
PHYSICAL REVIEW A VOLUME 43, NUMBER 1 1 JANUARY 1991

Generating displaced and squeezed number states by a general driven time-dependent oscillator
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In this paper we examine the possibility of generating displaced and squeezed number states out
of number states by the general driven time-dependent oscillator. Using the evolution-operator
method developed by Cheng and Fung [J.Phys. A 21, 4115 (1988)],we investigate the evolution of a
number state of a general driven time-dependent oscillator as well as its squeezing property. Our
analyses indicate that the wave function of the time-dependent oscillator starts as a number state at
t =0 and evolves as a displaced and squeezed number state at a later time.

I. INTRODUCTION

In the past few years displaced and squeezed vacuum
states (or simply squeezed states) of the electromagnetic
field have been widely studied, both theoretically and ex-
perimentally. ' These are states that have reduced Auc-
tuations in one field quadrature, when compared with
coherent states. They are of considerable importance
these days owing to their prospective application, for in-
stance, in optical communication, interferometry,
gravitational-wave detection, Rydberg atoms, and so
on. Recently, considerable attention has been paid to
generalizations of the squeezed states, namely the dis-
placed and squeezed number states. The displaced and
squeezed number state is defined by

fn

/z, a, n ) =S(z)D(a)fn ) =S(z)D(a) —/0),&n!
where S(z ) is the squeeze operator, given by

S(z) =exp[ —,'(za" —z*a )],
and D(a) is the displacement operator, given by

D(a)=exp(aat —a*a) .

For n =0, the displaced and squeezed number state
reduces to the well-known squeezed state. The squeezing
properties related to ~z, na) states can be directly de-
duced from those for the displaced and squeezed vacuum
~z, a), with the change of fi/2 to (iri/2)(2n+1). It is
thus evident that for every n the state ~z, a, n ) may have,
under appropriate values of z, one of the quadrature vari-
ances less than 4/2, corresponding to a coherent state.

How can we realize displaced and squeezed number
states in physical terms? Let us consider a simple har-
monic oscillator of unit mass (or a single cavity mode of
the electromagnetic field) with Hamiltonian

Suppose that the oscillator is in a number state n ),
which is an eigenstate of the Hamiltonian operator. Then
a simple way of realizing the displaced and squeezed
number state is to add, beginning at some moment of
time, a term —,'P q

—kq to the harmonic-oscillator Hamil-
tonian, so that at all later times we have

0'=fiQ( A A + —,
'

) —e,
where

Q(q —qo)+ip
&2iriQ

gp=

2A

Here II is just the Hamiltonian of a displaced and
stiffened harmonic oscillator, and 2 is the corresponding
annihilation operator. It is not difficult to show that 2
and 2 are linearly related to a and a, i.e.,

A = a+ a &II/2fiqo, —
2&con 2&ton

A = a+ a —&0, /2A'qo .
2&con 2&con

Equations (8) define a linear unitary transformation and
may be written as

A = U(r, s)aU(r, s)

A =U(r, s)a [U(r, s)]

with

U(r, s) =S(r)D (s),
= '+''=II = =%co(a ta + —')

2 2

where a is the annihilation operator, given by

(4) 1 ci)
I = ln

2
(10)

coq +EP

+2 Ilco

s = —&A/2iriqo .

Clearly the unitary operator U is just the product of the
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squeeze operator S and the displacement operator D.
The number state ~n &' associated with H' may also be ex-
pressed as

a, (t) = —i firn (t)co(t)

a2(t)=0,
(22)

(23)

~n &'= U(r, s)~n & =S(r)D(s)~n & . (11)

Hence the state ~n &' is the desired displaced and
squeezed number state with respect to the state

~
n &.

The discussion presented above suggests that displaced
and squeezed number states of a simple harmonic oscilla-
tor can be generated by displacing the oscillator and
changing its frequency. It is therefore the purpose of this
paper to examine the possibility of generating displaced
and squeezed number states by the general driven time-
dependent oscillator which is described by the Hamiltoni-
an. '

(24)

I J+ J—]=—2JO

[JD,J+]=+J+ .

