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Quantized-field approach to parametric mixing and pressure-induced resonances:
Schrodinger picture
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An interpretation of collision-induced extra resonances in multiwave mixing is constructed using
a fully quantum-mechanical calculation carried out in the Schrodinger representation. The phase-
matched signal is seen to arise as an interference between the amplitudes for scattering of the in-
cident fields at different atomic sites. When collisions occur, the separation of the signal into a
collision-induced resonance plus a background term appears naturally in this approach. The origin
of the phase-matching condition, conservation of energy (and breaking of the Manley-lowe rela-
tions), the role played by relaxation mechanisms, and the fact that the fields need not be temporally
coherent to produce the extra resonances, all can be easily understood within the context of this cal-
culation.

INTRODUCTION

Since their first observation by Prior et al., ' the
pressure-induced extra resonances in four-wave mixing
(PIER 4) have been the subject of a considerable amount
of literature. In spite of the fact that the theory was well
established and was in perfect agreement with the experi-
mental results, there was no consensus as to the physical
origin of the resonances. The first interpretation relied
on the "destruction of destructive interference" that ap-
pears when four-wave-mixing emission is calculated per-
turbatively from the optical Bloch equations; however, it
was shown that an alternative description of the extra
resonances, as well as that for collisionally aided radiative
excitation, could be given based on energy conservation
arguments. Another interpretation was related to the
connection between extra resonances and collisional
redistribution of radiation that emerges from the micro-
scopic calculation of the collisionally excited dressed-
atom coherence that generates the four-wave-mixing
emission. However, the relation between the two-
phenomena was not totally clear since collisional redistri-
bution of radiation is a single-atom effect while four-
wave-mixing emission is a collective effect. '

To clarify the physics of the extra resonances, we have
shown that extra resonances can also be observed in the
nonlinear spectroscopy of a single atom. The new reso-
nances that appear in this situation can be observed on
the total fluorescence. These resonances can be under-
stood either as resulting from the collisionally aided
creation of a Raman coherence or from the interference
between two quantum paths, each path involving a col-
lisionally aided excitation. It should be emphasized that
the paths considered here involve usual state vectors and
are not the double-sided diagrams used in the first inter-
pretation of the extra resonances.

To understand the origin of the collective behavior in
the four-wave-mixing emission, we developed two models
appropriate for two-level atoms. In the first model, we
used a semiclassical dressed-atom model to show that the
collisionally aided excitation of the upper dressed state is
temporally and spatially modulated. ' This excitation
thus induces a grating, which diffracts the incident waves
and produces four-wave-mixing emission. The intensity
of the emission is maximum when the amplitude of the
collisionally aided grating is maximum, i.e., when the
condition for the observation of extra resonances is
satisfied. In a second paper, " we extended this model
and used a fully quantum description of the electromag-
netic fields. In the Heisenberg approach, we showed that
the physical interpretation is essentially similar to the one
developed in the preceding approach. We also indicated
why the four-wave-mixing emission depends on the col-
lisionally excited dressed-atom coherence in the
Schrodinger approach.

It is the aim of this paper to give a final and unambigu-
ous interpretation of these extra resonances in parametric
mixing. Our model is developed for the case of a three-
level atom, but the theory can be extended to a more
complicated situation. We have chosen here to discuss
the case of a three-level atom because many experimental
situations can be described by such a model and also be-
cause the Schrodinger picture that we develop here pro-
vides very clear pictures for such an atom. We first recall
in Sec. I the results obtained using the optical Bloch-
equation approach with classical electromagnetic fields.
We then calculate the energy exchanged between the
atoms and the applied fields and show that the collision-
ally aided terms have a behavior different from the back-
ground terms. More precisely, we show that, in contrast
to the background terms, the collisionally aided terms do
not verify the Manley-Rowe relations, ' this result not
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being consistent with some earlier pictures of the extra-
resonances. In Sec. II, we address the problem of the in-
teraction of a set of atoms with the quantized fields. We
show that the parametric mixing results from the scatter-
ing of the radiation by a set of atoms and that the phase-
matching condition appears as a requirement to obtain a
constructive interference of the scattering amplitude by
different atoms. When co11isional dephasing is intro-
duced, new scattering processes involving a collisionally
aided excitation must be considered. The conditions for
which the scattering amplitudes associated with different
atoms constructively interfere are seen to lead to the
phase-matching condition and the resonance condition
for the extra resonances. Our analysis is supported by a
calculation made in the Schrodinger picture where the
dephasing collisions are considered ab initio. Even if this
calculation is essential to support our interpretation, we
want to emphasize that the heart of the paper is the di-
agrammatic physical interpretation given in the first part
of Sec. II. Two complementary arguments are given in
Appendix A and B. In Appendix A we calculate the
parametric emission in the dressed-state basis and relate
the parametric emission in the absence of collisional
damping to Dicke superradiance. ' These two processes
lead to a spontaneous-emission rate proportional to the
square of the number of atoms. In the case of collisions,
we establish the connection between the extra resonances
in parametric mixing, the collisionally excited Raman
coherences considered earlier, and the interference phe-
nomena described in Sec. II. In Appendix 8 we describe
the relaxation mechanism by an interaction with a bath.
This approach permits us to follow the evolution of the
quantum numbers of the bath. To have an interference,
the final quantum numbers of the bath should be the
same, independent of the path followed by the system; a
behavior that is found when we consider the various
paths leading to the emission of a parametric photon.
This approach thus strengthens our interpretation in
terms of interference of scattering amplitudes.

