than on e.

IV. DISCUSSION

There are several experimental values of Io with which
we can compare, but the best, most generally accepted,
value is that of Zeiss et al. , who use an empirical
scheme based on photoabsorption and fast-electron
inelastic-scattering data for dilute water vapor to con-
truct a DOSD and extract Io from it. Their value of
71.62 eV is primarily derived from experiments and thus,
in some manner, represents a vibrational average. It is in
nearly perfect agreement with our ground-state vibration-
al average. Thermal vibrational averaging would not be
expected to alter this value, as the lowest excited state
(0, 1,0) is 1594 cm ' above the ground state
(e ~" =10 ) and the higher states all be above 3500
cm ' above ground. There are other experimental values
which do not agree so well with ours, including one de-
rived from stopping power measurements by fitting ' (ap-
proximately 60 eV), and an older value of Zeiss et al.
(70.8 eV). There are also a few theoretical values avail-
able such as the equilibrium geometry value we have cal-
culated with the same basis (72.92 eV), and a value ob- TABLE III. Comparison of some moments' of the DOSD.

Mulder Kirtman, Chipman
This and and Palka'

work Zeiss et al. ' Meath MO VB

95.60
100

7.32
9.64

16.75
24.01

92.5S(1) 92.57 90.5
S(0) 10g

S( —1) 8.20 8.23
S( —2)
S( —3)
S(—4)
S( —5)
S( —6) 229.9

'In a.u. , dipole length formulation.
Ground state [ A, (0,0,0)] vibrational average.

'Reference 20.
Reference 25.

'Reference 24. MO denotes molecular orbital. VB denotes
valence bond.
Not vibrationally averaged. The variation in S(0) is less than
0.005 over the range of geometries considered (see Table I).
Constraint on the determination.

7.98

tained from molecular sum rules and atomic data (71.35
V) 24

The ground-state vibrationally averaged mean excita-
tion energy for straggling Ii is found to be 920.90 eV,
also in excellent agreement with the Zeiss et al. value
of 931.4 eV and Peek's value of 919.0 eV.

There are several calculations of the spectral moments
of the DOSD, as many of them have direct connection to
measurable properties and thus generate some interest.
In Table III we recapitulate some of them. The only re-
ported spectral moments for a wide range of p are those
of Zeiss et al. , who extract moments from their experi-
mental DOSD for —14&p +2. Although we have calcu-
lated values for p=2 and could easily for p (—6, we do
not report them as the reliability of our calculations de-
creases for large ~p~ (vide supra). We agree quite well
with experimental values down to p= —4, but the results
deteriorate for p = —6. Again this is due to the
magnification of errors in the excitation energies due to
the factor E~z„ in the moment. We attribute deterioration
of the S(k) moments for large, negative k to lack of post
RPA correlation. We do agree with the experimental
numbers quite a bit better than either of the other calcu-
lations, however. The calculations by Mulder and
Meath and by Chipman, Kirtman, and Palka utilize
certain sum rules to calculate the moments as ground-
state averages of electric moment operators, and are re-
stricted to —1~k ~2. Both groups of authors use a
self-consistent field (SCF) ground-state average and Chip-
man, Kirtman, and Palka use a VB ground state as well.
None of the calculations is correlated, and all are calcu-
lated at a single geometry. Thus the differences between
their calculations and ours can be attributed to these two
factors. [In the limit of a complete basis the calculation
of certain S(k) is equivalent when performed as a SCF
ground-state average or as a sum over RPA generated
states. Thus, since none of these authors use a com-
plete basis, it is a matter of semantics whether these
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differences are attributed to lack of correlation or basis
set effects. ] As Chipman, Kirtman, and Palka obtain
only 59.6 eV for Io and 988 eV for I„similar differences
in the other spectral moments are not unexpected.

V. CONCLUSIONS
The polarization propagator at the RPA level of ap-

proximation, when accompanied by vibrational averaging
of the results, seems to provide an accurate and straight-
forward method for calculating the spectral moments of
the DOSD and the associated mean excitation energies.
The mean excitation energies for stopping and straggling
are found to be ID =71.61 eV and I& =920.9 eV, respec-
tively, vibrationally averaged in the ground state, in ex-
cellent agreement with the best available experimental re-
sults of Zeiss et al. Agreement of our calculated mo-
ments with those of Zeiss et al. is best for small ~p~, with
some deterioration for the large negative moments.

Many of the spectral moments, and thus their associat-
ed Incan excitation energies, show a strong dependence
on geometry. In the case of water, the variation with
bond length is much greater than with bond angle. This
is quite different than the case of the magnetic suscepti-
bility and rotational g factor in NH3, where the angular
dependence dominates. Thus one must be very careful in
drawing conclusions about which internal modes effect a
given property most strongly.

If one considers the static values of Io calculated at the
geometry of the isolated water molecule and at the
geometry of ice, where the bond angle remains about the

0

same but the bond length increases by -0.05 A, one
calculates Io"'""=72.92 eV while Io"=71.51 eV in the
dipole length formulation at the RPA level. This is clear-
ly not enough difference to give the observed phase
difference in proton stopping. The solution to this prob-
lem is thus not in the change in mean excitation energy
attendant on bond length, but must lie elsewhere;
perhaps in the hydrogen bonding in ice.
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