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Quantum effects on the multiphoton dissociation of a diatomic molecule
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The chaotic vibrations of a diatomic molecule in an intense monochromatic electromagnetic field

are classically and quantum mechanically analyzed. It is shown that the driven motion in a Morse
potential is accurately described by a return map —the Morse map, whose derivation in various de-

grees of approximation is presented in detail. The quantization of the map is also considered. The
quantized map, though acting on states in the energy range of bound states only, is shown to be
inAuenced by intermediate states above the dissociation threshold, i.e., effects of the continuum are
incorporated. Detailed numerical results are presented and various localization mechanisms are
discussed and compared.

I. INTRODUCTION

After the development of efFicient lasers in the infrared
and the discovery of highly specific laser-induced chemi-
cal reactions, the experimental and theoretical study of
multiphoton excitation and dissociation of molecules has
grown into a vast field of research. For a review see, e.g. ,
Ref. 1. Recently, new impetus was given to the theoreti-
cal side of this field by an increased understanding of the
crucial features of the underlying dynamics at least in a
classical description: it was recognized that classically
the dynamics (vibrations and rotations) are chaotic, and
that the basic mechanism leading to multiple-photon ex-
citation and dissociation is the chaotic but deterministic
diffusion of the molecular energy. Therefore the
methods and concepts used in the study of chaotic sys-
tems have increasingly been applied.

Here we wish to report our work on periodically driven
molecular vibrations in the Morse potential, in a classical
description and its quantum counterpart. As a new basic
tool we introduce in our study a Poincare map, which is
unusual in that it is not based on the stroboscopic map
over one oscillation period of the external driving in-
frared field, but instead is based on the molecular oscilla-
tion itself. A similar map was recently used in studies of
the microwave excitation of Rydberg atoms. The
method is designed to combine advantages of the two
main theoretical methods which have been applied to this
problem in earlier work. These methods are (i) the stro-
boscopic classical map in periods of the external field or
the corresponding quantum map over one external
period, which is based on the Floquet theorem; (ii) the
quasiresonant or rotating frame approximation which
treats the multiple-photon excitation as a stepwise pro-
cess in which only those vibrational levels participate ap-
preciably which are approximately spaced a photon ener-

gy apart.
The main advantage of method (i) consists in the use of

a map instead of the underlying continuous-time dynam-
ics. In fact, it was this simple but ingenious idea due to
Poincare and its easy implementation on modern com-
puters that was the main driving force behind the break-

through in our present understanding of chaotic dynami-
cal systems. A disadvantage of this method is the fact
that neither classically nor quantum mechanically is the
stroboscopic map known explicitly and has to be con-
structed numerically.

The method we shall develop below leads to an explicit
map, both classically and quantum mechanically, and
therefore avoids this disadvantage.

Method (ii)—the quasiresonant approximation men-
tioned above —is designed for the quantum problem
only. It also avoids the disadvantage of the first method
by simplifying the Schrodinger equation, keeping only
near-resonant molecular states, and, in addition, neglect-
ing "counterrotating terms" such that the effective Ham-
iltonian is no longer time dependent. The Schrodinger
equation is then solved by diagonalizing the effective
Hamiltonian. The advantage of this well-known method
(Ref. l) is the reduction of the number of relevant states
by keeping only those of highest physical relevance,
thereby decreasing the duration of numerical computa-
tions. The method we shall present here exploits the re-
striction to near-resonant states achieved by the
quasiresonant approximation already in the classical
domain and shares the simplifications of that approxima-
tion in the quantum domain, however, at the same time
maintaining the description of the dynamics in terms of a
map.

Recently, a number of studies have been devoted to the
quantum-mechanical problem of molecular vibrations in
a Morse potential driven by a monochromatic external
field. These studies are based on direct numerical solu-
tions of the Schrodinger equations. Walker and Preston
compared the classical and quantum dynamics for
moderate excitation far below the dissociation threshold.
Goggin and Milonni extended this work to higher exci-
tation and longer time, including effects of the continu-
um. Leforestier and Wyatt used the Floquet theory and
an optical potential approach to describe the decay into
the continuum, while Tanner and Maricq used Floquet
theory and neglected the continuum comparing their re-
sults with a direct simulation via a fast-Fourier-transform
grid method. Flosnik and Wyatt eliminated the continu-
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II. CLASSICAL MODEL

A. Hamiltonian

%e wish to consider the pure vibrational motion of a
diatomic molecule for a fixed electronic configuration and
under the assumption that rotational motion is not excit-
ed. Under these assumptions the molecular potential
may be described by a Morse potential'

V(r) =D(1—e ' )~, (2.1)

where D is the dissociation energy, ro is the nuclear dis-
tance at equilibrium, and a is the range of the molecu-
lar potential. Hydrogenhalogenides HF and HC1 are ex-
amples where our assumptions are well satisfied. Their
parameters D, a, and ro can be found in Ref. 11. The
Hamiltonian of the molecule in an external homogeneous
monochromatic electromagnetic field of frequency coo can
be taken in the form

[P—eA (r)]
2M

(2.2)

Here we neglected the possibility of an r-dependent
screening of the eff'ective charge e interacting with the
external field. In Eq. (2.2) M is the reduced mass and

=1A (t)= F sincoor
COO

(2.3)

urn and derived an integro-differential equation for the
wave function in the bound subspace of the unperturbed
Hamiltonian, which is solved after approximations on the
integral kernel assuming short memory times.

