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Squeezing and its graphical representations in the anharmonic oscillator model
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The problem of squeezing and its graphical representations in the anharmonic oscillator model is
considered. Explicit formulas for squeezing, principal squeezing, and the quasiprobability distribu-
tion (QPD) function are given and illustrated graphically. Approximate analytical formulas for the
variances, extremal variances, and QPD are obtained for the case of small nonlinearities and large
numbers of photons. The possibility of almost perfect squeezing in the model is demonstrated and
its graphical representations in the form of variance lemniscates and QPD contours are plotted.
For large numbers of photons the crescent shape of the QPD contours is hardly visible and quite
regular ellipses are obtained.

I. INTRODUCTION

Squeezing of quantum fluctuations in optical fields is a
problem that nowadays attracts many physicists, both
theorists and experimentalists. The number of publica-
tions on the subject is growing at a high rate (see, for ex-
ample, two special issues of the specialized optical jour-
nals). Numerous experiments have successfully
confirmed the possibility of producing squeezed states of
light in various nonlinear optical processes. Nonlinearity
of the process is crucial in producing such nonclassical
states. One of the simplest though very instructive mod-
els (because it admits of exact solutions) that can be used
to describe nonlinear interaction of light in a medium is
the anharmonic oscillator model. Some years ago, Tanas
and Kielich have shown that intense light propagating
through a nonlinear Kerr medium can squeeze its own
Auctuations. They referred to this effect as self-
squeezing, and have proved the possibility of as much as
98% squeezing in this process. The model used in Ref. 9
was in fact a two-mode version of the anharmonic oscilla-
tor which describes the propagation of elliptically polar-
ized light in a nonlinear Kerr medium. The one-mode
version of the self-squeezing effect applicable for circular-
ly polarized light propagating in an isotropic Kerr medi-
um has been considered by Tanas, ' in terms of an anhar-
monic oscillator with interaction Hamiltonian ~a a,
who has shown that the same amount of self-squeezing as
in the two-mode case is attainable. This very simple,
strictly solvable model of the anharmonic oscillator with
interaction Hamiltonian tea a or Ic(a a ) appears to be
very attractive and many properties of the quantum
states generated from the model have been discussed re-
cently. " The squeezed states to which it leads are not
minimum-uncertainty states and differ essentially from
the two-photon coherent states of Yuen, most often
used as models for squeezed states.

Milburn" has discussed the evolution of the quasipro-
bability distribution function Q(a, a*, t) for the anhar-
monic oscillator showing periodic recurrences of its ini-
tial form and predicting 37%%uo squeezing for a mean num-

ber of photons a~ =0.25. Milburn and Holmes have
shown that dissipation in the model rapidly destroys the
quantum recurrence effects. Kitagawa and Yamamoto, '

who also considered the quasiprobability distribution
Q(a, a*,t) for the states thus obtained, refer to squeezing
in this case as "crescent"-shaped squeezing (in contrast to
"elliptical"-shaped squeezing) because of the crescent
shape of the quasiprobability distribution contours. The
"self-squeezing" of Tanas and Kielich and the squeezing
that produces crescent contours of Kitagawa and
Yamamoto' are but different terms for what is virtually
the same mechanism of squeezing.

Some aspects of third- and second- harmonic gen-
eration by self-squeezed light have also been discussed,
and the possibility of controlling the self-squeezing pro-
cess by means of an external magnetic field has been sug-
gested.

Yurke and Stoler have shown that the states pro-
duced in the anharmonic oscillator model become a su-
perposition of a finite number of coherent states under a
proper choice of the evolution time. Tombesi and Mecoz-
zi have obtained the superposition states for the two-
mode case and arbitrary initial state of the field. We have
recently shown that superpositions with not only even
but also odd numbers of components can be obtained,
and that the maximum number of well distinguishable
states is proportional to the field amplitude ~a ~.

