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Nonlinear wave propagation in free-electron lasers
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The nonlinear coupled wave equations of a free-electron laser in the Compton regime are ana-
lyzed numerically and analytically, taking into account the shot noise in the incident electron beam.
The inhuence of the sideband instability and the shot noise on the emitted spectrum are determined.

I. INTRODUCTION

A free-electron laser (FEL) consists of a collimated
bunch of highly relativistic electrons passing a transversal
magnetic field periodically modulated in the direction of
propagation ("undulator"). The electrons are periodical-
ly accelerated transversal to their direction of propaga-
tion and hence radiate in the forward direction, providing
the necessary gain.

A closed set of nonlinear partial differential equations
describing this eff'ect can be derived (cf., e.g. , Refs. 1 and
2). One first considers the electron's motion in the com-
bined electromagnetic field of the undulator and the radi-
ation field. This motion generates the transversal current
acting as a source term in Maxwell's equations and in
turn produces the radiation field. Longitudinal current
effects are negligible in electron beams of a density
sufficiently low (no & 10' cm ) to avoid the appearance
of plasma oscillations. The equations obtained take the
form"

X is the cross section of overlap between the electron
beam and the undulator field. The sum in Eq. (1.1) is tak-
en over a11 X=n, A. /e electrons within an optical wave-
length k centered around z at time t.

With the help of the "Pierce parameter"
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The charge per unit length along the electron beam is n, .
It is assumed to be constant within the beam. The energy
of the ith electron is y; =m;/mo where m is its relativis-
tic mass and mp its rest mass. The "phase" 0.; of the ith
electron relative to the electromagnetic field is defined as
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where n p is the number density of electrons, and assum-
ing p « 1 (p =2 X 10 for the Stanford FEL),
(y, —y„)/y„«1, the coupled wave equations may be
put into the dimensionless and parameter-free form
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Here we assumed that a helical magnetic field

~p jkpzBo= —(ee +c.c.),
2

with parameters

(1.4)

with

1 —ia;(g, 7 )+v A(i), r)= —g e (1.10)

e=(e +ie )/')/2, AD=2m/ko, I = eBp
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is generated by the undulator. E(z, t) is the slowly vary-
ing amplitude of the circularly polarized radiation field

~=2pckpt,

ri =2pko (z —P((ct ),

where P((= v((/c is the dimensionless mean velocity of the
electrons in the z direction,

B=e,XE,

y„= (1+% ) .
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The parameter v in Eqs. (1.10) could be removed by ap-
propriate rescalings but we prefer not to do so for clarity.
Equations (1.8)—(1.10) hold inside the electron beam, and
can also be used outside the beam if there the right-hand
side of Eq. (1.10) is put equal to zero.

Equations (1.8) —(1.10) are well known. In their solu-
tion the propagation term v 8/Bg has often been neglect-
ed, assuming, e.g. , that the slip ULO during the interaction
time (the time the electrons spend in the undulator of
length Lo) is small compared to the pulse length Lb of the
electron beam. In a recent paper, Bonifacio and McNeil
have given a numerical solution of Eqs. (1.8)—(1.10) in-
cluding the propagation term. The solution was based on
a suitable discretization in space and time. In their solu-
tions the authors of Ref. 3 observed the appearance of a
pulse of emitted radiation at the rear end of the pulsed
electron beam, and a subsequent strong enhancement of
this pulse as it travels through the electron beam with rel-
ative velocity vc as seen from the laboratory system. The
physical origin of this pulse and the reason for the strong
gain it experiences remained unclear.

The present paper is devoted to a more detailed investi-
gation of Eqs. (1.8) —(1.10) including the propagation
term. It became clear, during these investigations, that
the radiation pulse observed in Ref. 3 is the result of the
general sideband instability (cf., e.g. , Ref. 4), which ap-
pears in the spatially homogeneous saturated state as
soon as the propagation term u 8/Bg is taken into ac-
count, and which will amplify any spatial inhomogeneity
of the combined electron-electromagnetic field system
within a certain band of wave numbers. The pulse of Ref.
3 is caused just by the spatial inhomogeneity introduced
by the rear end of the electron pulse which is assumed to
be sharp in the numerical simulations.

