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In this paper we examine the possibility of generating displaced and squeezed number states out
of number states by the general driven time-dependent oscillator. Using the evolution-operator
method developed by Cheng and Fung [J. Phys. A 21, 4115 (1988)], we investigate the evolution of a
number state of a general driven time-dependent oscillator as well as its squeezing property. Our
analyses indicate that the wave function of the time-dependent oscillator starts as a number state at
t =0 and evolves as a displaced and squeezed number state at a later time.

I. INTRODUCTION

In the past few years displaced and squeezed vacuum
states (or simply squeezed states) of the electromagnetic
field have been widely studied, both theoretically and ex-
perimentally.!’> These are states that have reduced fluc-
tuations in one field quadrature, when compared with
coherent states. They are of considerable importance
these days owing to their prospective application, for in-
stance, in optical communication, interferometry,
gravitational-wave detection, Rydberg atoms, and so
on.>"® Recently, considerable attention has been paid to
generalizations of the squeezed states, namely the dis-
placed and squeezed number states.” The displaced and
squeezed number state is defined by

tn
z,a,n ) =S(z)D(a)|n ) =S(z)D(a)Z=0) , (1)
V!
where S(z) is the squeeze operator, given by
S(z)'———exp[%(zan—z*cﬂ)] , (2)

and D(a) is the displacement operator, given by

D(a)=explaa’—a*a) . (3)

For n=0, the displaced and squeezed number state
reduces to the well-known squeezed state. The squeezing
properties related to |z,a,n ) states can be directly de-
duced from those for the displaced and squeezed vacuum
|z,a?, with the change of #/2 to (#%/2)(2n—+1). It is
thus evident that for every n the state |z,a,n ) may have,
under appropriate values of z, one of the quadrature vari-
ances less than 7 /2, corresponding to a coherent state.

How can we realize displaced and squeezed number
states in physical terms? Let us consider a simple har-
monic oscillator of unit mass (or a single cavity mode of
the electromagnetic field) with Hamiltonian

24 .22
H=L+2—wq—=ha)(aTa+%), @)
where a is the annihilation operator, given by
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Suppose that the oscillator is in a number state |n),
which is an eigenstate of the Hamiltonian operator. Then
a simple way of realizing the displaced and squeezed
number state is to add, beginning at some moment of
time, a term %ﬁ'zqz—)\q to the harmonic-oscillator Hamil-
tonian,® so that at all later times we have

H=#0(4"4+1)—e, (6)
where
Q(g—qy)+ip
2
Q=(0?+p)\2, o
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Here H' is just the Hamiltonian of a displaced and
stiffened harmonic oscillator, and A4 is the corresponding
annihilation operator. It is not difficult to show that A
and 47 are linearly related to @ and a T, i.e.,
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Equations (8) define a linear unitary transformation and
may be written as

A =U(r,s)aU(r,s)J'r ,
1 t + )
A'=U(rs)a'[U(rs)]",
with

U(r,s)=S(r)D(s),

—_1, |@
r 2Im al’ (10)
s=—VQ/2%q, .

Clearly the unitary operator U is just the product of the
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squeeze operator S and the displacement operator D.
The number state |n )" associated with H’ may also be ex-
pressed as

|n)Y'=U(r,s)|n)=S(r)D(s)|n) . (11)

Hence the state |n)’ is the desired displaced and
squeezed number state with respect to the state |n ).

The discussion presented above suggests that displaced
and squeezed number states of a simple harmonic oscilla-
tor can be generated by displacing the oscillator and
changing its frequency. It is therefore the purpose of this
paper to examine the possibility of generating displaced
and squeezed number states by the general driven time-
depgendent oscillator which is described by the Hamiltoni-
an.

2
Ho=—L + o xi—mfx, 12
2m(t) 2

where the mass parameter is taken as
m (t)=myexp [Zf'y(t)dt] , (13)

and w(t), f(t), and y(t) are arbitrary functions of time.
Using the evolution operator method developed by
Cheng and Fung,!® we investigate the evolution of a num-
ber state of a general driven time-dependent oscillator
and discuss its squeezing property. An analytical exam-
ple of a damped pulsating oscillator with variable fre-
quency in the presence of an external driving force is ex-
amined, and implications of the results are discussed.