The anharmonic osci1lator model has also been dis-
cussed by Perinova and Luks' from the point of view of
photon statistics and squeezing. In particular, Luks,
Perinova, and Perina introduced the concept of "princi-
pal squeezing" which is associated with the geometrical
representation of the quadrature field variance as an el-
lipse. ' Loudon has recently proposed another geome-
trical representation of the quadrature field variance by
Booth's elliptical lemniscate. The last two geometrical
representations are interrelated but their relation to the
contours of the Q function is not so simple as it would ap-
pear at a first glance, when one is apt to identify the
shape of the Q-function contours with the phase-space
picture of the quadrature field variance.
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In this paper we give explicit analytical formulas for
the quadrature variances (standard squeezing), their
minimum and maximum values (principal squeezing), and
the Q function for the anharmonic oscillator model in
two different ranges of parameters: (i) a small number of
photons and strong nonlinearity (long time), and (ii) a
large number of photons and weak nonlinearity (short
time). In case (i), direct numerical evaluation of the exact
analytical formulas is feasible and the results are well
known. In case (ii), we use the saddle-point technique to
evaluate the summations for a large number of photons
to obtain approximate analytical formulas for the quadra-
ture field variances and the Q function. These formulas
are illustrated graphically using different representations
of squeezing. This region (ii) is the most interesting from
the point of view of the practical applicability of the
model and, thus, the relatively simple analytical formulas
that hold in this region are especially valuable. These
formulas are the main result of our paper.

II. THE ANHARMONIC OSCILLATOR MODEL
AND ITS EVOLUTION

We consider an anharmonic oscillator model described
by the Hamiltonian

a =no+as
Ho=%ma a =%con,

Ht =
—,'iriira a =

—,'A'trn(& —1),
where a (a ) is the boson annihilation (creation) operator,
and tr is the coupling (anharmonicity) constant, which is
real and can be related to the nonlinear susceptibility y' '

of the medium if the anharmonic oscillator model is used
to describe propagation of laser light in a nonlinear Kerr
medium. We take the nonlinear part H~ of the Hamil-
tonian (1) in normal order which makes the transition to
classical fields quite transparent. Another version of the
nonlinear part of the Hamiltonian (1) which is propor-
tional to the square of the free part Ho of the Hamiltoni-
an (or the square of the number operator n =a a) is often
in use. The difference between the two versions of the
anharmonic oscillator seems to be trivial because they
can be matched by changing the free oscillator frequency

When homodyne detection of squeezing is to be ap-
plied, however, this extra phase shift can be significant in
the long-time limit. There are also some consequences
of this difference for the generation of discrete superposi-
tions of coherent states in the model. Here, we are not
going to discuss such differences, and shall use the nor-
mally ordered version of the interaction Hamiltonian.

In the Heisenberg picture the equation of motion for
the annihilation operator a reads

l
a = ——[a,H]= i(to+tia a)a —.

Since the number of photons &=a a is a constant of
motion [it commutes with the Hamiltonian (1)], Eq. (2)
has the simple exponential solution

a ( t) =exp { it [co+i~a "(0)a (0)—] }a (0) . (3)

a(r)=exp[isa (0)a(0)]a(0) .

where

7 — KZ
C

In the Schrodinger picture, we are searching for the
state evolution of the field propagating in a Kerr medi-
um. This evolution can be described with the help of the
evolution operator'

l 7 f2 2U(r)=exp a a =exp n(n —1)
2 2

with r given by Eq. (5).
The state of the field outgoing from the medium is thus

given by

where lgo) is the state of the field incoming into the
medium.

A convenient representation of the state of the field is
the quasiprobability distribution (QPD) in the complex a
plane defined as"

Q(a, a*,r)=Tr[p(r)la) &al]

=&alp(r) a&

lit( )&&it( )la),
where la) is a coherent state. This function satisfies the
relations

JQ(a, a*,r) —dna= 1
1

and

0~ Q(a, a*,r) ~ 1 . (10)

Some properties of this function for the anharmonic os-
cillator both in classical and quantum description of the
oscillator have been discussed by Milburn" as well as
Milburn and Holmes. '

If the state of the incoming beam is a coherent state
lao), the resulting state of the outgoing beam is given,

The solution (3) is the exact operator solution describing
the time evolution of the system. This solution can be
directly applied in calculations of such field characteris-
tics as variances, correlation functions, or higher statisti-
cal moments. The free evolution e '"' in Eq. (3) can be
factored out and, since the problems we are going to ad-
dress in this paper do not involve free evolution, we shall
drop it later on. This means that the operator a(t) will
represent only the slow part of the evolution which is due
to the nonlinear part of the Hamiltonian.