In order to obtain a more realistic prediction for the
time dependence and the spectrum of the emitted radia-
tion it seems necessary to take into account other spatial
inhomogeneities as well, namely, the random spatial in-
homogeneities due to the shot noise in the electron beam.
This goal will be achieved here by solving Eqs.
(1.8) —(1.10) via a discretization in space but, in contrast
to Ref. 3 without discretization in time. This allows us to
treat accurately even the tiny fluctuations in the initial
conditions due to shot noise. The numerical method is
explained in Sec. II. It is applied in Sec. III to the solu-
tion of Eqs. (1.8)—(1.10). A qualitative and quantitative
understanding of the basic instability is achieved by a
combination of a linear stability analysis of a new two-
parameter family of spatially homogeneous solutions with
further numerical investigations in Secs. IV and V. In
Sec. VI we examine the inAuence of the instability on the
emitted spectrum. Our conclusions are summarized in
Sec. VII.

aU aU= —c, t)0.
Bt Bx

' (2.1)

Let the x axis be discretized with a small step size h,
x„=nh. A simple semidiscretization of Eq. (2.1) is ob-
tained via the Galerkin method, ' which yields

dU, i dU„dU„+i
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with

U(x, r) =g g„(x)U„(t),
(2.3)
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0 otherwise .
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Yet this discretization is unsatisfactory, because it gen-
erates unphysical oscillations at small wavelengths. For
example, there appear oscillations of wavelength 2h
which travel with negative group velocity, i.e., into a re-
gime of the (t,x) plane totally inaccessible to any solution
of the original Eq. (2.1).

A more general semidiscretization of Eq. (2.1) is ob-
tained via the Petrov Galerkin method which yields in
place of Eq. (2.2)

dU„ i dU, dU, +1(1+—,'e) +4 +(1—
—,'E)

C C

2 2
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(2.5)

with a free real parameter e. For @=0 Eq. (2.2) is
recovered. The second term on the right-hand side of Eq.
(2.5) is seen to introduce some dissipation. For a suitable
choice of e it can be used to damp out the unphysical os-
cillations. Equation (2.5) [like Eq. (2.1)] has plane-wave
solutions

(r) y (0) A(k)t (2.6)

The discretization (2.2) is conservative, i.e., for any
square-integrable initial condition

x, o)li'= J «U'(x, 0)&

the "energy"
ll U(x, t)ll is conserved

II. PETROV GALERKIN DISCRETIZATION

A reliable numerical simulation of Eqs. (1.8)—(1.10) re-
quires a careful choice of their discretization. For clarity
we shall discuss the necessary considerations for the sim-
ple scalar wave equation

with

3c i sin(kh) —e[cos(kh) —1]
h 2+ cos(kh ) —i —', e sin(kh )

ick — —(kh ) +O((kh ) ) .
24h

(2.7)
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Equation (2.6) should be compared with the exact solu-
tion of Eq. (2.1)

U„(x,r)= V„(0)e"'-"'. (2.8)

The phase velocity

(1+—'e)1
2

dU„ dU„
+(2+—,'e)

dt

[(1+@)U„—(1+E)U„,] . (2.17)

ImA (k)
k

following from Eq. (2.7) is, for ~kh~ &&1,

(2.9) Even though this discretization is less accurate than the
discretization (2.5) in the bulk this causes no problems be-
cause the error cannot propagate back into the domain
x (I and is therefore guaranteed to remain small.

c*(kh) =1-
C 180 48

(kh) +0((kh) ) . (2.10) III. NUMEMCAL SIMULATION
OF THE NONLINEAR WAVE EQUATIONS

y(kh) = ——Red (k)
C

for
~

kh
~
&( 1 takes the form

(2.11)

For E=2/&15 one achieves an optimal matching of the
phase velocity.