The approach described here differs from these works
mainly by the fact that an important part of the problem
is solved already in the classical domain, before the
quantization is performed. This procedure is justified in
the quasiclassical WKB limit. Indeed quasiclassical
Bohr-Sommerfeld quantization in classically integrable
Hamiltonian systems is based on and requires the solu-
tion of the classical dynamics for one round-trip of the
system. Similarly, the map on which the quantization is
based here describes one molecular vibration period. A
short presentation of our map and some results obtained
from it are given in Ref. 9.

The manuscript is organized as follows. In Sec. II we
specify the classical model and introduce the action and
angle variables of the free oscillations and of the unbound
motion above the dissociation threshold. In Sec. III we
derive the dynamical map over one vibration period
(Morse map) and compare it with the more conventional
stroboscopic map over a period of the external field.
Conclusions which can be drawn either directly from this
map or by comparing it with the standard map are also
given there. Section IV considers the quantization of the
map, and summarizes the new eA'ects it describes. In Sec.
V we present and discuss our numerical results for time-
dependent expectation values, Floquet states, and the dis-
sociation probability. Section VI summarizes our con-
clusions.

is the vector potential, where F is the amplitude of the
externally applied electric field at frequency ~o. After
scaling all variables according to

x=r ro

p =P/&2DM

t =QOZ,

(2.4)

where Qo=a&2D/M is the frequency of small oscilla-
tions, the Hamiltonian takes the form

[P—(g/co)singlet ]
2

+2 '

and contains the two dimensionless parameters

(2.5)

ejv coo

2D(x
'

Qo
(2.6)

B. Action-angle variables for bound motion

It is well known that motions in the unperturbed
Morse potential (g =0) are regular and action-angle vari-
ables can be determined explicitly. ' These variables
define useful coordinates also for the description of the
perturbed motion. ' '

The action variable I is defined as usual by

fpdx,= 1

2' (2.7)

which yields for the unperturbed bound motion

I=1—[1—p —(1—e ) ]' (2.8)

for 0~ I & 1. This equation may be solved for p and then
compared with p =OS(I,x)/Bx in order to determine the
generating function S of the canonical transformation
(x,p)~(9,I). Then 9=OS(I,x)/BI may be used to ob-
tain explicitly

e'(1 I )
—1—0=Oo+ arcsin

(2I —I )'
(2.9)

After solving for (x,p) we obtain, for 0~ I ~ 1,

1 —[2HO (I)]' cos9
=x(I,9),

1 —2HO (I)
x =ln

[2HO (I)]' sin9
p =[1—2HO (I)]'~, =p(I, 9) .

1 —[2HO (I)]' cos9

(2.10)

Here we have chosen Oo=m/2, which implies that 0=0
in the turning point p=0 at the minimal nuclear dis-
tance. Ho (I) is the unperturbed Hamiltonian for the
bound motion expressed by the action variable I,

which are the external field amplitude and its frequency
in molecular units. The oscillations of the unperturbed
molecule (g =0) are described by (2.5) in a parameter-free
fashion. In this case (g =0) the separatrix at H= —,',
p =+[1—(1—e ") ]', separates bound states
(O~H ( —,') from dissociated states (H )—,').
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I2
Ho (I)=I— (2.11)

The value of the action variable at the separatrix of the
unperturbed motion is I=1. Now the full Hamiltonian,
for O~I + 1, can be expressed as

2

H(I, O, t)=HO (I)— p(—I, O)singlet+ sin cot .
CO 2'

(2.12)

0.5

05
I

1.0
I

I

1.5

I—+I, 0~ —0, t~t+m/m . (2.13)

For future purposes it is also useful to present p(I, O) as a
Fourier series, for 0 ~ I ~ 1,

p(I, O)=2 g 8' (I)sinmO
m=1

(2.14)

We may note the invariance of this Hamiltonian under
the symmetry transformation

FIG. 1. The Hamiltonian Ho(I) (2.18) for the bound and un-
bound motion. The dashed line is Ho (I) formally extended for
I &1.

where sgn(g)=itj/~it~. The Fourier transform W'„(I) is
evaluated in Appendix A with the result

8' (I)=+2HO(I) —1

with

1 —[1—2H (I)]'8' (I)= [1—2H o (I) ]
'i

1+[1—2HO (I)]'

cosh [p arccos[ —1/+2Ho (I) ] ]

sinhmp

(2.20)

C. Extension to unbound motion

(2.15) We note that the sgn(f) term of Eq. (2.19) just cancels
the term —(1/vrp) in Eq. (2.20).