I. CASK OF CLASSICAL FIELDS

A. Three-wave-mixing emission

We consider a set of three-level atoms [ground state a,
excited states b and b' (see Fig. 1)] interacting with two
classical electromagnetic fields:
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FIG. 1. Scheme of the energy levels of the atoms considered
in this paper. All the transitions (a-b, b-b', b'-a) are assumed
to be dipole allowed.

where d, b and d, b are dipole-moment matrix elements,
assumed real. It is also assumed that an electric dipole
transition between levels b and b' is allowed and we
denote by dbb. the corresponding dipole-moment matrix
element. ' (For simplicity, it is assumed that the incident
and emitted fields are all polarized along the same direc-
tion and that this polarization is consistent with the vari-
ous selection rules. )

The radiative lifetimes of the excited states b and b' are
I b and I b. , respectively. Apart from radiative decay, the
atoms undergo collisional relaxation. We assume that
the active atoms are perturbed by a buffer gas and that
the collisions are dephasing in nature, inducing a decay of
the atomic state coherences but not of the atomic state
populations. The relaxation rate of the atomic state
coherence i —j due to collisions is denoted by y; . We as-
sume that the conditions of the impact approximation are
satisfied and, in particularly, that ~b, ( and ~b, '~ are small
compared to ~, ' where ~, is the typical duration of a col-
lision. On the other hand, we assume that ~b ~

and ~b, '~

are large compared to the widths of the a -b and a -b '

transitions but that
~
b, b,

'
~

remains small—compared to
~h~ and ~b, '~. We also assume that ~Q&/b.

~
and ~Q', /b, '~

are very small compared to unity. To second order in the
incident fields, the coherence pbb of the atomic density
matrix (which is the source term for the radiation at fre-
quency co —co') is equal to

E(r, t) =Ee cos(cot —k r+ 0),
E'(r, t) =E'e' cos(co't —k'. r+ 0') .

(la)

(lb)

+11 7 bb'
Pbb'

—i [(co—co')t —(k—k') r+ 0—6']

The first field is nearly resonant with the a-b transition
and we denote by A=co —coo its frequency detuning from
resonance. The second field is nearly resonant with the
a -b' transition and we define its detuning by 6' =co' —coo.
The resonance Rabi frequencies associated with these two
fields are denoted by 0, and 0'„ ~bb' Xba ~ Xb'a 7 bb' & (4a)

where ybb. is the collisional factor introduced by 81oem-
bergen, Loten, and Lynch,

d,bE0 =—

d,b.E'

(2a)

(2b)

and

Ib Ib.
I bb + +ybb2 2

(4b)

(4c)
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k"=k —k' (6)

is fulfilled. We assume here that this condition is
satisfied. The mean intensity I"of the three-wave-mixing
emission is obtained by solving the Maxwell equations in
the slowly varying envelope approximation. ' The result-
ing intensity is

2
I /2

» dbb I pbb'I',
2E.oc

(7)I S

where S=d2.
Even though this theory involves only classified fields,

it is possible to express the result in terms of a rate of
emission of photons having frequency cu". To obtain this
rate I, we multiply the mean value of the Poynting vec-
tor cocI" by the surface S of the parallelepiped and divide
this result by the energy quantum Ace" to obtain

8OCI
"S
II

Finally, using (3), (7), and (8), we find'
2

AiA)r= dbb'S 2c,oc A 4AA'

a
~bb'

I bb
—i6

(8)

(9)

In the presence of collisions the three-wave-mixing emis-
sion exhibits a resonance around 6=0. ' This resonance
had been first predicted by Bloembergen, Loten, and
Lynch and observed by Prior et a/. ' The parametric
emission given by formula (9) appears as a coherent emis-
sion proportional to X in the phase-matched direction.
This square law dependence was considered to be a prob-
lem when it was shown that the PIER 4 extra resonance
could be connected to collisionally aided redistribution of
radiation, which is usually a process whose intensity is
proportional to X. We shall return to this point in Sec.
II.

B. The Manley-Rowe relations

It is well known that in the case of nonresonant har-
monic generation, there exists a relation between the en-

One can remark that ebb is generally complex because

y, is the sum of a real component associated with the
pressure broadening and an imaginary component associ-
ated with the pressure shift. The component of the elec-
tric dipole moment associated with the field radiated at
frequency co"=co—co' is

dbb'(Pbb'+Pbb')

The preceding calculation has been developed for a sin-
gle atom. Now we look for the effects that originate from
the cooperative emission of X atoms enclosed in a volume
V. We assume that this volume is a parallelepiped with
the longitudinal dimension L much larger than the trans-
verse dimension d and also assume that d ))A,o (A,o is the
wavelength of any of the three fields considered here) and
that d /LA, o&)1.

The electric fields radiated by the X dipoles interfere
constructively in the forward direction if the phase-
matching condition

ergies exchanged among the different electromagnetic
fields. ' The Manley-Rowe relations' ' state that the to-
tal field energy remains constant in the steady-state re-
gime, the energy taken from one field being converted to
another. In a quantized-field picture, this implies that for
each co photon absorbed in Fig. 2, there is one co" photon
and one co' photon emitted. It is shown below that this
relation does not hold for the pressure-induced contribu-
tion to the three-wave-mixing generation. Actually, it is
well known that the Manley-Rowe relations are valid
only in the absence of damping, so that one should not
expect that they remain true in the case of PIER reso-
nances. However, since some of the earlier pictures of
the PIER make use of this conservation of the photon
number, we want to show explicitly that the Manley-
Rowe relations are not true for the PIER resonances and
that the number of photons emitted in a coherent fashion
at frequencies co' and cu" are not equal at the center of the
PIER resonance.

We consider atoms interacting with three incident clas-
sical fields of frequencies co, co', and co". To second order
in the input fields, the atomic coherences that are in-
volved in the three-wave-mixing process are Pbb. given in
formula (3), and pb, and pb., given by

Pb'a

I II
—i j(co'+co")t —(k'+k") r+0'+0" ]

4~~
A Q" —i [(co—co")t —(k —k")-r+ 0—0"]
4~~ '

(10a)

(lob)

W(co) ] i ] . (&, +&„Q O'0"
4QQ'

Similarly, using (10b), we find

W(co') 0, O'Q"

4~~

(12a)

(12b)

Finally, if we suppose that the resonance condition
(5=0) is satisfied and that ybb is real, it follows from
(11), (5), (3), and (6) that

0 O'0" a
W(co ) ] i ] 1+ ebb'

tl 4+gt (13)

In the absence of collisions (ebb =0), Eqs. (12) and (13)
imply the Manley-Rowe relations

W(co) W(co')

%co Aco

W(co" )

%co
(14)

For each photon of frequency cu that is absorbed, there is
one photon of frequency co' and one of frequency co" em-
itted. This property suggests the well-known scheme
(Fig. 2 ) associated with a parametric process.

where 0]'= —d„„E"!Pi, and 8" is the phase of the clas-
sical field E". The mean energy exchanged between an
atom and the field of frequency co is equal to

Iv(ra)=(E(() [d(m)])
d
dt av

Assuming that the phase-matching condition (6) is
fulfilled and using (10a) we find
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This interpretation is supported by the algebra presented
in Sec. II B and in the appendixes.

