Stopping power of hydrogen atoms

Hans Bichsel

1211 22nd Avenue East, Seattle, Washington 98112-3534 (Received 12 November 1990)

The stopping number of hydrogen atoms calculated with Bethe's theory in the first Born approximation is tabulated. A comparison is made with the asymptotic approximation and with a model based on the harmonic oscillator.

In their study of the Bethe theory of stopping power for a harmonic oscillator, Sigmund and Haagerup¹ compared their results for the stopping number with that for the hydrogen atom given in Fig. 4 of Fano.² They found differences which exceeded their expectations and therefore suggested that a more accurate function be published.

The stopping power for a heavy particle with charge zeand speed v is given by³

$$S = \frac{2\pi e^4 z^2}{mv^2} NB \quad , \tag{1}$$

where e is the electron charge, m its mass, N the number of atoms per unit volume, and B the stopping number (in some papers L is used), defined by

$$B(\eta) = \sum_{n}^{\infty} \int_{Q_{n}}^{\infty} f_{n}(Q) d\ln Q + \int_{1}^{\infty} d(E/R) \int_{Q_{m}}^{\infty} f(E/R,Q) d\ln Q , \qquad (2)$$

where $\eta = v^2/v_0^2$, $v_0 = c/137$ the Bohr speed, and R = 13.606 eV the Rydberg energy. $f_n(Q)$ is the generalized oscillator strength (GOS) for an excitation from the ground state of the hydrogen atom to a discrete energy level (where the particle loses an energy E_n and suffers a momentum change q, $Q = q^2/2m$), while f(E,Q) is the GOS leading to a continuum state, with energy loss E.^{4,5} The minimum momentum change corresponds to $Q_n = E_n^2/2mv^2$ and $Q_m = E^2/2mv^2$. The expressions for $f_n(Q)$ and f(E,Q) were given in Refs. 3–6, and the func-

TABLE I. Stopping number B of hydrogen atoms, as a function of $\eta = v^2/v_0^2$. $B_d(\eta)$ is the sum over energy losses to all discrete levels, $B_c(\eta)$ is the sum over energy losses to all continuum levels, and $B(\eta)$ the sum of the two. δ_W is the relative difference to Eq. (3), and δ_S is the relative difference to the function in Ref. 1.

η	$B_d(\eta)$	$\boldsymbol{B}_{c}(\boldsymbol{\eta})$	$B(\eta)$	δ_W (%)	δ_S (%)
0.1000	0.020 02	0.005 05	0.025 07		31
0.1334	0.038 99	0.013 21	0.052 2		33
0.1778	0.069 84	0.031 75	0.101 59		30
0.2371	0.115 69	0.07	0.185 69		23
0.3162	0.178 52	0.141 61	0.32013		15
0.4217	0.25876	0.263 58	0.522 34		8
0.5623	0.355 38	0.453 26	0.808 64		3.2
0.7499	0.466 38	0.723 85	1.19023		2.5
1.0000	0.589 32	1.079 78	1.6691		-0.3
1.3335	0.721 81	1.514 18	2.235 99		-0.9
1.7783	0.861 72	2.009 93	2.871 65		-1.4
2.3714	1.007 30	2.544 12	3.551 42		-1.36
3.1623	1.157 16	3.093 85	4.251 01	17	-1.01
4.2170	1.31023	3.640 86	4.951 09	4.4	-0.74
5.6234	1.465 71	4.173 56	5.639 27	0.9	-0.39
7.4989	1.622 98	4.68671	6.309 69	0	-0.17
10.0000	1.781 61	5.179 67	6.961 28	-0.17	-0.1
13.3352	1.941 23	5.654 44	7.595 67	-0.16	-0.1
17.7828	2.101 61	6.114 11	8.21572	-0.13	-0.085
23.7137	2.262 55	6.561 86	8.82441	-0.11	-0.077
31.6228	2.423 92	7.000 55	9.4244	-0.09	-0.076
42.1697	2.585 59	7.432 46	10.018	-0.08	-0.07
56.2341	2.747 51	7.859 37	10.6069	-0.07	-0.061
74.9894	2.909 60	8.282 62	11.1922	-0.06	-0.055

tions are shown in Ref. 5. The stopping number was calculated numerically, with double-precision arithmetic, with $d\ln Q = 0.009$ for the discrete excitations, $d\ln Q = 0.0115$ for the continuum ones. The error of the calculations (less than 0.02%) was estimated by performing them also with $d\ln Q$ twice as large. The sum was calculated for n < 300, the residual to ∞ estimated from an approximation replacing the sum by an integral. Results are given in Table I. The relative deviation between the function calculated with⁶

$$B_W = 2 \ln \eta + 2.578 \, 61 - \frac{2}{\eta} - \frac{25}{3\eta^2} + \frac{49}{\eta^3}$$

$$\approx 2 \ln \frac{2mv^2}{I} \quad \text{where } I = 1.102R , \qquad (3)$$

and $B(\eta)$, $\delta_W = B_W / B(\eta) - 1$, is also given. For $\eta > 6$ this is well within the error quoted in Ref. 6. Tables of the stopping number $B_K(\Theta_K, \eta_K)$ calculated incidentally to the above calculations agree to better than 0.5% with Table II in Ref. 6.

The function $\frac{1}{2}B(\eta)$ exceeds the values of L shown in Fig. 4 of Ref. 2 by as much as 20% for $\eta < 1$, apparently due⁷ to the use of a coarse grid in the integration over Q.

The relative deviation of the Sigmund-Haagerup¹ function is given as δ_s . The table given here should only be used for comparison with other calculations at the same level of approximation. For practical applications, various corrections should be included.⁸

- ¹P. Sigmund and U. Haagerup, Phys. Rev. A 34, 892 (1986).
- ²U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963).
- ³L. M. Brown, Phys. Rev. 79, 297 (1950).
- ⁴H. Bethe, Ann. Phys. (Leipzig) 5, 325 (1930).

- ⁵M. Inokuti, Rev. Mod. Phys. 43, 297 (1971).
- ⁶M. C. Walske, Phys. Rev. 88, 1283 (1952).
- ⁷J. E. Turner (private communication).
- ⁸H. Bichsel and L. Porter, Phys. Rev. A 25, 2499 (1982).