In the case of light propagating through a nonlinear
medium with refractive index q (instead of a field in a
cavity), we can also replace the evolution time t by—iiz/c (on neglecting the dispersion of the medium),
where z is the path traversed by the photons in the non-
linear medium. In effect, the solution (3) can be written
as
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according to (7), by

n

l@(r))= lao, r) =exp( —
—,
' la, l') g —exp(i0„)ln ),n!

to describe the two field quadrature components, the
commutator of which is equal to

[x„x2]=2i .

where the phase 0, is given by

0 = n—(n —1) .
E1

(11) The variance of the operator (15) is given by

v, = &(sx, )'&

= &x', ) —&x, )'
=&(ba) )e ' +&(Aa ) )e ' +& [bat, ha] ), (18)

where 0„ is given by Eq. (12). For r=0, i.e. , for the ini-
tial state lao), the QPD function takes the form

Q (iz, a*,0) =exp( —la —aol ), (14)

which is a Gaussian bell distribution centered on ao. As
the evolution of the oscillator proceeds, the states of the
field can become squeezed and the Gaussian shape (14) of
the Q function is deformed. Contours of the deformed Q
function are conventionally considered as graphical rep-
resentations of squeezing.

Another graphical representation of squeezing consists
of a plot of the variance of the field in a polar coordinate
system. In the case of "ordinary" or squeezing that pro-
duces elliptical contours, some ellipses can be associated
with the two representations: the contours of the Q func-
tions are ellipses, and ellipses are built into the Booth el-
liptical lemniscate. Thus both graphical representations
can, in this case, be considered as equivalent. This is not
the case for anharmonic oscillator squeezing, as we shall
prove in this paper.

Because of the presence of the additional phases 0, , the
resulting state of the field is a generalized coherent state
which can become, under certain conditions, a discrete
superposition of coherent states. Some properties of such
superpositions have been discussed recently.

Inserting the state (11) into Eq. (8) one obtains for the
QPD the expression

Q(cz, a*,r) =exp( —lal —
lizol )

2(a*ao)"
X g exp(i0„)n!

where

&(«')') =&a")—&a"&',

&[a,Aa])=&a a+aa ) —2&a )&a) .
(19)

exp(2i0+) =+[& («)') /& (&a")') ]' (20)

On inserting (20) into (18) one obtains the extremal vari-
ances in the form

& (QX )2) +2[& (Qa )2) & (pat)2) ]I/2

+& [ba",ba j ) (21)

where X+ =X6 . This immediately gives the condi-+
tion for principal squeezing introduced by Luks et al. :

&aa"aa) —l&(aa)') (0. (22)

It has been shown by Loudon that the variance (18) can
be written as

V, =&(&X,)')=&(SX )')cos'(0 —0 )

The variance (18) is dependent on the angle 0. For the
vacuum as well as for coherent states this variance is
equal to unity independently of 0. The state of the field is
said to be squeezed if for some 0 the variance (18) be-
comes smaller than unity, and perfect squeezing is ob-
tained if V& =0. Since, for a given quantum state, the
variance is still dependent on 0, the phase 0 can be
chosen in such a way as to maximize (or minimize) the
variance. DiA'erentiation with respect to 0 leads to the
angles 0+ and 0 for maximum and minimum variance
given by the relation

III. FIELD VARIANCES, SQUEEZING,
AND PRINCIPAL SQUEEZING

To discuss squeezing in our model, we define the Her-
mitian operator

X =ae '+afe'
0

which for 0=0 corresponds to the in-phase quadrature
component of the field and for 0=~/2 to the out-of-
phase component. We will also use the notation

X@ 0 =X), Xg ~~ =X~

+ & (&X+ )'&sin'(0 —0 ),
which is the equation for Booth's elliptical lemniscate in
polar coordinates.

In homodyne detection the phase can be chosen at will

by choosing the local oscillator phase. This allows for
minimizing the variance V@, which means geometrically
the choice of a coordinate system coinciding with the
principal axes of the variances lemniscate (or the vari-
ances ellipse built into the lemniscate).