The corresponding Schrodinger equation is

Ho(t)~eo(t) & =i' ~eo(t) & .a
at

(25)

(26)

(27)

i'a3(t)=-
m(t}

The operators J+, Jo, and J form the su(1, 1) Lie alge-
bra

2

H(t)= + —m (t)[co(t)] x —m (t)f (t)x,
2m (t) 2

where the mass parameter is taken as

m (t)=moexp 2f y(t)dt

(12)

(13)

~ e,(t) &
= U, (t, o) ~e,(0) &, (28)

where ~%0(0) & is the wave function at time t =0. Insert-
ing (28) into (27) yields the evolution equation

As usual, we will define the evolution operator Uo(t, O)
such that

Consider a general driven time-dependent oscillator
whose Hamiltonian takes the form

H(t)=HO(t)+ V(t),
with

(14)

and co(t), f(t), and y(t) are arbitrary functions of time.
Using the evolution operator method developed by
Cheng and Fung, ' we investigate the evolution of a num-
ber state of a general driven time-dependent oscillator
and discuss its squeezing property. An analytical exam-
ple of a damped pulsating oscillator with variable fre-
quency in the presence of an external driving force is ex-
amined, and implications of the results are discussed.

II. TIME-EVOLUTION OPERATOR

H, (t) U, (t, O) =imari U, (t,O),a
at

Uo(0, 0)= 1 .

(29)

(30)

(31)

where c; (t ) are to be determined. Then by direct
differentiation with respect to time, we obtain

Uo(t, O) = [h+ (t)J+ +ho(t) Jo+h (t)J ]Uo(t, O),
a
at

Since J+, Jo, and J form a closed Lie algebra su(1, 1),
the evolution operator can be expressed in the following
form:

Uo(t, O) =exp[c, (t)J+ ]exp[c2(t)JO]exp[c3(t )J ],

2 1Ho(t)= +—m (tko(t) x
2m (t) 2

V(t)= —m (t)f (t)x,
where

(15)

(16) wltll

dC) dC2 2 dC3h+(t)= —c, +ciexp( —c2)
dt dt dt

(32)

(33)

m(t)=moexp 2f y(t)dt (17)

and co(t), f(t), and y(t) are arbitrary functions of time.
It is well known that Ho(t) can be rewritten in terms of
the su(1, 1) generators as follows:"

dC2 dC3
ho(t) = —2c, exp( —c2)dt dt

dC3
h (t) =exp( —c2)

dt

(34)

(35)

Ho(t) =a, (t)J+ +a 2(t)Jo+a3(t)J
where

(18) Substituting (18), (31), and (32) into (29), and comparing
the two sides, we obtain after simplication

2J = p

l
Jo = (px+xp),

(19)

(20}

(21)

c, (t)=m(t) ln[F(t)], c,(0)=0a

c2(t) = —2 ln
F(t)
F 0

c3(t)= —F(0) f du
1

m(u )F(u)
where F(t) satisfies the ditferential equation

(36)

(37)

(38)
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dFt +g(t) + [~p(t)]'F(t) =o,
dt

(39) c2(t)
b2(t) =i V'Am (t)f (t)exp (56)

b, (t)=0 . (57)

The operators e,. form the Heisenberg-Weyl Lie algebra

The second-order differential equation can be cast in the
standard form such that

[e„e2]=e3

[e„e3]=[ez,e3]=0 .

(58)

(59)
d2

+X(t) G(t)=0,
dt

(41) Following similar procedure as shown above, the evolu-
tion operator UI(t, O) is found to be

G (t) =g (t)F (t),
A, (t) =op(t)' —h (t),

(42)

(43) with

UI(t, O) =exp[d, (t)e, ]exp[de(t)e3]exp[d3(t )e3], (60)

1 d g(t)ht=
g(t) dt'

g(t)=V'm(t) .