1. Absence of collisional damping

FIG. 2. Usual scheme of the parametric mixing process. For
each cu photon absorbed, there is one co" photon and one co'

photon emitted.

It is clear from Eqs. (12) and (13) that the Manley-
Rowe relations are no longer valid in the presence of col-
lisional damping (y&& WO). The collision-induced change
in the coherent emission at frequency m" is not connected
with a similar change at the other frequencies. It has
been sometimes argued that the scheme of Fig. 2 remains
valid for emission associated with the extra resonance,
the only difference being that the energy levels are shifted
during the collision process. The difference between (12)
and (13) shows clearly that this is not the case and that a
scheme similar to the one of Fig. 2 cannot be applied to
the pressure-induced extra resonance. To understand
physically the origin of the extra resonances, one has to
consider other pictures. One purpose of Sec. II is to give
a better physical understanding of these extra resonances.

We have shown that the intensity of the parametric
emission at co" does not coincide in the presence of col-
lisions with that at co'. Such a result may look surprising
in terms of energy conservation. In fact, the difference
between these two rates of emission is compensated by a
change in the spontaneous emission from level b'. This
rate of spontaneous emission is equal to I"bpb.b.. If we
calculate the component of pb. b. proportional to A&Q&A&'

we find by solving the density matrix equations to third
order and keeping the term of interest that

We first discuss the situation where the atoms are not
subjected to collisional damping. We assume that initial-
ly all the atoms are in the ground state a and that the ini-
tial state of the field is ~n, n', 0), where n and n' are the
number of photons in the modes co and m'. We seek the
probability of having one photon emitted in the Inode m".
The most obvious amplitude leading to emission of an co"

photon is shown in Fig. 2, where an atom absorbs one
photon from mode co and emits one photon each into
modes co" and co'. The scattering amplitudes associated
with different atoms can interfere if it is not possible to
detect which atom has really scattered the radiation. At
the end of the process, the state of the atom that has scat-
tered the radiation is the ground state a and thus coin-
cides with the atomic state of the other atoms. During
the scattering process, the atom receives a momentum
equal to vari(k —k' —k"). If the phase-matching condition
is fulfilled, there is no transfer of momentum and, conse-
quently, no possibility to distinguish which atom has
scattered the radiation. In conclusion, the scattering am-
plitudes shown in Fig. 2 associated with different atoms
interfere constructively when the photon co" is emitted in
the phase-matching direction (Fig. 3). We have then to
sum the scattering amplitudes and not the scattering
probabilities. This is the origin of the enhancement of
the emission in the direction k"=k —k' in the
quantized-field approach. '

(I) 11+1 V bbI &,p&, I, .=, sin(9 —9' —9") . (15)

This term is essentially identical to the one considered
previously for the observation of PIER in nonlinear
spectroscopy. It can be positive or negative depending on
the sign of (9—9' —9"), but the total Auorescence from
level b' is of course positive. By comparing (12), (13), and
(15), one sees that the difference between the rates of
emission at m" and co' can be attributed to the spontane-
ous emission from level b'.

(b)

II. CASE OF QUANTIZED FIELDS

A. Physical interpretation

In this subsection, a qualitative description of signal
formation is given that emphasizes its physical origin.

FIG. 3. Interference between the scattering amplitudes asso-
ciated with atom j (a) and atom I (b). These two amplitudes
constructively interfere when the phase-matching condition is
fulfilled. The diagrams represented here correspond to the
parametric emission in the absence of collisional damping.
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2. Case of eollisional damping

When the atoms undergo collisions, other interference
phenomena involving two atoms can occur. Let us con-
sider two atoms j and I. One amplitude [Fig. 4(a)] in-
volves a parametric interaction (similar to the one de-
scribed in the preceding section) for atom j (absorption of
co, emission of co" and co') and a collisionally aided ab-
sorption of a photon co' followed by a spontaneous emis-
sion of a photon of frequency co'& for atom I. Another am-
plitude [Fig. 4(b)] involves a collisionally aided absorp-
tion of a photon ~ followed by the emission of photons
co" and cu& by atom I, atom j remaining in its ground
state. These two amplitudes can interfere if the final state
for the two atoms and for the fields are the same. One
can see that in both processes a photon co is absorbed and
two photons (co" and co', ) are emitted [in the process
shown in Fig. 4(a) there is an absorption of a photon co'

and an emission of a photon co' with the net result that
the number of co' photons is unchanged]. The transfer of
energy between atom I and its collision partner is
fi(co' coI ) fo—r the process shown in Fig. 4(a) and
fi(ro ro" coI)—for —the process shown in Fig. 4(b). The
condition of interference is thus co=co'+co". Further-

coll. i')
&k

more, the process shown in Fig. 4(b) is maximum when
co" coincides with the atomic frequency cobb. , which im-
plies 6=0. This is the resonance condition for PIER 4.
Finally, we note that the transfer of momentum from the
field is A'(k —k' —k") for atom j and fi(k' —k'&) for the
atom l in Fig. 4(a). In Fig. 4(b) the transfers are 0 for
atom j and A'(k —k"—k'&) for atom I. The transfers are
equal in the two processes, provided that the phase-
matching condition is fulfilled. Since the number of pairs
of atoms that can constructively interfere to provide
phase-matched emission is proportional to
X(N —1)-X,we have here an interference process that
can explain the features of PIER 4.