The damping constant
A. Choice of parameters

The wave equations (1.1)—(1.3) contain a natural small-
est length scale, the wavelength A, . In the units used in
Eqs. (1.8) —(1.10)

(3.1)

y(kh)= (kh) +0{(kh) ), (2.12)
The natural step size for the semidiscretization of the
coordinate q/U then is

while h =b (g/u) =A,„/u =4~p[ 1+0 (1/y ) ] . (3.2)

y(kh =rr)=6E . (2.13)

The dissipation disappears only for @=0. However, even
for e) 0 it remains very small for ~kh~ &&1 and can be
used to eftectively damp unphysical oscillations at small
wavelengths. The group velocity is given by

In all of our computations we have chosen the value
4mp=0. 3. The length of the pulse of electrons in the lab-
oratory system is taken as Xb =200 optical wavelengths,
i.e., the number of steps 6(illu) =h in the electron beam
is given by Xb. The length of the electron beam in the
scaled coordinate rl/u then becomes

uG(kh)= — Imd (k) .
d

uG(kh) 1

36

2

(kh) +0((kh) ),
48

For large wavelengths ~kh~ (&1

(2.14)

{2.15)

lb /u =A, Nb /u =60 . (3 3)

Note that this parameter is also the scaled time it takes a
photon emitted at the rear end of the electron beam to
travel to the front end of the beam and leave it there.
The scaled time it takes the highly relativistic electrons to
pass the undulator of length I.p Xpkp once is obtained
from Eq. (1.11) as

while for small wavelengths, e.g. , kh =~, it is negative,
e.g.,

uG(kh =~)= —(3+9@ )c . (2.16)

For e )2/v'15 it exceeds c in some range of kh (~, i.e., e
should be restricted to 0(@&2/&15. In practice one
therefore has to choose e in the range 0& @(2/&15 at a
value sufticiently large to damp out the unphysical waves
with negative group velocities near kh =m, but
su%ciently small in order to keep the dissipation at long
wavelengths

~
kh

~

&& 1 as small as possible.
A complication arises if Eq. (2.1) is considered on a

finite domain O~x ~I.. For the cases we shall consider
in Sec. III the function U is specified for all times at x
but it is not specified for x„+& where n „=I./h. As

max

U„+, is unknown the basis function rp„+, in Eq.
max max

(2.3) must be replaced by 0. As a result the Galerkin and
the Petrov Galerkin discretization at x„are modified

max

and the latter now reads

t=4~V&o . (3.4)

B. Homogeneous initial conditions

The first computations we have carried out neglected
shot noise. These runs also served to find an optimal
choice for the parameter e of the Petro v Galerkin
method. As initial conditions we choose a homogeneous
electric field of scaled intensity

~
4 (rl, v=0)

~

=2X 10
The number n of electrons within an optical wavelength
(realistically N =10 ) we choose as n =50. We have
checked that an increase of n to 100 or 200, while drasti-
cally increasing the computation time, had negligible
effects on the output. The initial positions of the elec-

The number Xp of undulator periods is typically between
100 and 200. Thus ~;„,=30—60 in the cases we shall con-
sider. The inverse of the parameter (3.3) has been called
"superradiance parameter" K, while the ratio
S =r,„,/(lb/u) was called slippage parameter. In our
case a. &(1 and Sis of order 1.
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trons in these first runs were fixed as o (rl.,r=O) =2'r/n
io . (ry, &=0)

for j =1,2, . . . , n. Therefore n g e ' ' =0. The
initial energy of the electrons was taken as p;(g, 7 =0)=0,
i.e., shot noise was neglected. As boundary condition at
the rear end of the electron beam, g=O, we assumed
I
~ (q=O,.)l'=2~ 10-'.