(44)

(45)

U(t, O) = U, (t, O) U, (t, O),

where UI(t, O) satisfies the evolution equation

(46)

Infeld and Hull have noted that most of the analytically
solvable second-order difFerential equations involving a
single variable that are of interest in electromagnetic and
quantum theory can be transformed into this standard
form. ' Since Up(t, O) is known, the evolution operator U
describing the whole system will be given by

d, (t)= J b, (u)du,

d2(t)= J b2( u) du
0

d3(t)= —J b3(u)d, (u)du .
0

(62)

(63)

III. SQUEEZING IN GENERAI. DRIVEN
TIME-DEPENDENT OSCILLATOR

Suppose we start with a number state at t =0:

Hence we have obtained an exact form of the time-
evolution operator U(t, O) of the general driven time-
dependent oscillator.

iA UI(t, O) =HI(t)Ut(t, O),a
Bt

Ui(0, 0)= 1,

(47)
that is, an eigenstate of the number operator X—:a a,

Nln &=n ln &,

(64)

with HI(t) being defined by

HI(t)= Up(t, O) V(t) Up(t, O) .

By straightforward evaluations of (49) we obtain

(49)

with

IOCOOX + lP

Q 2m p fled p

(66)

c~(t)
H, (t) = —m (t)f(t)exp

c3(t)
x — p2

(50)
mp=m(t =0),
cop=e3(t =0) .

(67)

In terms of the generators of the Heisenberg-Weyl alge-
bra, Hz(t ) can be written as'

Ht(t)

=bi�(t)ei

+b2(t)e2+b3(t)e3

where

The wave function at any later time will be represented
by

(69)

Now we can define a new operator A (t ) as

lei= ~~7 ~ (52)

(53)

A(t)=U(t, O)aU (t, O), (70)

and it is easy to see that the wave function ~%(t) & is a
number state with respect to the new operator
JV(t): A(t) A (t), —

(54) A'(t)~e(t) & =n ~@(t)& . (71)

c (t )3
b, (t)= . m (t)f (t)c3(t)exp

l2 2
(55)

A (t) =
Yi,(t)a+q, (t)at P(t), — (72)

Using (31), (46), (60), and (66), it can be shown that the
original operator a is related to the new operator A (t ) by
a Bogoliubov transformation plus a translation
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where g1 and g2 are given by

g, (t) =
—,'exp( —cz/2) 1 —c,c3+exp(cz)

(73)

placed and squeezed number state at a later time.
To see its squeezing property explicitly, we will com-

pute the variances of x and p. Using the evolution opera-
tor U(t, O) in Sec. II, it can be shown that the expectation
values of these operators with respect to the wave func-
tion

~
4( t ) ) is given by

1/2

lC1

m pCOp
EC3m pCOp (74)

m peep

2A
1/2

m pro

Re[(g, —gz)P*]

Re[exp( —cz/2)(1 im—ocuoc3 )f3*],

rtz(t)= —
—,'exp( —cz/2) 1+c,c3 —exp(cz)

lC1+ —lC3m oCOp
m pCOo

and

(p ) = —(2moA'coo)'~ Im[(r), +gz)13*]

= —(2moficoo)' Im

lC1

(87)

1/ 2m Octo
(mocoob, Ibz) —. (76)

X exp( —cz/2) exp(cz) —c&c3-
m pcop

(88)

[ 3 (t), A (t)]= 1 (77)

at all time t. In fact, apart from the presence of the c-
number function /3( t ), the operators 3 ( t ) and A ( t ) take
exactly the form of Yuen operators. ' Furthermore, the
evolution operator Uo(t, O) can be written as a product of
a squeeze operator and a rotation operator, i.e.,

with

U, (t, 0)=S(z(t) )R (P(t) ), (78)

Also, it is clear that the operators 2 (t ) and 2 (t ) satisfy
the commutation relation

2m p coo

1/2

(2n+1)'"

X ~exp( —cz/2)(1 imocooc3—) ~,
1/2

mok~p

2
(2n+ I)'"~q, +q, ~

The corresponding Auctuations in x and p will then be
1/2

bx = (2n+1)'
2mo~o

(89)

S (z) =exp[ —,
' (za" —z *a ) ],

R (P ) =exp( —i Pa ta ),
where

coshizi = is), i,

(79)

(80)

(81)

(82)
whence

1/2
m pACOp 1/2

2
(2n+1)

lc1
X exp( —cz/2) exp(cz )