Another interference occurs with the diagrams shown
in Fig. 5. In the two cases [Figs. 5(a) and 5(b)], atoms j
and l undergo collisions. In the diagram of Fig. 5(a), the
photon co" is emitted by atom l while the photon cu" is
emitted by atom j in Fig. 5(b). For the two cases, there is
absorption of one co photon and one co' photon and emis-
sion of one photon in the modes co",co&, co&. The energy
exchanged between atom j and its collision partner X is
fi(co' —co&) in Fig. 5(a) and A'(co —co"—coI) in Fig. 5(b).
Similarly, the energy exchanged between atom l and its
collision partner Y is A(co —co"—co&) in Fig. 5(a) and
R(co' —co&) in Fig. 5(b). To have an interference, the
transfers of Fig. 5(a) should be equal to the transfer of

coll. f ) &u
11

(a)

coll.g )

td, coll
Ak

coll.$ [

FIG. 4. Interference in the emission of a co" photon by a pair
of atoms. In the process shown in (a), the co" photon is emitted
by atom j through a parametric mixing process, while atom l
emits a spontaneous photon of frequency co& after absorbing a co'

photon. In the process shown in (b), the photons co" and co& are
emitted by atom l in a cascade that follows the collisionally aid-
ed excitation of level b. The diagrams shown in (a) and (b) can
interfere when the phase-matching condition is fulfilled. If this
is the case, it is not possible to state which atom has emitted the
photon co". The diagrams shown here correspond to the term
linear in bufter gas pressure in the rate of emission of a photon

FIG. 5. Interference in the emission of a ~" photon by a pair
of atoms. In the process shown in (a), the co" photon is emitted
by atom l while it is emitted by atom j in the process shown in
(b). In the two processes, the atoms are collisionally excited.
Atom j is excited to level b' in (a) and to level b in (b). Atom l is
excited to level b in (a) and to level b' in (b). The diagrams
shown in (a) and (b) can interfere when the phase-matching con-
dition is fulfilled. It is then not possible to state which atom has
emitted the co" photon. These diagrams correspond to the term
quadratic in buA'er gas pressure in the rate of emission of a pho-
ton co".
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Fig. 5(b), which implies co=co'+co". Furthermore, a res-
onance occurs when co"=~bb, i.e., when 5=0. Finally,
the transfers of momentum from the field to atom j are
iri(k' —ki) and fi(k —k"—ki) for the processes shown in
Figs. 5(a) and 5(b), respectively. The transfers are equal
when k=k'+k", i.e., when the phase-matching condition
is fulfilled.

If we develop the factor ~1+ybb /(I ». i5—) found in
formula (9), we find a term independent of the pressure, a
term linear in y», and a term varying as (ebb ) . The fol-
lowing calculation shows that the first term is described
by the diagrams of Fig. 3, the term linear in gab, by the
diagrams of Fig. 4, and the term quadratic in y bb by the
diagrams of Fig. 5. One can understand this relationship
without entering into the details of the calculations be-

cause the diagrams of Fig. 3 do not involve any collisions
and are thus independent of the pressure; the diagrams of
Fig. 4 involve only one collision and are thus connected
with the term linear in pressure; and the diagrams of Fig.
5, which involve two collisions, are associated with the
term quadratic in pressure. At this stage, this relation is
only intuitive and the complete calculation presented
now is necessary to establish this link on a rigorous basis.

B. Description in the bare atoms basis

1. Notation

The Hamiltonian H of the whole system can be split
into two parts. The dominant term is Hp..

N I i

ho(j)+ gAco, ata;+kg g (S+a e '+S. a e ')+kg' g (S'+a'e '+S' a'te ') .
j=l I J J

(16}

The first term corresponds to the sum of the free Hamil-
tonian of the X atoms

ho(j}=Eg'Ibj &&b'I+Eblb, &&b I+E
The second term is the Hamiltonian of the free field. In
particular, this term contains the contributions Rcoa a
and Ace'a' a' of the modes that are initially filled with
photons (a and a' are the annihilation operators for the
modes co, k and co', k', respectively). The next term de-
scribes the interaction between the atoms and the mode
(co, k) of the field. The operators S, and S are equal to
Ib, & (a~.

~
and ~al ) (bj ~, g is a coupling constant equal to

Q, i/2V n [where n is the number of photons in mode
(co, k)], and @, is a phase factor' equal to

4 =k-r. —8J J

Similarly, the last term describes the interaction with the
mode (co', k) of the field. We have S~'+ = ~b~') (al ~,
S' =~a )(b'~, g'=II', /2i/n' (n' is the number of pho-
tons in the mode co', k'), and

which describes the interaction with the modes of the
field having frequency close to cop and which are initially
not populated (we note Rg', = —db, Qii'tro'/2so V ).

2. Equation in the absence of collisional damping

Let us assume that the initial state of the system is
~a„. . . , al, . . .az )S ~n, n', 0), which means that all the
atoms are in the gound state and two modes of the field
are occupied. The amplitude to have atom j in state b in
the presence of (n —1) photons (co, k) and n' photons
(co', k') is denoted by C(b, n —1,n '). Similarly,
C(bj, n —l, n', k") describes atom j in state b' with
(n —1}photons (co,k), n' photons (co', k'), and one pho-
ton ( co",k" ). Finally, C( n —1,n '+ 1,k" }describes a situ-
ation where all the atoms are in the ground state in the
presence of (n —1) photons (to, k), (n'+1) photons
(co', k'}, and one photon (to",k").

The equations for the C coefficients, deduced from the
Schrodinger equation, are

lb
C(bj, n —l, n') = — C(b, n —l, n')

4' =k'. r —t9' .J J

The remaining part of the Hamiltonian HI=H Hp
described the interaction between the atoms and the
modes of the field that are initially unpopulated. In par-
ticular, this term contains the coupling V" with the mode
(co",k"), which is classically excited by the three-wave-
mixing process,

II II

V"=iong"

g(S"+a"e ' —S~" a" e '),
J

iA, ,
e 'e ' 'C(n, n'),

I"b.
C(b', n, n' —1)= — C(b,', n, n' —1)

Ai
i e 'e ' —'C(n n'),

i I ii bC(b', n —l, n', k")= — C(b', n —l, n', k")

(20a)

(20b)

with S". +=~b )(b'~, S" =~b')(b I, and fig"
= —d» +A'co" /2so V, where V is the quantization
volume. HI also contains a term

tl—g "e 'e' 'C(b, n —1,n')

Q';q,—i e 'e ' 'C(n —1 n'+1 k"),i i

V'=i&gi gg(S,'+a„'e " ' —S,
' a„'te &'J),

J P
(19)