In the domain of unbound motion H) —,', I) 1 we

define a new canonical transformation formally extending
Eqs. (2.10), by

—1+[2H o' (I) ]
' i cosh/

2HO (I)—1

[2Ho (I)]' sinhP
2H ) (I) 1 1/2

[2HO (I)]'~ cosh/ —1

(2.16)

In fact, inserting the transformation (2.16) in the unper-
turbed Hamiltonian, Eq. (2.5) for g=0, one finds that
Ho(I) =Ho (I) for I) 1. Therefore the transformations
(2.10) and (2.16) together define action-angle variables for
the bound and the unbound motion with the Hamiltonian

Ho (I) if 0&I&1

Ho (I) if 1 I (2.18)

This function is shown in Fig. 1.
The full Hamiltonian may then generally be written in

the form (2.12) with Ho (I) replaced by Ho(I). The
Fourier series (2.15) for 0&I & 1 is replaced by a Fourier
integral, for 1 ~I & oo,

p(I, 1()=2J dp W'„(I)sinpg++2HO(I) —lsgn(g),

(2.19)

where I ) 1 and —ao & g & + ~, and where Ho (I) is the
function defined for I ) 1 by

(2.17)

III. CLASSICAL POINCARE MAPS

The investigation of the dynamics is greatly simplified
by a reduction of the equations of motion to a map. A
straightforward way to achieve this is to discretize time
in units of the period of the external field, At =2'/co
The resulting map is called a stroboscopic map. Another
often more useful way is to discretize time in units of ac-
tual molecular vibration periods. The resulting map is
strongly characteristic of the particular molecular dy-
namics and is called "Morse map. "

A. Stroboscopic map

The stroboscopic map at discrete times t„=2mn/~ is
particularly useful if the period 2n. /co of the external field
is larger than the periods of the molecular vibrations to
be investigated, which is only possible is coo& Go, i.e., if
co&1. Then primary resonances between the external
field and the unperturbed molecular vibrations at scaled
frequencies A(I)=c)HO /dr= 1 I occur for pcs—= 1 I—
when p photons excite one molecular phonon. For co ~ 1

primary resonances occur for co = m (1 I) when one pho-—
ton excites m molecular phonons.

The map is obtained by solving the equations of motion
00

I= g m W (I)cosm O singlet,~ m=i

c)8' (I)
O= 1 I— g sinm —O singlet

co ) BI

for one period 0~ t ~2m/co.
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A numerical example is shown in Fig. 2 where the
Poincare surface of section (8,I) for cot„=2~n is shown,
using as coordinate Ho(I), the energy of the free mole-
cule. The parameters chosen are co=1.0, g =0.01. The
primary resonances with m =1,2 are clearly visible at
Ho-—0, —', , respectively. Also visible are the usual higher-

5
order resonances, e.g. , for m =—', at Ho = or for m =

—,

at Ho ——
—,', ,

' Kolmogorov-Arnold-Moser (KAM) curves;
and the chaotic region surrounding the m =2 resonance.

H(I, N, 8, cp) =0 . (3.5)

oo

H(N, cp, t)=Ho(N)+ g sin'&ph, (N, t)
s=i

and the first few terms

Ho(N) = —1+& I +2coN,

(3.6)

We may solve this equation for I iteratively as a power
series in g with the result

B. Morse map

In order to define the Morse map we first extend the
phase space by introducing the action N and the angle
variable y of the external field. ' The new Hamiltonian
may then be written as

2

H(I, N, 8, cp) =Ho(I) — p(I, 8—)sing+ — sin cp+coN .
CO 2'

p( 1 —& I +2coN, t )
h, Nt=

&I +2coN

1 p +2pp'V 1+2coN —1 —2coN
h, N, t)= ——

2 (1+2coN )

where p
' =dp (I, 8 ) /dI at I= 1 —&1+2coN, 8= t and

&—2coN sint
p = 1+2coN

1 —+—2coN cost

(3.7)

(3.8)

(3.9)

(3.2)

It now describes an autonomous dynamical system of two
degrees of freedom. The Morse map is defined as the
map induced by this Hamiltonian on the Poincare surface
of section defined by H=O, 0=~, 6)O. The Hamiltoni-
an (2.12) is reobtained if y is eliminated from Eq. (3.2) by
inserting the solution of the equation of motion jp=u.
The origin of N in Eq. (3.2) may be chosen arbitrarily and
we shall fix it by demanding that H=O for the initial
state of the system, which implies H=O for all times.
Then the total energy

The term with h2 is small compared to the term with h
&

if

lp+2p'&1+2coN —(1+2coN)/p l ((1 .
1+2mN

(3.10)

This condition roughly amounts to g/&1+2coN ((1
and cannot be satisfied very close to the unperturbed
separatrix —coN= —,'. But apart from this exception and
the trivial region close to N=O the validity of (3.10) may
be assumed for physically reasonable cases, so that we
can neglect the h2 term. The higher-order terms will be
still smaller. We are then left with the Hamiltonian