In Fig. 1 we plot the intensity
I Al obtained when tak-

ing e=O, i.e., using the Cxalerkin semidiscretization. It
can be seen that the emitted electromagnetic field consists
of two components, one component for q/v )~ whose in-
tensity is homogeneous along the electron beam (indepen-
dent of il) and oscillatory, with variable period, in time r,
and a second component for q/v & ~ consisting of pulses
emerging from the rear end (r)=0) which are strongly
amplified while traveling with group velocity v along the
electron beam. However, it can also be seen in Fig. 1 that
near the rear end of the electron beam there appear oscil-
lations at very small wavelengths traveling with negative
group velocities towards q=O and being rejected there.
This is an unphysical eff'ect, introduced by the Galerkin
discretization as discussed in Sec. II. Therefore the re-
gime g/v & ~ is not reliably represented by Fig. 1. In Fig.
2 we show the result corresponding to Fig. 1 but obtained
for @=0.3. This value, which was used in all the follow-
ing computations, was found to give a good compromise
between optimal matching of the phase velocity (at
e=2/v'15) and small dissipation for lkhl «1. The un-
physical small wavelength components with negative
group velocities are absent in Fig. 2, which can now be
assumed to portray faithfully the emitted radiation inten-
sity. The pulse with positive gain seen in Fig. 2 was
discovered by Bonifacio and McNeil in a numerical
simulation of Eqs. (1.8) —(1.10) using similar parameter
values. These authors speculated that the pulse results
from a "superradiant sideband instability" restricted to
the domain g/v & ~. Indeed, from Fig. 2 it might appear
that the instability is somehow connected to the rear end
of the electron beam but the reason for this is not at all
clear. In order to investigate this question it is necessary
to take into account the small spatial inhomogeneities in
the initial conditions caused by the shot noise in the elec-
tron beam.

C. Initial conditions with shot noise

For N electrons randomly distributed over the optical
wavelength A, we have upon averaging over this distribu-
tion (denoted by ( ))

(3.5)

A realistic value is N=10 . In order to numerically
simulate the shot noise (3.5) with n «N electrons we
place each of the n electrons close to the average position
( o k(i) ) ) =2~k /n, k = 1,2, . . . , n according to indepen-
dent probability distributions with width A. If we
choose, e.g. , normal distributions around these mean
values we have

2~ko((rj) = +xk,
n

2
1P (xk )=, exp

(2~6, )' 2h

(3.6)

(3.7)

We shall assume b, «~ (cf. below) and we can therefore
neglect the fact that P (xk ) must be 2~ periodic in xk in
order to conform with the fact that the o k (r) ) are defined
in the interval 0& oi(rl) &2'. We can now fix b, in such
a way that

e =—(1—e ).2 n
(3.8)

For n «X we obtain
1/2

1+0
N

(3.9)

The same relation is obtained if instead of normal distri-
butions (3.7) we assume equidistributions in a small inter-
val with the same standard deviation. In the example
shown in Fig. 3 we choose N=10, n =50 and hence
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FIG. I. Intensity
I
2 (i), r)l for

I
8 (r), O) I

=
I
2 (O, r) I

=2 X 10 and e=O. FICr. 2. The same as Fig. 1 for @=0.3.
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Equations (4.1) imply two conservation laws

5 —io io .—gI —,
'o. +i (A*e ' —Ae ')]=&q,

J

(4.4)

40

where c &, c2 are two real constants determined by the ini-

tial condition.
A time-independent solution for a (r) is possible if all

electrons sit in the minimum of the ponderomotive poten-
tial, i.e., if

—io .(w); (t)e J =i.e'~~' .
(4.5)

FIG. 3. Inte»ity IA(r), r)I for I A(r), O)I = I A(O, r)I'
=2X10, @=0.3, and shot noise for 10' particles per wave-
length.

6=2.2X10 . Otherwise we assume the same initial
conditions as in Fig. 2. We show the result for the scaled
field intensity obtained under these conditions. It is now
obvious that the pulses develop not only from the rear
end of the electron beam but everywhere, starting from
shot noise. The special role of the rear end in Fig. 2 is
simply caused by the (unrealistic) fact that there the end
of the pulse is the only spatial inhomogeneity present in
the initial condition.

The questions remain, what is the nature of the insta-
bility shown in Fig. 3, and what determines the length
scale and the amplification rate of the pulses of radiation
found there. These questions are dealt with next.

IV. INSTABILITY DUE TO PROPAGATION EFFECTS

If propagation effects are neglected the emitted radia-
tion intensity is constant over the electron beam and os-
cillates in time nearly harmonically. We shall first con-
struct a two-parameter family of spatially homogeneous
analytic solutions describing this behavior and then apply
a linear stability analysis to investigate the inAuence of
spatially inhomogeneous small fluctuations.