(20c)
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C(n —1,n'+ l, k" )

QI—i ge
2 j

I

'e' 'C(b', n —l, n', k"), (20d)

6 - —co; Q)~etc., where 5"=~"—
~&&* and

(d,'=Ck ).
We want to calculate the probability (linear in time and

to order A, QI ) that a photon k" will be emitted, all the
atoms being in their ground states. This probability is

C(n, n' —l, ki)= —g) ge ' 'e ' C(b', n, n' —1),
J P =Pr+P»+P»

(20e) with

(21)

C(n —l, n', k",k) )

1 I—i g e 'e' 'C(b', n —l, n' —l, k",k)),
J

P, = ~C(n —1,n'+ l, k")~

P„=g ~C(n —l, n', k",kI)~
k)

P„,= g ~C(n —l, n' —l, k",k'„k2)~
k, , k2

(22a)

(22b)

(22c)

C(n —l, n' —l, k",k'„k2)

= —g) g e ' 'e ' C(b', n —l, n', k",kz)
J

—gi $e 'e C(b', n —l, n', k",k', )+
J

(20g)
I

P„P», and P», are, respectively, associated with pro-
cesses where 0, 1, and 2 photons are spontaneously emit-
ted in unoccupied modes on the b'~a transition. The
comparison with the diagrams described previously
shows that P„P», and P», correspond to the contribu-
tions of the diagrams of Figs. 3, 4, and 5, respectively, to
the signal. Let us first calculate Pi. Using Eqs. (20a),
(20c), and (20d) and the definitions of (I) and (I)', we find

C(n +1, n' +1, k")= 2m e' "' '5'"(6'+b."—b) g
1 b

4
2

i(bk).r.
Q)A)g "e

(23)

where Using the relation

and

5(t)(gi+gii g) f g t(g'+6" —g)g

277 —t /2
(24)

5((o + (d (0 )2' (28)

(bk) r. =(k —k' —k") r. +8' —8 . (2&)

The amplitude C(n —l, n'+ l, k") is expressed as a sum
over all atoms

we find

C(n —l, n'+ l, k")= g A.e

In the limit considered
(~A~, ~A'~ ))I &, I &. ), A is equal to

in this

(26)

paper

Pq =277

X 5((t) +(0 (d )

'2
ihk. (r. —r&)

j, 1

(29)

A = —21T g"5'"(b,'+b, "—6)e'~+ "' ' . (27)
Q, Q', with b,k.(r —r, ) = (k —k' —k" ) (r r) ). Th—e rate of

emission in the solid angle d 0" is

&)n')
I g

gals

2 y
(30)

with the density of states

(~ „) V (A'(d")

8m Ac
(31)

The angular integral that appears in the summation over

i()t —)t' —)(") .r .

S (32)

I

dQ" is well known. ' If the Fresnel number S/I. A, is
large compared to 1, we have
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The rate of emission of photons co" is thus
2

S 2Eoc A' 4kh' (33)

This result coincides with the value obtained in the semi-
classical approach when damping is neglected Isee formu-
la (9) with y bb. =0].

We show now that the contribution from P»+P»,
vanishes when there are no collisions. This will establish
the exact correspondence between the quantum result
and the semiclassical result when there is no collisional
damping. We first calculate C(n —l, n', k",k', ) and give
its value in a form that will be suitable for the generaliza-
tion to the case of collisional damping:

C(n —l, n', k",k', ) =—
II

Ig g I i&It. —i(k(+k") r.
e 'e

J

f t '6 t 1
—(1 b, l2)(t —t ) '6"t 2 —(I !2)(t —t )

—b, t

0 0 0

g I I iN'I —ikI ri t ittI t( ( —(I &, l2)(t —
) t2) —ib't&i t i+ l

2 0 0

II I1'Ig i(ttk) r t ib, 't( ( —(I &, l2)(tt —t2) itt"t& 2 —(I b/2)(t& —t3) —ibt3e dt)e ' dt2e ' ' ' e ' dt3e ' ' e
0 0 0

(34)

[The first term corresponds to Fig. 4(b) and the second to Fig. 4(a).] In the calculation of PII, we only keep the terms
that give a contribution to phase-matched emission. In particular, this implies that the same atom should be involved
in the sums over j and /. We find

2nn-
P„=—g 8'

4
1

m) J r, ,

2
+(6"—6)

Using the fact that

X
I b.

2

1

I b.
+i 6'

2

(35)

2~+ (g', )'fi("(~', —~')S("(S',+a"—~)= r„,fi("(~ +~"—a)
kl

and Eq. (28), we obtain
. 2

OlAlg"
4

m, J

i(hk) (r —r. )m j
Ib
2

I b 5(co"+o)' —co)

Ib
2 2

+6
2 (37)

This term is obviously smaller than PI/t by a factor
(I b, /b. ') . Furthermore, a calculation of PIII/t done us-
ing the same method shows that the phase-matched con-
tribution to P»& /t exactly cancels that of P» /t.

tP (t t)t 2)=ItP &(t2) tP &(ti ) . — (38)

The average of the phase shifts over all possible collisions
gives

3. Case of collisional damping ( +AP 2' 1 'k ~clf3 2 1e ~ coll (39)

We consider the case of dephasing collisions. These
collisions can be described by replacing the atomic Bohr
frequencies to &(t) by oj &(t)+tp j3(t) where tp &(t) is the
sum of the phase shifts on the ct-P transition between
time 0 and t. We also define

for t2) t, . When these phase shifts are included in the
calculation of C( n —1,n '+ 1,k), the only difference at the
end of the calculation is that I „/2 and I b. /2, appearing
in energy denominators in Eq. (23), are replaced by
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~b
~b. = +Xb.

2

Ib
bl + I/bl ~

(40a)

(40b)

of the phase-interrupting collisions. %'hen calculating
~C(n —l, n', k",k', )~, we only keep the terms that con-
tribute to phase-matched emission. These terms can be
written as

In the limit where
~
6

~
and ~b, '~ are large compared to I b,

and I b „the result given by formulas (27) and (33) is not
changed.