In the anharmonic oscillator model, assuming that the
initial state of the field is a coherent state lao), we have'

Vg(. ) =2
1 ~.l' j exp [ I ~,I'(cos2r —I) ]co.[2(0—q, )+.+

I ~, I'»n2r ]

—exp[2 laol (cosr —1)]cos[2(0—yo)+2jaol sinr]+ 1 —exp[2laol (cosr —1)] }+ 1 (24)
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where we have used the relation

a,= Ia, le'"' (2&)

which takes into account the initial phase yo of the field. From Eq. (24) it is clear that the in-phase and out-of-phase
components are in fact defined with respect to the initial phase of the field, i.e., in phase means 0—yp=0 and out of
phase stands for 0—go= 7r/2 F.rom Eq. (25), we easily obtain the relation

exp(2i 0+)=+exp(2i go+i i+ Iaol sin2r),

which gives

0+ =q 0+ —,'(~+ laol'sin2r) (27)

and

0 =I9~+w/2 . (28)

This means that in the case of the anharmonic oscillator the phases 0+=0+(~) for which the variance approaches its
extremal values depend on ~, i.e., they evolve in the course of the evolution of the oscillator. The intensity-dependent
change in phase can easily be identified in (27). The extremal variances defined by (21) are given by the formula

V+(~) =+2laol'Iexp[2laol'(cos2~ —1)]+exp[4laol'(cos~ —1)1

—2 exp [ lao l (cos2~+ 2 cosr —3 ) ]cos[r+
I ao I

(sin2r —2 sinr ) ] ]
'

+2laol [1—exp[2laol (cosr —1)]]+1. (29)

The extremal variances (29) describe the principal squeez-
ing introduced by Luks et al. for the case of the anhar-
monic oscillator. It is obvious that principal squeezing
evolves with ~ showing periodic recurrences for
~=k X2~ (k =1,2, . . . ).

The time (or length) dependence of the variances (24)
and (29) for a small mean number of photons lal has al-
ready been discussed by Luks et aI. and the destruction
of quantum coherence due to attenuation and
amplification has been discussed by Daniel and Mil-
burn.

Formulas (24) and (29) for squeezing and principal
squeezing in the anharmonic oscillator model are exact
analytical formulas. However, if the model is used to de-
scribe field propagation in a Kerr medium for which real-
istic values of r are very small (~-10 is a rather op-
timistic estimation ) and the numbers of photons are very
large ( Iaol ))1), it is possible to obtain much simpler ap-
proximate analytical formulas describing the variances.
For r &(1 and Iaol ))1, one can introduce a new vari-
able

(3O)

which properly describes the scale of essential changes in
the variances. ' On expanding the variances (24) and (29)
in power series in ~ and retaining only leading terms of
the expansions, we get the following formulas:

Ve(x) = 1+2x [x [1—cos2g(x)] —sin2@(x) ], (31)

V+(x)=1+2x[x+(1+x )' ] . (33)

Our expressions (31) and (33) are very simple analytical
formulas approximately describing squeezing and princi-
pal squeezing in the system. The smaller ~ is the better is
the approximation used in deriving our formulas. The
expression (33) for the extremal values of the variances
can be alternatively obtained [instead of the power expan-
sion of (29)] directly from Eq. (31) by finding its extremal
values with respect to 0. The first derivative of (31) with
respect to 0 gives us the condition for the extrema:

and

x sin2y(x)=cos2@(x), (34)

sin2cp(x)=+(1 —x )

which directly leads to Eq. (33).
As previously, 0—

cpp
=0 means the in-phase com-

ponent of the field and 0—
yp =~/2 the out-of-phase

component in the variance (31). The only quantum term
in Eq. (31) that appeared due to commutation of the field
operators is the last term with sin2y(x). This term reap-
pears in Eq. (33) as the unity under the square root. Had
we omitted these terms, the variances (31) and (33) would
never drop below the coherent (or vacuum) state vari-
ance. These are the terms responsible for squeezing in
the anharmonic oscillator model for short time (r(&1)
and a large number of photons (Iaol ))1). From (27),
for ~(&1, we get

where 0+=0'p+& ~ (35)

y(x ) =yo
—0+x (32)

which can be found from Eq. (32) describing the
intensity-dependent change in phase of the field. Were
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we to compensate dynamically this change in phase by
changing the phase of the local oscillator so as to keep
g(x) =0 or vr/2, we would never obtain squeezing.