A. Spatially homogeneous solution

From Eq. (4.1) we then obtain

p(r) =vr,
Qv= 1

(4.6)

is below the resonance energy, and the scaled field inten-
sity is constant

(4.8)

As there is only one free parameter v these solutions are
only possible for special initial conditions satisfying

1 2 v
C( = V+, C2= +

v 2
(4.9)

However, we shall now generalize the solution and obtain
a new two-parameter family, which allows us to accom-
modate more general initial conditions. Let us assume
for this purpose that the phases of the electrons are dis-
tributed with some density I' around the value (4.5), i.e.,

Physically, this solution describes the free-electron laser
in saturation, where no further exchange of energy be-
tween the electrons and the radiation field is possible. A
similar one-parameter family of solutions was obtained in
Ref. 4, but there the phase y was assumed to be indepen-
dent of ~ and to vary linearly in g, instead. The electron
energy

(4.7)

Assuming all fields to be independent of g Eqs.
(1.8)—(1.10) become 3&

0 — V7 +X.
2

(4.10)

0 J
&~(o, ),a

BOJ

d/I (r) 1 —~~, (~)
edr N

where the ponderomotive potential V (o ) is given by

V (cr ) =2a(r)sinI cr(r)+p(r)],

(4.1)

(4.2)

where —m. &x ~m andJ

ikx —(1/2)a kI' x= e
27rk=—

Then (xi ) =0 and

( 2) ~ ( —1) —(1/2)A k

k

(4.11)

(4.12)

with

3 (r) =a (r)e'"", a )0 . (4.3)
In the following we restrict ourselves to 6 ~ 1 and may
then approximate ( x ) '/2 = b, and
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1 XP (x) = exp
(2mb, )' 2b,

(4.13)
may take c, =O=c2. Evaluating now the left-hand sides
of Eqs. (4.4} for our two-parameter family we obtain with
b =exp( —

—,'b, )

where now —~ &x &+ ~. In the solution we wish to
construct here the width 6 shall remain constant. This
can be achieved by assuming the "momenta" p =6. to
be suitably distributed with some density P

b =exp( —3b/4)

and hence.=b ~/3=0. 86, v=b =0 73

(4.23)

(4.24)

p = V+y~ (4.14)

where —~ &y- &+ &x). We try again a normal distribu-
tion

P (y) = exp y
(2~g2 )1/2 2g2

(4.15)

x +2Q sinx =0 . (4.16)

For ~x~ ~
sufficiently small ( ~xj ~

& 1) the solution reads

For the field we again make the ansatz (4.3). Inserting
Eqs. (4.10) and (4.3) in Eq. (4.1) we obtain

If instead, the electrons are not monoenergetic, initially,
but are symmetrically distributed around the resonance
energy with width (p )o, we have instead cz= —,'(p )0
and Eq. (4.23) is replaced by b =exp[ 3b /—4 —c2/
(2b' )]. The numerical values in Eqs. (4.24) are re-
duced, accordingly. In view of the nearly harmonic oscil-
lations of the spatially homogeneous solution visible in
Figs. 1 and 2 it is instructive to extend our two-parameter
family of solutions even further by allowing small oscilla-
tions. The necessary analysis is a linearization around
the solution (4.21). This linearized analysis will be ex-
tended to the spatially inhomogeneous case in the next
section. With the ansatz

x =x0 coscow+yo - sincow,

y = —xo co sinmw+yo& cu cosset,

with

(4.17) 3 = [a +a(~)]e' ',
&cr &= —vr+ &5cT(~) &,

2

(4.25)

2 2
XO +yo.

co =2a 1 — =2a .
8

(4.18)

Here xo and yo are independent random numbers with
vanishing average. The condition 5 =const implies
(x/ ) =const, which is satisfied if we choose

(xo) &=&yoj ) .