II. TIME-EVOLUTION OPERATOR

Consider a general driven time-dependent oscillator
whose Hamiltonian takes the form

H(O=Hy(t)+V (1), (14)
with

Ho(t)=5£—2(—t-)—+%m(t)co(t)2x2, (15)

V(n=—mf (0x (16)
where

m(n=moexp [2 [ y(dt |, (a7

and w(t), f(), and y(¢) are arbitrary functions of time.
It is well known that H,(¢) can be rewritten in terms of
the su(1,1) generators as follows:!!

Ho(t)=a,(t)] 4 +ay(t)Wg+ay(_ (18)
where
T+ =7 (19
—i 2 20
J_ YL (20)
i
__ 21
Jo 4ﬁ(px+xp), (21)
and

a,(t)=—ifim(o(t)?, (22)

a,(t)=0, (23)
—_ A

as(t)=——""s . (24)

The operators J ., J,, and J_ form the su(1,1) Lie alge-
bra:

[J+,J_]=_2J0, (25)

[Jo,J+]1=EJ4 . (26)
The corresponding Schrodinger equation is

Ho(t)|\l’0(t)>=iﬁ%|\l/0(t)> . 27
As usual, we will define the evolution operator U,(z,0)
such that

[Wo(2)) =Uy(,0)|¥y(0)) , (28)

where |W((0)) is the wave function at time ¢ =0. Insert-
ing (28) into (27) yields the evolution equation

Ho(t)Uo(t,0)=ifz% Uy(t,0) , (29)

Uy(0,0)=1 . (30)

Since J ., Jy, and J_ form a closed Lie algebra su(1,1),
the evolution operator can be expressed in the following
form:

Uy(t,0)=exp[c(2)J 1 Jexp[c,(t)Jg Jexples(£)T _ ],
(31)

where c;(¢t) are to be determined. Then by direct
differentiation with respect to time, we obtain

2 UG(1,0)=1h (0 +ho(Oo+h_ (11 _1Uy(2,0) ,
(32)
with
dCl dCz 2 dC3
h+(t)=7—c17+clexp(—c2)— , (33)
ho()="22 ¢ exp(—c,) 252 (34)
olt)= it crexpl—c;)—==
dc,
h_(t)=exp(—c,) (35)

dr
Substituting (18), (31), and (32) into (29), and comparing
the two sides, we obtain after simplication

c,(t)=m(t)-(%ln[F(t)], ¢,(0)=0 (36)
_ F(1)
ey ()= 21n1—F(0) , (37)

1
0=—F(0) [ 'du———,
c4(1) ( )fo U T

where F (t) satisfies the differential equation

(38)
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d?F (1) dF (t)

+&(1) +[w(t)?F(t)=0, (39)
£()=1n[m (1)] . (40)
at

The second-order differential equation can be cast in the
standard form such that

d2
5 +M0) |G(1)=0, (41)
dt
with
G(t)=g(t)F(¢) , 42)
M) =w(t)?—h(t), (43)
_ 1 d’)
t) —g(t)—dtz , (44)
g()=Vm (1) . (45)

Infeld and Hull have noted that most of the analytically
solvable second-order differential equations involving a
single variable that are of interest in electromagnetic and
quantum theory can be transformed into this standard
form.'? Since U,(t,0) is known, the evolution operator U
describing the whole system will be given by

U(t,0)=U,(t,0)U,(1,0) , (46)
where U,(¢,0) satisfies the evolution equation

iﬁ%U,(t,0)=H,(t)U,(t,0) , 47)

U,(0,0)=1, (48)
with H,(t) being defined by

H()=U}(1,00V(1)U,(1,0) . (49)

By straightforward evaluations of (49) we obtain

Cz(t)
2

C3(t)
2

H,;(t)=—m(t)f (t)exp P (50)

In terms of the generators of the Heisenberg-Weyl alge-
bra, H,(t) can be written as'?