Our formulas (31) and (33) are illustrated graphically in
Figs. 1 and 2. In Fig. 1 the variances Vi(x) and V (x)
are plotted against x. The oscillatory behavior of the
variance Vi(x), which is obvious from formula (31), is
clearly seen and the principal squeezing variance V (x)
is the envelope that sets the lower limit for all the vari-
ances Vs(x) [the upper limit is set by V+(x)]. The en-

velope V (x), as given by Eq. (33), is a monotonically de-
creasing function of x which asymptotically approaches
zero. So, the subsequent minima of V, (x) become deeper
and deeper as x increases and their values become very
close to zero. This means that almost perfect squeezing
can be obtained in the model. The asymptotic behavior
of Vs(x) and V (x) for large x cannot, however, be tak-
en too seriously because the approximations used to ob-
tain formulas (31) and (33) break down when x becomes
large. In fact, a high-precision numerical evaluation of
the exact expression (29) carried out by us shows that, for
given ~ao~ (~ao~ )) I), V (x) has a minimum around
x;„=10. In Fig. 2 we present plots of V (x) evaluated
according to Eq. (29) for several values of ~ao in order
to show the position of this minimum. Our approximate
formulas (31) and (33) work well for x less than x
This is the price we have to pay for the striking simplicity
of our formulas. The high degree of squeezing that can
be obtained in the model has been reported by Tanas and
Kielich for the two-mode version of the nonlinear propa-
gation problem, and they used the term "self-squeezing"
to denote the squeezing obtained in such a model. The
meaning of self-squeezing comes from the fact that the
strong optical field propagating through the nonlinear
Kerr medium can squeeze its own quantum Auctuations.

In Fig. 3 we present examples of the lemniscates
defined in Eq. (31) by plotting —,'[V|i(r)]'~ in polar coor-

1.0

—0.5—
I

O

0.0
0 10 20

dinates for the values of x that correspond to the first and
second minimum of Vi(x). Again, the circle of unit di-
ameter marks the vacuum Auctuations. Squeezing ap-
pears for all energies 0 for which the lemniscate is con-
tained inside the circle of vacuum fluctuations. A high
degree of squeezing corresponds to a very short diameter

FIG. 2. Plots of the variance V (r) [formula (29)] against
the variable x = ~ao~ v. for given values of ~ao~: (a) (ao~ =10,
(b) la. I'=10', (c) Ia, l'=10'.
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0.0
0

\

~ ~

~ ~
~ ~ ~ ~

s ~ ~ ~ ~

10

~ ~

~ ~

4,

I

0

(b)

FIG. 1. Plot of the approximate variances V, (x), (solid line),
V (x) (dashed line), and the exact variance V (dotted line) ac-
cording to (31), (33), and (29), respectively.

FIG. 3. Plot of —'[V~(r)]' as a function of () [according to

(31)] for (a) x =0.59 [first minimum of V, (x)] and (b) x =3.29
[second minimum of V, (x ) ].
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of the lemniscate as is clearly visible in the second case.
Formula (31) retains its form even if higher-order non-

linearities are taken into account, except for the fact that
x and y(x) have to be modified. This has been shown
with the use of saddle-point techniques to evaluate the
sums appearing in the exact formulas for large numbers
of photons.

IV. THE QUASIPROBABILITY DISTRIBUTION

0 . . r

The geometrical representations of variances discussed
so far exhibit twofold rotational symmetry which reAects
the fact that the variance is a quadratic function of the
field operators. The variance forms a lemniscate in the
polar coordinate system. The lemniscate is a projection
of the variance ellipse which describes principal squeez-
ing. As another convenient geometrical representation of
squeezing, one often considers the quasiprobability distri-
bution Q(a, a*,t) the contours of which, in the case of
"ordinary" squeezing, form ellipses that can be treated as
equivalent to the ellipses formed from principal squeez-
ing. In the case of self-squeezing, i.e., squeezing obtained
from the anharmonic oscillator model, the situation is
not that simple, because the contours of the Q function
are no longer ellipses, and an identification of such con-
tours with the variance ellipses is not possible. To illus-
trate this situation more clearly, we present in Fig. 4 ex-
amples of the QPD contours obtained according to for-
mula (13). These contours have crescent shape, first ob-
tained by Kitagawa and Yamamoto, ' who introduced
the term "crescent" for squeezing with crescent-shaped
contours of the QPD in order to contrast it with "ordi-
nary" squeezing which produces elliptical contours.
Such contours do not exhibit twofold rotational symme-
try, which means that terms like the direction of squeez-
ing, which is unambiguously related to the direction of
the minor axis of the lemniscate (or ellipse), cannot be