Let us now consider the calculation of P». We start
from the formula (34) giving C( n —1,n ', k",k

&
) and re-

lklt1 lk
place the time evolution factors e, e, etc. , by

E61tl lPb (t1 ) l6 t2 lgbb ( t2 )
e ' 'e "' ', e 'e '" ', etc. , to include the eA'ect

(P„)„„=y e' ' " (& A BJ &„„+CC.) .
m, J

The collisions at two di6'erent sites rn and j being in-
dependent, we can separately average 3 and B. over
the collisions (( A B )„~~=(A )„&~(B )„~& if mAj).

The quantity 8 is given by

I

k1

(rb'/2)(t1 t2) 6 2 +b' {t2)X dt, e e e
0

I t
l61t1 i+bi {t1)

X dt'e e1

r
1 (r /2)(t t ) EA t 1cP .(t ) 2

&
(I /2)(t t ) lkt3 —

I, y (t )

0 0

(42)

This expression can be simplified by using the relation

g (gl )'e
k1

which leads to

(43)

X dtzef rb' ( 2 ~ 2 ebb' t2 2, b/2)(t —t ) ht —'Pb (t )
e e dt3e e

0 0
(44)

We now order the integrals so that the phase shifts appearing under the integral can be written as a sum of q&, &(t, , t ) in
nonoverlapping time intervals with t; ) t . Therefore, we write B& using (38) as

I

f b' 2 2 ' 2 '+b' 2' 2 ~ b 2 3 3 '+b 2' 3

0 0

t 1 ) rbi(t1 t2 ) iA+ dt& dt2e e
0 0

I —I(r„/2)+(r, /2)](t', —t, ) —'~'t, q b„,(t', , t, ) '2, —(r /2)(t, —t', ) ~t,' gb, (t, , t', )

0 0

—rb (t1 —t2) —b "t 2, —r(I b/2)+(1 b /2)](t~ —t3) bt3 Pbb (12 t3)
0 0 0

f —( b'/2)(t3 —
2

—tA'
2

—

tabb

3X dt2e e e
0 (45)

Using Eq. (39) to average over collisions and integrating over time, we obtain
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0 0' r,
4 rb+t(~ —~' —~") r„*.+ta r,*,.+t(a —a") r„*.+ta r„*,, +t(a —a

t'(tt 6—' —6")(t/2)fi(t)(~
r, .—t~' rb*b, +t(a a—)

This expression can be transformed into

(B, )„»=—m. g"6("(b,—6' —6") +1+1
( ) 1 1 1

Ib+ 6 lb.,+ 6' b,

(46)

(47)

In the absence of collisional damping, the second term in the square brackets disappears (ybb, =0) and one recovers the
same factor found in formula (35). It should be noted that the second term is of order of lybb. /I bb l(1/6 ) while the
first term is of order I b,, /b, l(1/6, ). In the presence of collisions and for lb, l, lh' ))lI b, l, lI b, l, the dominant term
is the collision-induced one:

II 0' (y' )*
(B ) 2 rr g(t)( g gi pic )

t(A —6' —5")(t/2)
j coll 4ggt +g + .

~
(48)

~bb +C.c.r„,, —n

iAk. (r —r. )g e ' g" 5(co"+co' —co) .
m, j

In the limit lb, l, lA
l
)) lI b, l, l

I b, l, the value of ( 2 )„ll is still given by formula (27). Finally, using Eqs. (27), (28),
(41), and (48), we obtain

2
n

=2& (49)

The procedure used to go from formula (29) to formula
(33) can be repeated here and we find

2

r =
S 2c cA 4hA'

) bb' ybb'

I „—i6

(50)

One can note that I » appears to result from the in-
terference between the pair of atoms of quantities of type
( 3 ) ( Bt )„ll. It has been shown that ( A ) is connect-
ed with the usual parametric scattering by atom m, while
(BJ )„)) is associated with collision-aided excitation of
level b' of atom j followed by spontaneous emission of a
photon co&. These features are well explained by the dia-
grams of Fig. 4.

The calculation of I,» can be done along the same
lines and one finds

S 2cocA 4hA' I bb.
—i6ldbb I' (52)

The sum I,+I »+I », where I „ I », and I », are given
by Eqs. (33), (50), and (52) is obviously equal to the result
(9) obtained in the semiclassical approach. There is thus
a perfect coherence between the two descriptions. How-
ever, the fully quantum description has permitted us to
identify the physical origin of the phase-matched emis-
sion. The three terms I „ I », and I »I that appear in the
quantum calculation are associated with the interference
phenomena described by the diagrams of Figs. 3, 4, and
5, respectively. The calculation presented here is clearly
more tedious than the calculation done in the semiclassi-
cal approach (or in the Heisenberg approach with quan-
tized fields" ); however, there are no subtle or basic
difhculties. Finally, if the initial state of the field is not a
pure state but is described by a density matrix,

~ ~k'(1~ I )

lit 2 ( ~coll ( j ~ oil
m, j

(51)
p (0)= g QP(n)P'(n')ln, n', 0)(n, n', Ol, (53)

The calculation of P»1 involves an interference be-
tween products of terms (B )„» and (B,. )„» relative to
atoms m and j. Each of these terms involves a collision
and a spontaneous emission of a photon, in agreement
with the image of Fig. 5.

Using Eq. (47), in the limit that lybb, b, /I b,, I bb, l
)) 1

and Eqs. (29)—(33), one finally arrives at

n n'

where p(n) and P'(n') are probability distributions cen-
tered around no and no with widths An and An' such
that b, n ((no and b,n'((no, the results (33), (50), and
(52) for I l, 1», and I

&&&
remain valid with Q) =2g(t/no

and 0') =2g'()/ no.
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We have presented in this paper a theory of the
pressure-induced extra resonances in four-wave mixing
(PIER 4) using quantized fields in the Schrodinger repre-
sentation. Even if the calculations are more complicated
than those done previously with classical fields or with
the quantized field in the Heisenberg representation, "
our approach leads to a clear picture of the physical ori-
gin of the PIER 4 resonances. We believe that our ex-
planation allows one to answer the questions generally
asked about PIER 4 (origin of the phase-matching condi-
tion, conservation of photon number, constructive role
played by the relaxation mechanism). Our interpretation
of multiwave mixing in terms of interference between
scattering amplitudes by different atoms shows also that
this process and the extra resonances do not require tem-
porally coherent fields. All these effects can be observed
with pure number states for the field and do not involve
the creation of a macroscopic dipole moment in the sam-
ple. Moreover, the Schrodinger approach allows us to
see certain correlations which are hidden in the Heisen-
berg approach. For example, it should be clear from
Figs. 4 and 5 that the pressure-induced resonance is al-
ways correlated with the emission of photons having fre-
quencies different from m, co', or co", in contrast with the
parametric process of Fig. 3. In addition, the gain for
field ~' associated with the parametric process of Fig. 3
does not persist for the collision-induced resonance.