H](t)zbl(t)el+b2(t)ez+b3(t)e3 > (51)
where

e1=—‘;l?p , (52)

ezzx/%i—x , (53)

e;=i, (54)
and

bl(t)=li/5ﬁ—m (6)f (t)cs(t)exp

(55)

Cz(t) }

by(1)=iVZAm(1)f (t)exp | — cz;” ; (56)
b3(1)=0. (57)
The operators e; form the Heisenberg-Weyl Lie algebra
[er,ex]=es, (58)
[e;,e;]1=[e;y,e3]=0 . (59)

Following similar procedure as shown above, the evolu-
tion operator U,;(¢,0) is found to be

U,(t,0)=exp[d,(t)e; Jexp[d,(t)e, Jexp[d;(t)es], (60)
with
dl(t)=f0tb1(u)du ) (61)
dy ()= [ by (w)du (62)
d3<t)=—f0’b2(u>d1<u)du . (63)

Hence we have obtained an exact form of the time-
evolution operator U(z,0) of the general driven time-
dependent oscillator.

III. SQUEEZING IN GENERAL DRIVEN
TIME-DEPENDENT OSCILLATOR

Suppose we start with a number state at  =0:

w(0))=|n) ; (64)
that is, an eigenstate of the number operator N =a'a,

Nln)=n|n) , (65)
with

a= %% , (66)

my=m(t =0), (67)

wg=w(t=0) . (68)

The wave function at any later time will be represented
by

|W(1))=U(1,0)|¥(0)) . (69)
Now we can define a new operator A(t) as
A()=U(1,00aU(1,0) , (70)

and it is easy to see that the wave function |W(¢)) is a

number state with respect to the new operator
Nn=A41)"4),
N@|W(1))=n|¥(1)) . 71

Using (31), (46), (60), and (66), it can be shown that the
original operator « is related to the new operator A4 (t) by
a Bogoliubov transformation plus a translation

A =nDa+n,Da’ =), (72)
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with
|771|2_|7]2|2:1 s (73)

where 17, and 7, are given by

m(t)y=2Lexp(—c,/2) |1—c c;+explc,)

ic, . (74)
mowo lC3moa)0 ’
My(t)=—2Llexp(—c,/2) |1+c c; —explc,)
icy . (75)
Moo icsmpwg |
and
1
B=—————(mowyb, —ib,) . (76)
v 2moay 20 2

Also, it is clear that the operators A (¢) and 4 63 satisfy
the commutation relation

[4(), AT (1)]=1 an

at all time ¢. In fact, apart from the presence of the c-
number function B(¢), the operators A(¢) and 4 T(¢) take
exactly the form of Yuen operators.'* Furthermore, the
evolution operator U,(¢,0) can be written as a product of
a squeeze operator and a rotation operator,’ i.e.,

Uyp(£,0)=S(z(2))R($(1)) , (78)
with

S(z)=exp[L(za?—2z*a?)], (79)

R(¢)=exp(——i¢a*a) , (80)
where

cosh|z|=|n,| , (81)

sinh|z|=|n,| , (82)

z _ ™ |771|_"72 .
2] = ol e ——]nziexp( ig), (83)

and the operator U,(z,0) is just the Weyl displacement
operator multiplied by a phase factor,? namely,

U,(1,0)=exp[i6(t)1D(B(1)) , (84)
with
D(B)=exp(Ba’—pB*a), (85)
0=d,+ d‘2d2 (86)

Therefore these results imply that the wave function
[W(t)) is a displaced and squeezed number state and its
time evolution is a “displacement” and “squeezing” pro-
cess. As a result, it can be concluded that the wave func-
tion starts as a number state at # =0 and evolves as a dis-

placed and squeezed number state at a later time.

To see its squeezing property explicitly, we will com-
pute the variances of x and p. Using the evolution opera-
tor U(t,0) in Sec. II, it can be shown that the expectation
values of these operators with respect to the wave func-
tion |W(z)) is given by

172
24
(x) - el(m—m2)B*]
2 V2
= R —c, /2)(1—i *1,
p—— e[exp(—c,/2)(1—imywyc;)B* ]
(87)
(p)=—(2mofig)"*Im[ (1, +1,)B*]
= —(2myfiwy)'*Im
X |exp(—e;/2) [exples)—cres — —<— |*
exXp C2 exXp C2 CIC3 mowy .
(88)
The corresponding fluctuations in x and p will then be
5 172
Ax = 2n+1)"?|n,—
X 2m0w0 ( n ) |771 7]2]
172
= A (2n+1)2
2mgw,
X lexp(—c, /201 —imgwye;)| , (89)
’ 172
m yFiw
Ap= | = | @n+ 1)ty
172
myfiw
= 070 (2)1"‘1)1/2
2
ic,
X |exp(—c,/2) exp(cz)—-clc}-—momo ,
(90)
whence
#
AxAp=3(2n+1)|171+112H771—7]2)
_# .
M5(2n+1)}1_1m0w0C3|
x |1 (—e3)——exp(—cj)
c,cyexp(—c, mowoexp c,y
Z%(Zn—t—l) . (91)
Immediately we see that
Ax ~|exp(—c,/2)| , (92)
Ap ~ |exp(c, /2| . (93)