Hence

(4.19)

6,' = (y,') = (co'x,') =2ab, ', (4.20)

where b, should be sufficiently small (b, & 1) to validate
our approximations. Within this restriction we now have
the two-parameter family of spatially homogeneous solu-
tions

and introducing the variables

R =a+a*,
I =i (a+a" ),
s=&s~&,

we obtain, after linearization, the following system:

d2
2ab+ S —bI =0,

dv

—2bS+ R +—I =0,d b

d7 Q

——R+ I=O.b d
a d~

(4.26)

(4.27}

A =ae' '
=3&0 J
— V7"+XJ, p~

= V+yj.

1 —x /2hP (x/)=, e
(2mb, )

P ( )—J (4 g2 )1/2
o'

From Eq. (4.1) follows the condition
—(1/2)b,av=e

(4.21)

(4.22)

3K
( o ) = v~+P sin(co~+(—p),J

/I =a 1 — cos(cor+y)
2Q

(4.28)

VX exp i v~+ sin(cor+y)
2Q

The two eigenvectors with vanishing eigenvalues are of
no interest because they only describe the freedoms of
our two-parameter family, which we have already fixed
by the initial conditions. Hence there remains

replacing Eq. (4.6).
The conservation laws (4.4) now permit one to deter-

mine the two free parameters a and v from the initial
conditions. Assuming that initially all the electrons have
the resonance energy y. =y„ i.e., p,. =O, and 2 =0 we and

2Q

where

(4.29)
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1/2
2Q

co —v 1+ (4.30)

From Eqs. (4.24) we obtain

Q) —v 3v —1.27 . (4.31)

We have checked these results by solving the spatially
homogeneous equations for 400 electrons and analyzing

l
A (r) l; its Fourier transform

I
~ (~) I

= 1/T f 'd «'"I ~ (r) I

0

and the phase q&(r) are shown in Fig. 4, which shows that

l
3 ( r ) l

essentially consists of a constant a =0.76 and an
oscillatory part with frequency co=1.28 and that the
phase y(r) increases linearly, on the average with
v=0. 71. From the good agreement of these results with

the analytical solution we conclude that the spatially
homogeneous solution is now well understood and turn to
spatially inhomogeneous perturbations.

(4.32)

We shall assume k to be given as real. A similar disper-
sion relation holds for the one-parameter family (4.5) and
(4.6). An instability shows up by the appearance of
complex-conjugate pairs of solutions for co. For k =0
one finds co, 2=0, ro3 ~= kv(1+2a /v)', the result
given in Eqs. (4.27). An instability exists for all k in the
interval 0 &

l kl & k,„where k,„ is obtained as

g 1 /2

( b i /3+ 21/3 )3/2
max

1/3 3/2
2Q2=v 1+ (4.33)

B. Linear analysis of spatially inhomogeneous Nuctuations

The ansatz (4.27) with a, (5o ) small and proportional
to exp(ikg/U ic—or), after linearization, yields Eq. (4.27),
with the replacements d /dv ~—co, d/dr~ i—(ai—k). We obtain the dispersion relation

b 263
D(k, co)=(2ab —co ) — —(co —k) — =0 .

Q Q

1.0-

(a) This result tells us that, in order to suppress the instabili-
ty visible in Fig. 2, the scaled pulse length I.b of the elec-
tron beam must be shorter than

0.5—

Lb 2n
k max

i.e., in unscaled units

(4.34)

0. 0
2()

, , I

~O 60 80 100

I I I I I I & t I i I [ I ( I I i I I I I I I I & & I I I I I I I I I I I I I I I I I I I I I I I

1
I

Ib (I,=
2pk „ (4.35)

0.6
For a laser initiated by shot noise we find with /3II-—1 and
the calculated values Q =0.86, v=0. 73

k „=25, l, =max ' ~ c (4.36)

0.2

0.0
IM IXI J I I I I I I I I I I I I I j I I I (Q

2 3

The quartic dispersion relation is most easily evaluated
for lkl «1 and for lkl ))1. In the special case 2a =b
(i.e., v=2a ) the quartic reduces to a biquadratic equa-
tion and we obtain

(c) co(k)= —+((k/2) +v [I+[I+(k/v) ]'
I

)'k
2

(4.37)