E (t) =H(I(t), 8(t), t ) = coN(t)— (3.3)

H(N, cp, t)= I(N, cp, t), — (3.4)

which expresses the fact the action variable I is canoni-
cally conjugate to 0. The action I as a function of N, y, t
is implicitly defined by the condition

is described by N(t).
As the next step we define a new molecular time coor-

dinate t using the molecular oscillations as a clock. The
pointer of this clock then is the angle 8=t(mod2n). The
translations in the molecular time coordinate t are gen-
erated by a new Hamiltonian

H(N, cp, t ) =Ho(N)+ —sinyh
&
(N, t ) . (3.1 1}

The Morse map is now the stroboscopic map at times
t„=2'(n —

—,
' } induced by the Hamiltonian H. We shall

use the notation N„=N(t„), cp„=cp(t„). The equations
of motion following from H are

dN g &—2coN sint
cos{p

Kt co 1 —&—2coN cost
(3.12)

CO CO sint since
v'1+2coN 2& —2coN (1 —& 2coN cost )—

In keeping with our earlier approximations they are
solved to first order in g/&1+2coN only. We obtain in
zero order

N(t ) =N„y(t ) = +1+2coN„
(3.13)

where y„ is the phase at time t„=(t„+t„+&)/2. For the
change of N from t„ to t„we obtain to first order

N„=N„+—Q —2coN„J dt cos +&p„
t +1 +2coN„

FIG. 2. Poincare surface of section of the stroboscopic map
(for co= 1.0, g =0.01).

sint

1 —Q 2coN„cost—

(3.14)
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From Eq. (3.14) we obtain order in g/V1+2coN we find

N„=N„+ [f—(N„)sing„+ k (N„)cosg„], (3.15) + &6)

Q 1+2coN„

sinx
1 —&—2coN cosx

2 2coN f ~d cox

co p v'1+ 2coN

(3.16)

where the functions f(N) and k(N) are defined by the in-
tegrals

2& 2coN— ~ . cox
dx sin

&1+2coN

f [N(x) —N„]dx
( 1+2coN„)

g 0
dx s1n

COX +0'n
CO Q 1 +2coN„

Q —ZcoN„sinx
X

dNn 1 —Q 2coN„c—osx
(3.17)

slnx

1 —&—2coN cosx

Let us now turn to the change of y from t„ to t, . To first

where the fourth term on the right-hand side has been
rewritten in a useful way. Upon partial integration of the
third and fourth terms on the right-hand side we find

+ CO&

+1+2coN„

CO p dN g c) p Q —2coN„sinx sin(cox /Q 1 + 2coN„)+ X dX dX
Q( 1 +2coN )3 — dx co c)N„ 1 —Q —2N, cosx

cosv n

Q —2coN„sinx cos(cox /+1+ 2coN„)
dx Sing„

co c)N„ 1 —Q —2coN„cosx

gCO p COX
dX X COS

Q(1+2coN„) Q 1 +2coN„

Q —2coN„sinx
+0'n

1 —Q 2coN„co—sx
(3.18)

The integrand of the last term on the right-hand side may
be simply rewritten as x 8Ã/Bx by using the equation of
motion, and it is then seen that it cancels with the third
term. Finally, the fourth term may be expressed as

,'gf '(N„)cosy„and si—milarly the fifth term can be written
as —

—,'gk'(N„)cosy„. Using all these observations we

find

Combining the maps from t, ~t, ~t, + &
we obtain final-

ly

Q 1 +2coN„
0

+ —,'g [f '(N„)cosy„k'(N„)sing„—] . (3.19)
0.3

A very similar calculation gives the map
(N„+i,p„+i)~(N„,g„) backwards in time t from t„+,
to t„. We obtain

0.2

N„=N„+ i
——[f(N„+ i )sing„—k(N„+, )cosy„],

2

&CO
0'n =0'n+i

2 [f '(N„+ i )cosg„+k '(N„+—, )sing„] .

(3.20)
0

FIG. 3. Poincare cross section of the full dynamics, the
refined Morse map, and the Morse map (from left to right, for
co=1.0, g =0.01).
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7TCO

Q 1+2coN Q 1+2coN„+,
sponding to these four steps are

+ —cosg„[f '(N„) +f'(N„+, ) ]2

(1) q'= +1+2coN„
+y„, N„' =X„;

——sing„[k '(N„) k'—(N„+, )],
N„+,=N„+—sing„[f(N„)+f(N„+, ) ]n+1 n

+ co—sg„[k(N„)—k(N„+ &)],2

(3.21)

(2) g„=y'+ f'—(N„')cosg„+ —k'(N„')sing„,

N„=N„'+ f(N—„' )sing„+ k—(N„' )cosg„;

(3) g'„=g„+ f '(N—„' )cosg„——k'(N„' )sing„,
(3.22)

where g„ is determined implicitly by Eq. (3.19). It is use-
ful to reformulate this map, in particular with a view to
its later quantization, by a convolution of four basic
steps: (1) free propagation for t„(t ( t„; (2} a first instan-
taneous kick; (3) a second different instantaneous kick; (4)
free propagation for t„~ t ~ t„+,. The four maps corre-

(4} V. +i=
Q 1 + 2coN„+,

+V.' &.+i =&.'

and can be described by the Hamiltonian

N„' =N„+ f(N—„' )sing„——k(N„)cosg„;

H, tt= —I+&I+2coN + —g 5(t 2irn ) [
—[f(N(t e))+f(—N(t+a) )]cosy(t )

2 n= oo

+ [k(N(t —e))—k(N(t+e))]sing(t )],
where e—++0.