-6 -4 -2 0

Reo:
2 4 6

FIG. 4. Contours of the QPD in the complex a plane at —', —,',
and —of the maximum height obtained from formula (13) for
laol'=16 and r=0.30.

uniquely defined with respect to the shapes of the con-
tours. The crescent shape of the QPD contours suggests
that it is rather the amplitude of the field that is squeezed
at the expense of the increased uncertainty of the phase,
instead of the quadrature Xo of the field. This idea has
been exploited by Kitagawa and Yamamoto' as a means
for reducing the photon-number uncertainty. If the num-
ber of photons in the field is not very big the quadrature
squeezing obtained in the model is not very pronounced.
It has been shown, ' however, that for great numbers of
photons a high degree of squeezing can be obtained. Un-
fortunately, direct numerical evaluation of the QPD ac-
cording to formula (13) is impossible for Iaol ))1. In
this case, however, the saddle-point technique can be ap-
plied to evaluate the sums appearing in Eq. (13). We
need to evaluate the sum

(o.*ao )"
&= & exp[ —

—,'(I&I'+ Idol')] exp[ 2irn (n ——1)]
n=0

2

( I
~

I I ~o I
)"

=exp[ —,'(I&l —l&ol) ] g exp( —lal laol), exp[in(yo cp)+2irn—(n —1)],
n=0

(36)

where

aO= eO e

u= a e'+. (37)

According to (36), we have to evaluate the sum

S'= g p„e p[ixn(y (po)+ 2irn (n —1)],
n=0

where

(38)

(39)

is the Poissonian weighting factor with N = Ial Iaol. f, exp[Nf(3)ld3 (40)

When N ))1, the technique applied in calculations of the
collapses and revivals in the Jaynes-Cummings model
can be used to calculate the sum (38). Of course, our as-
sumption N ))1, i.e., Ial Iaol ))1, means that the result
obtained in this way may be incorrect for small Ial.
However, the overall exponential factor in Eq. (36) makes
the QPD essentially different from zero only if Ial is
sufficiently close to Iaol, which for Iaol )) 1 means also
large Ial. So we believe that our results are valid when-
ever the number of photons of the beam is large
(Iaol ))1). We can write the sum (38) as the integral

1/2
2N
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where we have introduced the notation y n/N, and the
function f (y) is given by

f(y) =y (1 —21ny) —1+iy ((po (—p)+ ,'i~—y (y N —1) .

If r=0, from (46) we have B=yo —y, and formula (49)
turns into

Q(a, a*,t)=exp[ —
~a~

—
~ao +2~a~ ~ao~cos((po —(p)]

(41) =exp( —~a —ao) ), (51)

The saddle points off (y) are given by

()f (y)
By

(42)

which leads us to the following equation for finding the
saddle points:

—4y lny +2iy (q&0 tp)+—2irNy i' =0—.

On introducing y =p exp(id/2), we have

lnp+ —,'~Xp sin8 =0,
8—

((po
—(p)+ —,'~ —rNp cos8=0 .

(43)

From Eq. (44) one obtains the following exact relation:

p =exp j
—

—,
' [8—(po —(p)+ —,

' r]tan8],

which after insertion back into one of the equations (51)
gives us the following equation for 8:

which is the initial Gaussian distribution given by Eq.
(14).