20

20 W0 60 80 100

FIG. 4. (a) Absolute value of spatially homogeneous solution
l /I (r) l, (b) Fourier transform of l 3 (r) l, and (c) phase of 2 (r).

and kmax 2 v
The typical k dependence of the roots of the dispersion

relation cu(k) is shown in Fig. 5, obtained numerically for
a =0.86, b =0.63. The unstable window 0& lkl &k~»
with Imago(ko)%0 is clearly visible. There is a wave num-
ber ko where llmco(ko)l is maximal. In the special case
2a =b we have ko=v 3v, co(lkol)=(v 3/2)v+i(v/2).
In Fig. 6 we plot l Imago(ko) l

as a function of a for the two
fixed values b =1, b =0.63. We also show as dashed
lines two asymptotic analytic results
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~ ~

is the field in front of the electron beam. For simplicity
we choose ~= z-=2(z —L)(1+P ) in the middle of the time

1 [z L—(z L—)/(1 —u)] and T=u~, i.e., we as-
that the entire available time interva is use o

taking the spectrUm. Then with z =L +

(5.1}PT(z, r, co) =—( AT(z, w, co) AT(z, v, co) ),
with

(5.2)d ~'e ' ' 3 ) (z, ~+~'),T —T/2
I II

P (z, w, co) =—f dv' f dv"e'" ~'
7 0 0

where

X ( A *(Lb,s")A (Lb g ) ) .
a+Lb —z

(5.3)
(5.4)

A ) (z, ~) = A Lb,

(b)Re(A, ), Im(A, )Re(A, ), Im(A, )
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Here RJ i—I~ (j =1, . . . , 4) are the complex eigenvectors
of the linear stability analysis of Sec. IVB, which are
easily evaluated as

lA, (k=-2. 0) I

—i [co (k) —k]0. 1

0. 01

0. 001

0.0001 I I I I I I I I I I I I I i I I I I I i I I I I I 1 I (5.7)Xexp —i co.(k)r—
0 5 10 15 20 25 30

FIG. 9. Amplitude of maximally amplified Fourier mode for
ko=

We neglect all eigenvectors not growing exponentially
in time and therefore drop the index j. We assume the
perturbation is caused by shot noise and spatially homo-
geneousWe now use

&c(k)) =0,
(c(k)c'(k')) =f (k)5(k —k'),

A(Lb, r)=[a+a(Lb, r)]e' ', (5.5)
(5.8)

where
4

a(Lb, r)= g f dk[R (k) —iIi(k)] . where f (k) is determined by the particular perturbation.
Hence(5.6)

1 co 2a 1 cos[(—v+co)r]
Z

v
"' r r (v+co)2

2 2

+ I dk f (k) Ie&(~+co co(k&]w 1
—I2+ ( Iei(v+co+co (k&]r 1 I2

7 0 co(k) —co —v co*(k)+co+v

(5.9)

3'+

[Reco(ko)+co+v] +[Imco(ko)] [Reco(ko) —co —v] +[Imco(ko)]
(5.10)

cy, because y' & y+. Therefore the electrons lose energy
on the average, i.e., the radiation field experiences gain in
these sidebands which deepens the new potential minima
and enhances the transfer of electrons to the sidebands.
The ratio (y /y+ ) can also be seen in the spatial spec-
trum

with

y2+=[Reco(ko) —k(, +v] +[Imco(ko)] (5.11)

We note that Reco(0)=0 and d Reco(k)/dk (1 because
the group velocity is smaller than the velocity of light.
Therefore Reco(ko) (ko and y )y+. We conclude that
the Lorentzian centered at co = —[v+ Reco( k 0 ) ] is always
stronger by a factor (y /y+ ) than the Lorentzian
around co = —[v—Reco(ko ) ]. In other words, the insta-
bility shifts some of the electrons trapped by the pondero-
motive potential at frequency co= —v and having relative
energy (p ) = —v to new minima of the potential at fre-
quencies co = —[v+Reco(ko) ]. The relative energy of
these shifted electrons is (p ) = —[v+Reco(ko)]. On the
average more electrons are shifted to the smaller frequen-

