Stopping power of hydrogen atoms

Hans Bichsel

1211 22nd Avenue East, Seattle, Washington 98112-3534 (Received 12 November 1990)

The stopping number of hydrogen atoms calculated with Bethe's theory in the first Born approximation is tabulated. A comparison is made with the asymptotic approximation and with a model based on the harmonic oscillator.

In their study of the Bethe theory of stopping power for a harmonic oscillator, Sigmund and Haagerup¹ compared their results for the stopping number with that for the hydrogen atom given in Fig. 4 of Fano. $²$ They found</sup> difFerences which exceeded their expectations and therefore suggested that a more accurate function be published.

The stopping power for a heavy particle with charge ze and speed v is given by 3

$$
S = \frac{2\pi e^4 z^2}{mv^2} N B \tag{1}
$$

where e is the electron charge, m its mass, N the number of atoms per unit volume, and \boldsymbol{B} the stopping number (in some papers L is used), defined by

$$
B(\eta) = \sum_{n}^{\infty} \int_{Q_n}^{\infty} f_n(Q) d\ln Q
$$

+
$$
\int_{1}^{\infty} d(E/R) \int_{Q_m}^{\infty} f(E/R, Q) d\ln Q
$$
, (2)

where $\eta = v^2/v_0^2$, $v_0 = c/137$ the Bohr speed, and $R= 13.606$ eV the Rydberg energy. $f_n(Q)$ is the generalized oscillator strength (GOS) for an excitation from the ground state of the hydrogen atom to a discrete energy level (where the particle loses an energy E_n and suffers a momentum change q, $Q=q^2/2m$, while $f(E,Q)$ is the GOS leading to a continuum state, with energy loss $E^{4,5}$ The minimum momentum change corresponds to $Q_n = E_n^2/2mv^2$ and $Q_m = E^2/2mv^2$. The expressions for $f_n(Q)$ and $f(E, Q)$ were given in Refs. 3–6, and the func-

TABLE I. Stopping number B of hydrogen atoms, as a function of $\eta = v^2/v_0^2$. $B_d(\eta)$ is the sum over energy losses to all discrete levels, $B_c(\eta)$ is the sum over energy losses to all continuum levels, and $B(\eta)$ the sum of the two. δ_W is the relative difference to Eq. (3), and δ_S is the relative difference to the function in Ref. 1.

η	$B_d(\eta)$	$B_c(\eta)$	$B(\eta)$	δ_W (%)	δ_S (%)
0.1000	0.02002	0.005 05	0.025 07		31
0.1334	0.03899	0.01321	0.0522		33
0.1778	0.06984	0.03175	0.10159		30
0.2371	0.11569	0.07	0.18569		23
0.3162	0.178.52	0.14161	0.32013		15
0.4217	0.25876	0.263 58	0.52234		8
0.5623	0.35538	0.45326	0.808 64		3.2
0.7499	0.46638	0.72385	1.19023		2.5
1.0000	0.58932	1.07978	1.6691		-0.3
1.3335	0.72181	1.514 18	2.23599		-0.9
1.7783	0.86172	2.009 93	2.87165		-1.4
2.3714	1.00730	2.544 12	3.55142		-1.36
3.1623	1.15716	3.09385	4.25101	17	-1.01
4.2170	1.31023	3.64086	4.95109	4.4	-0.74
5.6234	1.46571	4.17356	5.63927	0.9	-0.39
7.4989	1.62298	4.68671	6.30969	$\mathbf{0}$	-0.17
10.0000	1.78161	5.17967	6.96128	-0.17	-0.1
13.3352	1.94123	5.654 44	7.595 67	-0.16	-0.1
17.7828	2.10161	6.114 11	8.21572	-0.13	-0.085
23.7137	2.262 55	6.56186	8.82441	-0.11	-0.077
31.6228	2.423 92	7.000 55	9.4244	-0.09	-0.076
42.1697	2.58559	7.43246	10.018	-0.08	-0.07
56.2341	2.74751	7.85937	10.6069	-0.07	-0.061
74.9894	2.90960	8.28262	11.1922	-0.06	-0.055

tions are shown in Ref. 5. The stopping number was calculated numerically, with double-precision arithmetic, with $d \ln Q = 0.009$ for the discrete excitations, $d \ln Q = 0.0115$ for the continuum ones. The error of the calculations (less than 0.02%) was estimated by performing them also with $d \ln Q$ twice as large. The sum was calculated for $n < 300$, the residual to ∞ estimated from an approximation replacing the sum by an integral. Results are given in Table I. The relative deviation between the function calculated with

$$
B_W = 2 \ln \eta + 2.578 \, 61 - \frac{2}{\eta} - \frac{25}{3\eta^2} + \frac{49}{\eta^3}
$$

$$
\approx 2 \ln \frac{2mv^2}{I} \quad \text{where } I = 1.102R \tag{3}
$$

and $B(\eta)$, $\delta_W = B_W/B(\eta) - 1$, is also given. For $\eta > 6$ this is well within the error quoted in Ref. 6. Tables of the stopping number $B_K(\Theta_K,\eta_K)$ calculated incidentally to the above calculations agree to better than 0.5% with Table II in Ref. 6.

The function $\frac{1}{2}B(\eta)$ exceeds the values of L shown in Fig. 4 of Ref. 2 by as much as 20% for η < 1, apparently due⁷ to the use of a coarse grid in the integration over Q .

The relative deviation of the Sigmund-Haagerup¹ function is given as δ_S . The table given here should only be used for comparison with other calculations at the same level of approximation. For practical applications, various corrections should be included.⁸

- ¹P. Sigmund and U. Haagerup, Phys. Rev. A 34, 892 (1986).
- U. Pano, Ann. Rev. Nucl. Sci. 13, ¹ (1963).
- L. M. Brown, Phys. Rev. 79, 297 (1950).
- 4H. Bethe, Ann. Phys. (Leipzig) 5, 325 (1930).
- ⁵M. Inokuti, Rev. Mod. Phys. 43, 297 (1971).
- M. C. Walske, Phys. Rev. 88, 1283 (1952).
- $7J.$ E. Turner (private communication).
- ⁸H. Bichsel and L. Porter, Phys. Rev. A 25, 2499 (1982).