Now merely the task is left to evaluate the integrals (3.16}. Using the Fourier expansion (2.14) we obtain
m/2—4 1 —&I+2coN sin(co/&I+2coN —m )~

+I+2coN„=i 1+VI+2coN co l(1+2coN) —m2

(3.23)

—4 "
1 —&1+2coN

Q 1 +2coN„=, I+&I+ 2coN

m
1 —cos(co/&1+ 2coN —m )m.

co /(1+2coN) —m

(3.24)

The sums are dominated by the terms where
m =co/&I+2coN and may therefore be approximated by

co/2+ 1+2coN—2m. 1 —&1+2coN

1+&I +2coN
(3.25)

k(N)=0 .

+ &CO + '7TCO

Q 1 +2coN„+1+2coN„+,

2VTg . &CO

Q 1 +2coN„

(3.27)

f(N) = — e
CO

and the map (3.21) and (3.19) becomes simply

(3.26)

Our map (3.21) and (3.19) simplifies considerably by set-
ting k(N)=0. This final result, together with the func-
tion f (N), was reported in our earlier paper. It was
called "refined Morse map. " In Appendix B we give an
alternative rather short direct derivation of its Hamil-
tonian (3.23). A simpler but more restricted version is
obtained by approximating the function f (N) further for
co/V 1+2coN ))1, which holds for highly excited molec-
ular states. However, it must be kept in mind that we
still have to satisfy gco/&I+2coN ((I in order to vali-
date our expansion in this small parameter. We may then
set

which was called "Morse map" in. In Fig. 3 we give a
comparison of the Poincare map computed numerically
from the full Hamiltonian Aow, the refined Morse map,
Eqs. (3.21) and (3.19); Eq. (3.25); and the simplified Morse
map, Eq. (3.27) for co = 1, g =0.01. It can be seen that the
refined Morse map faithfully reproduces the invariant
manifolds of the numerically exact map, and that the
simple Morse map works well except for the manifolds at
small energies. The breakdown of the validity of the
maps near the dissociation threshold co% = —

—,
' is not ap-

parent in these figures as this region is already in the fully
chaotic domain.

The Morse map is similar to the "Kepler map" '
describing Rydberg atoms in strong microwave fields
along similar lines. ' Recently it has also been obtained
in Ref. 16.
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C. Dissoriation probability

Z(n)
z (3.28)

where Z (n) is the number of points left after n interac-
tions. In order to determine the dissociation probability
P( T) for a fixed value of the (dimensionless) physical time
cot =cuT one has to perform the same calculation, but in
addition one has to keep track, for each system point j, of
its value for cot„=cp„=cp'„' not taken modulo 2m.

For each system point the computation must be carried
out until either its —co% value exceeds —,', in which case it
is counted as dissociated and omitted, or its cp, value
exceeds coT, in which case it is counted as not dissociated
and the value of a number Z( T) increased by 1. Then

P(T)=1—Z(T)IZ . (3.29)

D. Estimates obtained from the Morse map

The Morse map derived in Sec. III C lends itself to a
number of simple estimates which we now give.

(i) Primary resonances with integer winding number m,
where m field cycles coincide with one molecular cycle,
occur for molecular energies

In order to use the refined Morse map to compute the
dissociation probability of the molecule for a fixed (di-
mensionless) interaction time T or a fixed number of
iterations of the map and a given initial energy of the
molecule one proceeds as follows. The computation is
done for many (Z ))1) initial states at the same energy
E0= —coN0 and randomly distributed phases cp0. In or-
der to apply the map for the step n~n+1 one first
solves the transcendental equation (3.19) for g„, which
has a unique solution if gf'(N„) &2, then the transcen-
dental equation (3.21) is solved for N„+i and then Eq.
(3.21) can be solved for q&„+&. The solution of two tran-
scendental equations is therefore necessary for each step.
Each point having reached the value —mX„+1)—,

' is

dropped from the further calculation as the correspond-
ing molecule is dissociated. The dissociation probability
P(n) at a fixed number of iterations is therefore given by

~g~ )g, (m) =0.97
4m m

(3.33)

The KAM torus between the resonances m and m + 1 to
break up last is expected to have the winding number
p=m+y (Ref. 19) where y=(1+i/5)/2 is the golden
mean. Its average energy is at

1E' = —co%' =——1—
m m

CO

(m+y )
(3.34)

Hence Eq. (3.34) with m the largest integer with
g, (m)) ~g~ specifies the molecular energy where chaos
sets in.