In conclusion, we have offered yet another interpreta-
tion of the pressure-induced resonances. We hope that
this interpretation adds some additional insight as to the
physical origin of the resonances.
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APPENDIX A: DESCRIPTION OF PIER 4
IN THE DRESSED-ATOM BASIS

The aim of this appendix is to show how the pressure-
induced extra resonances in four-wave mixing appear in
the dressed-state basis, and in particular, how they are re-
lated to the Raman coherences for a single atom that
have been considered previously. ' '"

1. Case of negligible collisional damping

We denote by ! A». . . , A, Az', n, n', 0)
dressed eigenstate of Ho that tends towards
!Q„.. . , Ql, . . . , Qlv, n, n', 0) when g and g' tend towards
0. Let us write the perturbation expansion of this state:

I ~ I Qi
! A&, . . . , A, . . . , Az, n, n, O) =! &,Q. . . , ,Q. . . , Q, lv, nnO)+ pe !Q&, . . . , b, . . . , Qlv , n —l, n, O')~ I

2h

Qi+, g e '!Q „.. . , b~', . . . , QII, n, n
' —1,0 ) .2A' (A 1)

Similarly, we denote by

!
I ~ IA l, . . . , B, , Bl, . . . , Alv', n, n, O)

the eigenstates of Ho that tend towards

IA l, . . . , 8, . . . , Alv , n, n', 0), '!A l, . . . , 8, , Alv , n, n', 0), '

!

I
Ql '' b' ' ' QN tl n !

S. I I nb I S. S. I AQl, . . . , J, . . . , Qlv, n, n, O), !Ql, . . . , &, . . . , ,l. . . , Qlv t,ln, 0)

when g and g' tend towards 0.
Let us assume first that the system is initially in the state

!$(0))=!A „.. . , A, . . . , A;n, n', 0) (A2)

and calculate the probability to have a photon emitted in the mode (co",k"). This probability is proportional to !4!
where

4=( A, , . . . , AJ, . . . , Az', n —l, n'+ l, k"!V"!A &, . . . , Al, . . . , A&, n, n', 0)
and V" is given by Eq. (18).

(A3)
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This coupling involves the annihilation of one m pho-
ton and the creation of one photon each in modes co' and
~", in agreement with the scheme of Fig. 2. Using (18),
(25), and (Al), we find

i(Ak).r.
fi 4b 6'

J
(A4)

The probability of spontaneous emission that is pro-
portional to S~ grows as X in the phase-matched direc-
tion. Even if the physical conditions differ from those
considered in the case of Dicke supperradiance, ' the
parametric emission of a photon co" shares several prop-
erties of the superradiance. For example, the two pro-
cesses correspond to a spontaneous-emission rate propor-
tional to N . In some sense, one can consider the para-
metric emission of a photon co" as a superradiant emis-
sion in the dressed-state basis.

A quantitative estimate of the rate of spontaneous
emission can be done using the Fermi golden rule. The
calculation is identical to the one that starts from formu-
la (30) and leads to the value (33) for I,.

2. Case of collisional damping

The preceding discussions have shown that the emis-
sion in the phase-matched direction arises from the in-
terference between the emission of different atoms. To
describe the phenomena, we need at least two atoms.
These atoms will be labeled j and I. We look for the term

ibk (r. —rI )
having a dependence e ' ' in the probability of
emission of a photon (co",k"). The initial density matrix
for the total system "atoms + field" is

Iii Xbb I(y —y')
e466 I bbi

(B., B/; n—l, n' —1,0ipiB', BI,n —'l, n' —1,0)

Q)Q)
4AA'

7bb s(y, —
y,

' —
&, +

~bb'

(A 1oa)

(A lob)

These two dressed-atom coherences have a nonvanish-
ing value only in presence of collisional damping
(yi&.WO). Using (A5), (A6), and (A7), one finds again I i.
Using (A6), (A8), and (A10a) one obtains I ii,

' and from
(A6), (A9), and (A10b) one finds I »,. Thus the dressed-
atom basis also allows one to deduce the rate of emission.
The new terms that arise in the presence of collisional
damping are associated with Raman coherences between
dressed states '" and are obviously related to the dia-
grams shown in Figs. 4 and 5. Formula (A8) corresponds
to the situation of Fig. 4, where a parametric mixing for
atom l interferes with a collisionally aided excitation for
atom j. Formula (A9) corresponds to the situation of
Fig. 5 where two symmetric collisionally aided excita-
tions of atoms j and I are involved and produce an in-
terference in the emission of a co" photon.

where V'-' means that we consider only the contribution
of atom j to V". The calculations of the density matrix
elements that appear in formulas (A8) and (A9) have been
derived previously:

&B,- A 'n —1 n' OlplB, ' A, ;n, n' 1—, 0)

p(0) =
~ AJ, AI, n, n', 0) ( A~, A&,'n, n', 0~, (A5)

APPENDIX B: DESCRIPTION OF THE RELAXATION
BY THE INTERACTION WITH A BATH

and we also assume for the sake of simplicity that 5=0.
To second order in the incident fields, the component

i(bk) ~ (r. —r&)that is proportional to e ' ' in the probability of
emission of a photon ~",k" is

p(A'co")[(A i+B I+BI*+CI )], (A6)

with

A,, = ( A, , A, ;n —l, n'+ l, k"
l V,"~ A, , A, ;n, n', 0)

X ( A, , Ai, n, n', O~p~ A, , Ai, n, n', 0)
X ( A, Ai, n, n', 0~ V/'~ A. , AI, n —1,n '+ 1,k"),

(A7)
B &= (B ', A, ;n —l, n', k"

~

V.
"~B, A&', n —l, n', 0)

In this appendix, we describe the relaxation mechanism
by the interaction with a bath with quantum numbers
p, v, . . . . The motivation of this appendix is twofold.
First, extra resonances can be triggered by relaxation
mechanisms different from collisions' ' and the ap-
proach given here can be applied to other mechanisms.
Second, the possibility to follow the quantum numbers of
the bath during the interaction allows us to strengthen
the physical interpretation given in Sec. II.