Our formula (49) allows for numerical evaluation of the
QPD in the case r(&1 and ao~ ~a)) 1 which is impossi-
ble when direction summations are to be performed ac-
cording to Eq. (13). To illustrate formula (49), we show
in Fig. 5 contours of the QPD obtained from formula
(49), together with (46) and (47) for the parameters r and
~ao~ chosen in such a way as to get x = ~ao~ r equal to the
values of the first and second minima of the variance
V, (x). The corresponding contours have quite regular el-
liptic shapes that arise from ordinary squeezing rather
than the crescent-shape contours from squeezing ob-
tained for a sma11 number of photons. At the erst
minimum 66% squeezing is obtained, and it is seen from
Fig. 5(a) that this result can be slightly improved because
the ellipses are still slightly inclined from the axes of the
coordinate system. The second minimum corresponds to
98% squeezing, and in Fig. 5(b) the ellipses are much

8'tan8exp(8'tan8) =r~a~ ~ao~sinr,

where

(46)

((po+y)+— (47)

Equation (46) can be solved numerically for given values
of the parameters, defining the saddle point
y =p e xp(i8 /2) after inserting 8 obtained from (46) into
(45). We are interested in solutions for small r only, and
ignore all saddle points that can appear for large values
of r. If r is very small and ~ao~ as well as ~a~ are great,
high precision is needed in solving Eq. (46). We should
also emphasize that the saddle-point location depends on
the actual coordinates ~a~ and g for which we want to
evaluate the QPD function.

When the saddle point has been found, we can evaluate
the QPD according to the formula

I I I I

998 1000 1002

4exp[ —(/af —
/aors) +2/a/ /ao/Ref(y)]

Q(a, a*,r) =
if (2)(y)

i

(48)

1

(b)

where the function f (y) and its second derivative f ' '(y)
are taken at the saddle point. This gives us a relatively
simple formula for the Q function in the case of a large
number of photons, which reads

Q(a, a*,t)=D 'exp( —
~a~

—
~ao~ )

+2~a~ ~ao~cos8(1+8'tan8')exp( —8'tan8)

(49)

I I I I

998 1000 1002

with

D =[(1+8'tan8) +(8') ]' (50)
FICx. 5. Same as Fig. 4 but obtained from formula (49) for

~ao~ =10 and (a) x =0.59 and (b) x =3.29
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more "squeezed" and almost perfectly fit into the coordi-
nate system. So, in the case of large photon numbers and
small anharmonicity, the QPD can again be considered as
a good graphical representation of the uncertainty ellipse
of the quadrature field components. This elliptic shape of
the QPD contours does not mean, however, a change of
the nature of the quantum state of the field when ~tzo~ is
large; it rather refiects the fact that for ~ao~ )) 1 the cres-
cent shape is hardly visible, because the essentially
nonzero values of the QPD are concentrated around a
circle of radius ~tzo~, which means very small curvature of
the crescent shape when

~ ao ~

))l.
Generally, the QPD carries more information than the

variance, which is the second statistical moment only.
The shape of the QPD contours can be much more com-
plicated than an ellipse, because it contains information
about the higher statistical moments as well.

V. CONCLUSIONS

We have considered the problem of squeezing and its
graphical representation for the anharmonic oscillator
model. We have obtained approximate analytical formu-
las describing the quadrature field variances (squeezing),
extremal variances (principal squeezing), and the
quasiprobability distribution function Q(tz, tz*, r) for the
most interesting case from the experimental point of
view, namely, that of small nonlinearity of the medium

and a large number of photons of the field. The degree of
squeezing that can be obtained in this case is much
higher than in the case of a small number of photons.
The graphical representations of squeezing such as lem-
niscates (or uncertainty ellipses) representing variances of
the field and the QPD contours are used to illustrate the
results. It is shown that the QPD contours are not a very
good graphical representation of squeezing when squeez-
ing is defined with respect to the values of the second sta-
tistical moment, i.e., the variance. This is most strikingly
visible in the case of a small number of photons in which
the QPD contours have crescent shapes. As the number
of photons increases the crescent shape of the contours
becomes less pronounced, and they become more and
more elliptic. In this case the QPD contours can again be
considered as a good graphical representation of squeez-
ing. Generally, however, the QPD contains information
about the higher-order statistical moments as well, and
can be roughly treated as a representation of squeezing.
It is known that for some special choices of ~ the
state of the field becomes a discrete superposition of
coherent states, and the QPD has even a multipeak struc-
ture.
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