(iii) The flux of action b, W per iteration passing
through the broken KAM torus (Cantorus) at energy E'
can be estimated as

~A8 =0.37
3.0117.. .

~m' g, (m)
(3.35)

provided the expression in large parentheses is sma11
compared to 1.

(iv) The local diff'usion constant of the energy in the
fully chaotic domain is estimated from the local standard
map as

D = lim
(N„—No ) 2 2277 g m Qi E(~ )I +co

(3.36)

where F(X ) is a known function ' of order 1 which
would exactly equal 1 if phase correlations between sub-
sequent kicking periods of the map could be neglected.

The transition to global chaos at the resonance I occurs
when the last KAM torus separating it from the reso-
nance I +1 is destroyed. ' This breakup can be estimat-
ed by the use of the local standard map and occurs there
for K =—~k T

~
)0.97. . . . ' The threshold to global

chaos at the resonance I is therefore obtained at the field
amplitude

m/2

Ct)E = —co% =
—,
' 1— (3.30)

IV. QUANTIZATION

A. Quantization of the Morse map
The corresponding elliptic islands for I= 1,2 are clearly
visible in Fig. 3. Also visible there are the resonances at
m =

—,
'

( —', ) when 3 (5) field cycles coincide with 2 (3)
molecular cycles.

(ii) Near a resonance the map can be approximated lo-
cally by the standard map' ''

The molecular dynamics is quantized by imposing the
commutation relation

[p,x]= iA . — (4.1)

Then the familiar energy levels of the Morse oscillator
are obtained,

0'n+1=%n Tm M"n+1 ~

Mt'„+1 =Mt„+k sing, ,
(3.31) E =I —

—,'I (4.2)

where 5N„=N„+[(1—co Im )/2'] and
m/2

T = 2irm
k = 2irg m o~ (—

CO f/2 + CO

(3.32)

with quantum numbers I =A(v+ —,'). The corresponding
eigenstates are called g . The dimensionless parameter A

in our present units is really the dimensionless constant
(A'Qo/2D) «1, which equals the inverse of the number
of bound states supported by the Morse potential.
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constant (A'IIo/2D) ((1, which equals the inverse of the
number of bound states supported by the Morse poten-
tial.

We can also quantize the Morse map, which is sym-
plectic, with the canonical pair of variables 1V, y. Then
we impose

unbound subspace with subsequent deexcitation back to
the bound subspace within the same molecular period is
fully contained in K, provided the Morse map is extended
to the unbound subspace. This is done in Appendix B by
using the results of Sec. III C. The complete operator U
then reads

[N, (p j = i fi—

and choose, with an arbitrary ~ in 0 ~ ~ ( 1,

(4.3)
I ( 7T /A )H p l ( lI /A' )H pU=e PKe

where

(4.12)

(4.4) —l ~a (4.13)

with eigenstates

Nil ) =iri( —l —~)il ), (4.5)

&%'~H(I, N, H, cp)~%) =0,
which yields

(4.6)

where l is integer. Let us suppose that the initial state is
a direct product 0'=y 1l& . In order to fix lo and ~ we

satisfy the condition (3.5) in the form'

is the projector on the bound subspace and 8 is the step
function. It describes the fact that the probability ampli-
tude for dissociation after each kick is given by the com-
ponent of the wave function in the unbound subspace.
Thus deexcitation processes occurring for time intervals
longer than the preceding molecular period (but not those
occurring for shorter time intervals) are neglected.

The dissociation probability after n iterations of the
map is given by

la+ vo =E /Am, (4.7)
1/2%co

P(n)=1 — g (&l~g„&)',
I = 1/2'

(4.14)

i.e., lo and ~o are the integer and fractional part of the
right-hand side, respectively. Physically, the integer lo
gives the number of photons needed to excite the mole-
cule from its ground state at Eo-—A/2 to the state at E
The lo interval corresponding to the bound subspace is

l ( l & I
2co 2%co

(4.8)

The unbound subspace corresponds to lo~ 1/2fico+I
while all values lo ~ 1/2' —1 are unphysical and should
have zero probability.