We assume that each atom interacts with a separate
bath. The quantum numbers for the bath in contact with
atom j are labeled p, v, . . . . We assume that all the
baths are identical: they have the same Hamiltonian, the
same interaction Hamiltonian with the atom, and the
same density matrix

X (B~, AI, n —1,n ', 0~ p ~B~' AI, n, n ' —1,0)
X (B~', AI,'n, n' —1,0~ Vi" B', A&, n —l, n', 'k"),

(A8)
CJI

= ( BJ',BI',' n —1,n ' —1,k"
~ V,"~ B~,B&', n —1,n ' —1,0 )

p„= gp(p)lp, )&p, l
.

The new unperturbed Hamiltonian Ho is now

Ho =Ho+Hb+Hlb ~ (B2)

X (B,, B/';n —l, n' —1,0~p~B', B,;n —l, n' —1,0) where Ho is given by formula (16), HI, is the Hamiltonian
nf the bath

X(B',B&, n —l, n' —1,0~ V/'~B', B/';n —l, n' —l, k"),
(A9)

Hi, = QHb
J

(B3)
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and Hib is the interaction between the atoms and the
baths

Htb= QHtb
J

(B~, AI, n —l, n', 0;tJ,', v'IlHI& IAJ, AI, n', n', 0;pj. , v~)
J

0)=6, e ' Wg„", (85a)

(B,', Ai, n, n' —1,0;pj, vt lHlb I A, , A~, n, n', 0;p, , vl )

0)
~i ~I 25 (85b)

As discussed previously, the physics can be understood
by considering a set of two atoms, j and I. We thus limit
the following discussion to these two atoms. The eigen-
states of Ho+Hb are

~ A, Al, n, n', 0;p, v&),
BJ, Al, n —l, n', Op ~ v&), etc By. analogy with what

occurs in the case of collisions, we take the following ma-
trix elements for Hlb.

We assume that the system is initially in the state
~ A~, A&, n, n', 0;pj, v& ) and we look for the probability of
having the two atoms excited at a 1ater time, one atom
being in the 8 state, the other in the 8' state. We have
thus to calculate the following matrix element of the evo-
lution operator U(t, 0):

I I

C"' ' =(B , BI', n —.l, n' 1,0—;@~ v~lU(t .0)l AJ Ar'n "' O'PJ vI)
j

Using perturbation theory to second order, we obtain

(86)

C"' ', =—
B.B

I Ql

,
'

e ' ' Wg„"Ws''„ f dt, f dt28(t, t~)e "—'' 'e

+ f dt, f dt, 8(t, t, )e '" —'e (87)

where 8(r) is the Heaviside function [8(r)= 1 if r )0 and 8(r) =0 if r (0]. By exchanging t
&

and tz in the second in-

tegral we find
I

i(P +P() t i(co, —b)tl t i(co, —5')t~

The component ~/zan ) of the state vector for which one atom is in the B state, the other atom being in the B state, is

thus
I I

~gzII ) = g C ' ',e "" "
~B ,BI';n —l, n' —1,.0;p', v'I )

I

It tt

+ g C l 'e "" ' ~B' ,Bl n —1 n' .—10@~vI') .
J Ip, v

The probability that one photon is emitted in the mode (co",k" ) is proportional to

(89)

P= X (B,
'.

, B,';n —1,n' —1,k";p.,'",v', "
lit III

P IV

CBE))' (810)

where V" is given by formula (18). We only retain in the calculation of P the interference term P;„, which leads to the

phase-matched emission,
I I I II

(811)
p, v

Using (88), we obtain

P. (g )2 Q, Q',
1Ht ~4, 4ggt

2

g Wg "(Wg )*(W' )*W'

(812)
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Finally, we have to average the formula (75) using the
density matrix of the bath

P;„,= gp(p)p(v)P, „, .
p, v

(B13)

Since the bath has a very dense energy spectrum, the
function

(B14)

has a very short correlation time. If we define

3'aa' = J d r gaa (r )'

it follows that
2

0)Q)
P;„,=(g")'

4AA'

i(Ak) ~ (r. —rI )X(e ' ' +c.c. )

~

z sin (6t l2)
( &/2)'

(B15)

(B16)

This result shares most of the properties of the contri-
bution I iii [see Eq. (52)] to PIER 4. It leads to a
cooperative spontaneous emission in the direction where

the phase-matching condition is fulfilled. It exhibits a
resonance around 6 =0 and it requires a relaxation mech-
anism to induce transfers from A to B and B' (yaa. &0).

When atom j absorbs a photon m, the quantum number
of its bath changes from p to p'. In particular, this tran-
sition of the bath is necessary to absorb the energy
mismatch AA. When atom j absorbs a photon co', the
quantum number of its bath changes from p to p". How-
ever, in order to have an interference term such as the
one of formula (Bl 1) we need to have p"=p'. The quan-
turn number of the bath should be the same at the end of
the process, independently of the atom (j or l ) that has
absorbed the photon co and emitted the photon co". The
scheme of the process is similar to all the interference
phenomena. There are two possible paths to go from

~ A, , At, n, n'', 0;p, , v&) to B',B&';n —l, n' —l, k";p', vi):
the first path is through ~BJ,B&', n l, n' —1,0;p~—, v&); the
second path is through B,', B&', n —l, n' —1,0;p', vi ).

A similar picture can be used to find the term I ». In
that case also there are two possible paths to go from

~ AJ, Ai, n, n', 0;p~, vt ) to
~
A, B&','n —l, n', k";p, v)i.

The first path is through
~ A, At, n —1, n' +1, k";p, v&);
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