So we obtain diminishing in the fluctuation of one opera-
tor at the expense of an increase in the fluctuation of the
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other operator. Thus, under appropriate values of the
time-dependent parameters w(t), f(¢), and y(¢) of the
general driven time-dependent oscillator, squeezing in
one of the quadrature variances can be attained.

IV. EXAMPLE

For illustration we will consider the case of a damped
pulsating oscillator with variable frequency driven by an
external force. The combined effect of damping and pul-
sation is treated by means of the mass parameter'®

m(t)=mgyexp[2(yt +usinvt)] . (94)
Also, we will take the frequency w(¢) to be given by
1 d®'m()
P=0% M+ —— 95
[ote)] Vm(t)  dt? )

for some constant ). Then Eq. (41) becomes the equation
of motion for a simple harmonic oscillator and can be
solved easily. The desired solution for F(t), which
satisfies the initial condition ¢, (0)=0, is given by

A cosQt + B sinQt

where A4 and B are some constants related by

B _y+tuv _
5 o =tand . 97)

With this F(z) we can find the ¢;(t) of Uy(¢,0):

¢(2)=—m(t)[Qtan(Qt —¢)+(y +uvcosvt)] ,

(98)
c,(t)=—2In E(—)—S(—(-n—_—(élexp[—('yt-i—‘usinvz‘)] )
cos¢
(99)
es(t)= 1 sinQt cos¢ (100)

" meQ cos(Qt—¢)

Once the c;(¢) are found, the determination of the d;(¢)
of U;(t) will be trivial. Assuming a sinusoidal external
driving force, say f(¢)=sin(¢) in Eq. (16), the d,(¢) are

F(t)= — 96
@ Vm(t) ©6) given by
J
VR e, : cos(Qt —¢) cos¢ (101)
d(t)= 20 deTsstmQTexp(yr-f-,u sinvr) cosd cos(Qr—)
ivV#m
2(t)=|—~gftdrsim-lcos(ﬂf—cb)l exp(yr+usinvr) , (102)
cosp| Yo
d (t)=j~rLf’drfTdr'sinfsinT'Icos(QT—-q&)IsinQT’
3 2Q|cosp| Yo 0
. . cos(Q7r' —¢) cos¢ (
/ d . 103)
Xexp(y7+psinvr)exp(y ' +usinvr’) cosd cos(QT — )
Now, using the above results, we can write Aq and Ap as 2 )14 )
follon St vior=| [T v p—sinar [z
' wMm o
21172
cos
172 —sinQtZ(¢t) l ] , (106)
# - _
Ag= X(t)exp[ —(yt+pusinvt)]V2n +1 , cos(Q2t —¢)
2myw
0 _ Y +uv cosvt
Z(t)=tan(Qt —¢)+ ) . (107)
It is clear that there is diminishing in the fluctuation of g,
m o ficw, 172 together with an increase in the fluctuation of p.
Ap= E— Y(t)exp(yt+usinve)V2n +1 ,
V. CONCLUSION
(104) We have investigated the evolution of a number state
of a general driven time-dependent oscillator as well as its
where squeezing property using the evolution operator method
developed by Cheng and Fung. An analytical example of
a damped pulsating oscillator with variable frequency in
AQ—a) 172 the presence of an external driving force was examined.
X(t) €0 3 ¢ + 2smzﬂt s (105) Our analyses indicate that the wave function of the time-
cos’¢ dependent oscillator starts as a number state at £ =0 and
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evolves as a displaced and squeezed number state at a
later time, and that its time evolution is just a displace-
ment and squeezing process. Hence it can be concluded
that displaced and squeezed number states can be gen-
erated out of number states by the general driven time-
dependent oscillator.
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