Having determined the initial state for the map the fur-
ther evolution of this state is described by the quantized
ITlap

(4.9)

+1+2coN„(/ 1+2coN„"+ (4.15)

and use this expression to form the n-dependent expecta-
tion value

where ~P„)= U" ~itjo). There is as yet no really good gen-
eral way to convert the result (4.14) back to the physical
time t. The best one can do at present is to convert to
real time via the n-dependent mean molecular frequency
2'/b. t for the wave function ~g„). Classically one may
approximate, e.g. ,

The operator U is most easily constructed using the
decomposition (3.22) of the map. Steps (1) and (4) are de-
scribed by the unitary operator exp[ —(iirliri)HO(N)],
where Ho was defined in Eq. (3.7). The symmetric kick in
steps (3) and (4) is described by

r

(4.16)

one may define the time t = t ( n ) with
At=t(n) —t(n —1) by

K(N, y) =exp — [f(N)cosy+cospf(N)]
2A

(4.10) 5t At
(4.17)

Its elements KII must be determined numerically (cf. Ap-
pendix C). In the limit where the simplified Morse map
applies (cf. C2) the matrix Kli is known in closed form

(4.11)
and one can calculate

P(r) =P(n, „(r)) (4.18)

where the JI are the Bessel functions. The fact that K de-
scribes the net eA'ect of the total interaction with the
external field over a molecular period is a big advantage
of the present method. In particular excitation into the

by computing P(n), t(n) until t(n „+1))t. This pro-
cedure can be expected to work the better the more local-
ized the wave function & l ~P„) remains with respect to
the quantum number l.
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B. Quantum effects described by the Morse map

The Morse map allows to make a number of predic-
tions on the quantum level, which parallel the predictions
on the classical level made in Sec. III D.

(i) The primary resonances with winding number m
quantum mechanically correspond to one-photon —m-
phonon resonances. The external field should therefore
mix initial states of energy E =E = —co% with states

lying a photon higher or lower and such states should
therefore dissociate with a resonantly enhanced probabili-
ty or should be resonantly stabilized. A different way to
phrase the resonant stabilization of states near the one-
photon resonances makes use of the notion of "scars,"
i.e., the constructive interference of wave functions in the
classically chaotic domain on short (unstable) periodic or-
bits. Hyperbolic periodic orbits with winding numberI occur in the classical map at energies E=E . In
phase space the quasiprobability distributions (e.g. , the
Wigner distribution or the Husimi distribution) of
scarred wave functions are known to display enhance-
ment also on parts of the stable and (or) unstable mani-
folds of the periodic orbits. ' These manifolds sur-
round the eventually coexisting elliptic periodic orbits at
the same winding number. Hence resonantly stabihzed
or scarred states may be found slightly above or below
the energies E =E . For hydrogen atoms in strong mi-

0

crowave field this was discussed in Ref. 26.
(ii) Initial states with energies below the classical chaos

border (3.34) will remain rather localized in energy as the
quasiprobability distribution of wave functions are spread
out along the KAM curves but fall off in the transversal
direction on a characteristic length scale (in /) given by
the absolute value of the argument of the Bessel function
in Eq. (4.11). For ~l

—l'~ larger than this value the kick
operator JC goes to zero rapidly. Hence the prediction
that excitation to high energies are not observed for such
initial states.

(iii) Even after breakup of a KAM torus the remaining
"Cantorus" can continue to form an effective barrier and
to localize wave functions. ' A simple estimate of how
long a Cantorus may be active in this way results from
the comparison of b, W', Eq. (3.35), with A', ' i.e., one
predicts a border between a regular, localized regime of
initial states which are not excited to high energies and
an irregular regime where excitation to high energies is
not forbidden by any effective barriers in phase space. A
heuristic estimate for this threshold is provided by the
condition.

(4.19)

for the Cantorus no longer being active as a barrier. One
arrives at this comparison by noting that it is impossible
to compress a quantum state in phase space on an area
smaller than Aphq=~h/2 where q and p are conjugate
variables.

(iv) In the regime where b, W )A' is satisfied it would
seem that quantum-mechanical wave functions could
spread out uninhibited in analogy to the uninhibited clas-
sical diffusion process occurring in this regime. Howev-

er, due to a process of "dynamical localization" '

similar to Anderson localization of waves in disordered
systems, ' an uninhibited spreading of wave functions is,
in fact, not predicted. Instead a destructive interference
of the many different multiple-photon transition ampli-
tudes corresponding to the multitude of classical diffusion
paths is predicted to occur for final states at energies
separated by more than a localization length %col& from
the initial energy. The localization length lz was shown
to be equal, apart from a factor e of the order of 1, to the
classical diS'usion constant (3.36) expressed in units of the
quantum number l (Ref. 34).

222
D (/) 7T g I co

(4.20)
(trtto)2 m +co

F(K ).

For an exactly solvable model a =
—,
' was found in Ref. 29.

In the ideal case of complete exponential dynamical local-
ization the eigenfunctions of the map U would behave
like

(4.21)

However, /~ itself Auctuates, in general, from state to
state, and the exponential decay of the average of lytl
over the initial state occurs therefore on a length

l =2l' =2aD" =D' (4.22)

In the case of the Morse map complete dynamical locali-
zation cannot be expected to occur due to a "finite-size
effect, " i.e., the fact that only a finite number of bound
states is supported by the Morse potential. Hence the
destructive interference of multiple-photon transition am-
plitudes is not complete and dynamical localization
reduces the dissociation rate and the excitation rate to
high energies below the classical value without extin-
guishing dissociation completely. If the initial state lies
near the dissociation threshold within a localization
length l~ no quantum-mechanical inhibition of dissocia-
tion by localization is predicted to occur.