—c,c3-
m pCOp

(90)

z
exp( i P ), —(83) ax ap = (2n+—1)[q, + gz[(g, gz[—

and the operator UI(t, O) is just the Weyl displacement
operator multiplied by a phase factor, namely,

fz=—(2n + 1)
~

1 —imocooc3
~

with

Ut(t, O) =exp[io(t )]D(P(t )), (84) lC1
X 1 —c,c3exp( —cz ) — exp( —cz )

motto

D (P) =exp(ga —@*a), (85) ~ —(2n+1) .
2

(91)

I9=d3+
d 1 d2

(86)

Therefore these results imply that the wave function
~4(t ) ) is a displaced and squeezed number state and its
time evolution is a "displacement" and "squeezing" pro-
cess. As a result, it can be concluded that the wave func-
tion starts as a number state at t =0 and evolves as a dis-

Immediately we see that

Ax —
~
exp( —cz /2) ~,

bp —exp(cz/2)~ .

(92)

(93)

So we obtain diminishing in the Auctuation of one opera-
tor at the expense of an increase in the Auctuation of the
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other operator. Thus, under appropriate values of the
time-dependent parameters co(t ), f(t ), and y( t ) of the
general driven time-dependent oscillator, squeezing in
one of the quadrature variances can be attained.

IV. EXAMPLE

where A and B are some constants related by

B p+pv :—tang .

With this F(t ) we can find the c;(t ) of Uo(t, 0):

(97)

For illustration we will consider the case of a damped
pulsating oscillator with variable frequency driven by an
external force. The combined e6'ect of damping and pul-
sation is treated by means of the mass parameter'

c&(t ) = —m (t )[A tan(At —P)+(y+ pv cosvt )],
(98)

m (t) =moexp[2(yt+p sinvt )] .

Also, we will take the frequency co(t ) to be given by

d &m(t)
dt2

[co(t)] =A + 1

v m(t)

(94)

A c soAt+B sinAtFt=
&m(t) (96)

for some constant A. Then Eq. (41) becomes the equation
of motion for a simple harmonic oscillator and can be
solved easily. The desired solution for F(t ), which
satisfies the initial condition c, (0)=0, is given by

cz(t) = —2ln cos(At —P) exp [ (y t +—p sinvt ) ]cosg

(99)

1 sinAt cosg
c3 t

moA cos(At —P)
(100)

Once the c;(t) are found, the determination of the d;(t)
of Ut(t) will be trivial. Assuming a sinusoidal external
driving force, say f(t)=sin(t) in Eq. (16), the d;(t) are
given by

1V Amo
d~sinz cos Av — exp y~+psinv~

[cos@[ o

Amp
d3(t)= d~ d~'sin~sin~' cos A~ — sinQ~'

2Aicos4)i o o

d2(t)=

i&A cos(At —P)di(t ) = dr slnr slnAZ exp( y1 +/l slnvr)
2A o cosg

cosg
cos(At —P)

(102)

cos(Ar' —P)X exp(yr+ p sinvr)exp(yr'+ p sinvr')
cos

cosg
cos( Ar' —

P )
(103)

Now, using the above results, we can write Aq and Ap as
follows: [&(t)]'—s 'At [Z(t)]'

copP1 o

2mo~o

1/2

&( t )exp[ —
( yt +p sin vt ) ]&2n + 1,

—sinAtZ(t )
cosg

cos At—

Z(t)=tan(At —(t)+ y+" "' '
0

' 2 1/2

(106)

(107)

fPZ p i5COp
Ap=

1/2

Y(t )exp(yt +p sinvt )V'2n + 1,
It is clear that there is diminishing in the Auctuation of q,
together with an increase in the fIuctuation ofp.

V. CONCLUSION

where

X(t)= cos (At —P) ~o . 2+ sin Qt
cos P A

1/2

(104)

(105)

%'e have investigated the evolution of a number state
of a general driven time-dependent oscillator as well as its
squeezing property using the evolution operator method
developed by Cheng and Fung. An analytical example of
a damped pulsating oscillator with variable frequency in
the presence of an external driving force was examined.
Our analyses indicate that the wave function of the time-
dependent oscillator starts as a number state at t =0 and
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evolves as a displaced and squeezed number state at a
later time, and that its time evolution is just a displace-
ment and squeezing process. Hence it can be concluded
that displaced and squeezed number states can be gen-
erated out of number states by the general driven time-
dependent oscillator.
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