A, (k, r)= I di) e ' "a(i),r) . (5.12)

We obtain

I &,(k, r) I

= l«k) I l~(k) —k+ vie' '"' (5.13)

and

I J,(k„r)l
(5.14)

The first term is the spectrum of the spatially homogeneous part and approaches for r large 2m.a 5(co+v). The integral
is the spectrum of the perturbation. It can be simplified for times ~ large compared to the inverse amplification rate
(but still sufficiently small to validate the linearization of Sec. IV B). Then the exponentials in the integrand of (5.9) are
large compared to 1 and the latter can be dropped. Furthermore the k integral can be done in saddle-point approxima-
tion at the saddle point Im[dco(k)/dk] =0. We obtain for the spectrum of the perturbation P two Lorentzians

0 2~Imco(ko) ~rf(k )
e

V ~
V 3/2



3992 R. GRAHAM AND S. ISERMANN 43

I A I' PT /v
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E)0
r

20

0

60

40

I0
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FIG. 10. Intensity ~A(rl, r)~ for larger interaction times ~

(long undulators) for the case of Fig. 3.

In the special case 2a =v considered in Fig. 7 we have
Redo(ko)=(&3/2)v, Imro(ko)=v/2, ko=&3v, and

y /y+ =2+&3=3.7 in excellent agreement with the
ratio of 3.7 of the two maxima in Fig. 8(c).

Finally we compute the spectrum for longer scaled
time starting from a very small initial field
(

~
A

~

=2 X 10 ) and shot noise. Figure 10 shows the2 —4

breakup of the initially nearly homogeneous solution into
sharp pulses. For ~) 30 the group velocity of these
pulses has approached the velocity of light and their in-
tensity remains nearly constant.

We compute the spectrum of the radiation field in
front of the electron beam at different scaled times ~.
The result plotted in Figs. 11(a)—11(c) shows at r=15
[Fig. 11(a)] a resolution limited peak at co= —0.7, which
is at the expected frequency v of the spatially homogene-
ous solution (v=0. 73 from the analytical and v=0. 71
from the numerical homogeneous solution). At r=20
[Fig. 11(b)] the sideband at frequency co = —[v
+Rero(ko)]= —1.6 is nearly visible. At still later time
r=40 [Fig. 11(c)] many more sidebands at negative fre-
quencies have developed, i.e., the mechanism of the first
sideband instability is repeated.

VI. CONCLUSIONS

Th e nonlinear coupled wave equations of a free-
electron laser in the Compton regime have been studied
numerically and analytically for initial conditions which
include shot noise. The numerical analysis was based on
a systematic semidiscretization scheme, described in Sec.
II. 0Our simulations show that shot noise of a realistic
size prohibits the development of the strong radiation
pulse at the rear end of the electron beam found by Boni-
facio and McNeil and confirmed here for initial condi-
tions neglecting shot noise. Rather, the simulations
presented here show that instead pulses of smaller inten-
sity will appear from shot noise throughout the electron
beam.

0

0 2

PT /v

(c)

2 ' 4

FIG. 11. Spectrum of the emitted radiation for (a) ~=15; (b)

~=20; (c) ~=40.

The underlying sideband instability has been exhibited
analytically for a two-parameter family of spatiallia y
homogeneous solutions by performing a linearized
analysis of small spatially inhomogeneous perturbations,
extending similar earlier work in Ref. 4. A critical length

=A, =&~~A, /2pk, „of the pulsed electron beam was found
which must not be exceeded if the instability is to be
suppressed. However, even in electron beams exceeding
the length /, this parameter is important. It plays the
role of a cooperation length of the electrons, because l,
defines the maximum distance over which electrons in the
beam can emit cooperatively. The radiation emitted by
two electrons at larger distances will end up contributing
to two different pulses of radiation. All results of the
analysis were compared with detailed simulations and we
obtained very good agreement. The sidebands caused b
the instability can also be seen in the emitted wave num-
ber and frequency spectrum. Further sidebands appear
for longer interaction times and can be understood by a
repetition of the first instability.
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