V. NUMERICAL RESULTS

A. Time-dependent expectation values

for the average energy and convert n to the physical time
t (n) by the use of Eq. (4.17). The corresponding classical
expressions are given, respectively, by Eq. (3.29) and

Z(t)
(E(t)}= g (

—co%, ), (5.2)
Z(t);=(

Using the Morse map in its classical and its quantum-
mechanical form it is possible to calculate time-
dependent expectation values like the average molecular
energy (F. } and the dissociation probability P. Quantum
mechanically we have to evaluate the expressions (4.14)
for P(n) and

«(n) }=y X~(t+~) I(l ~q„}I'Z[i —P(n)]
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ed from the ground state up to v=5. The results ob-
tained from the map describe amplitude and frequency of
the Rabi-type oscillations qualitatively correctly, howev-
er, the detailed time dependence is not reproduced faith-
fully in phase and amplitude, which is hardly surprising
in view of the fact that the molecular eigenstates

~
v) have

been replaced by effective photon states
~
l ) . In Fig. 6 the

dissociation probability from the ground state is given for
g=0. 14. The classical chaos border obtained from Eq.
(3.33) is at g =0. 16, consistent with the fact that I' =0 for
Figs. 4 and 5. Yet it is somewhat too high, even quantum
mechanically, because it would predict P =0 even in Fig.
6. The quantum result and the classical result in Fig. 6
are very similar to each other. Again the map is seen to
reproduce the time dependence qualitatively well.

(3 In=1
W(1)

1
I
I

III=2 .
'

i
I

111=3.
'

I ] I I I I I J
I

f I I I I I I If 1 I

20 40 60 BO

Vo

100

FIG. 8. Width function 8'(l) vs the vibrational quantum
number v& corresponding to l.

B. Floquet states

The eigenstates of the quantum map U are called Flo-
quest states ~A, )

v~x&=b, ~x& . (5.3)

These eigenstates and their eigenvalues have been com-
puted for the parameter values %=0.01, co=1.0, g =0.01
and have been ordered and labeled by the integer

according to their mean energy (E(A, ))
=QIIrini(1+a)~(1~k)

~

. In Fig. 7 we plot
~
(1~A)

~
over

an (l, k, ) plane for those states whose mean energy falls
into the bound subrange O~E(A, ) ~

—,'. The localization
of all states is apparent from this diagram. The states
near the m =1 resonance for the small A, values are
broadened, as one would expect from the classical phase-
space structure in Fig. 3. [It should be recalled that the
probabilities

~
(I ~k) ~

correspond to the projections of
the classical invariant manifolds labeled by A, onto the—co% =hn~( l + Ir ) axis. ] Also not unexpectedly states
near the dissociation energy, i.e., at the large A, values, ex-
tend to the unbound energy range. However, quite re-
markably, all Floquet states in the classically chaotic re-
gionion (starting at about A, =33) are localized despite the
fact that their corresponding classical invariant manifold,
the chaotic domain, is extended. This can be understood
as a consequence of dynamical localization described in

Sec. IV B. An objective measure for the effective number
of states

~

k ) necessary to represent a state
~
l ) is the

width function W(l ) =exps(l) with
s(l ) = —gz~ ( l

~
A, )

~
ln~ ( l ~A, ) ~, which was introduced in

Ref. 36. The width function corresponding to the states
of Fig. 7 is shown in Fig. 8 as a function of the vibration-
al quantum number v of the molecular state where
Aro(l +a) = ——'

t iIt(v+ —') —1] + —,'. Conspicuous features2 2

of this result are the enhancement of the width near the
first primary resonance at m =1, a rather smooth and
systematic drop and reenhancement near around the res-
onance m =2 where classical chaos sets in (cf below), and
a much more erratic variation of the width function in
the classically chaotic domain, with local maxima atI=3 and 4. The systematic decrease of the average of
W towards the dissociation border by a factor of —,

' can be
explained by the extension of the states ~l) in the ~X)-
basis to

~
k ) states in the unbound energy range, which is

projected out in U.
The eigenvalues b& of U are shown in Fig. 9. Most ei-

Irn(b), )

Kllx&l'

04

00

FIG. 7. Eigenstates
~
(l~k) ~

of the quantized refined Morse
map (here and in the following for co= 1, g =0.01, 8=0.01).

FIG. 9. Eigenvalues of the quantized reined Morse map in
the complex plane.
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C. Dissociation probability as a function of the initial state

As our next result we discuss the dissociation probabil-
ity for a given molecular time (here fixed at 100 passages
through the nuclear distance minimum). In Fig. 10 we
plot as a function of the initial molecular energy
H= —co% the classical dissociation probability (upper
curve) and the corresponding quantum result (lower
curve) and compare them with the corresponding classi-
cal phase-space structure (lower part of the diagram cor-
responding to Fig. 1). The classical dissociation is seen to
begin precisely at the classical chaos border whose
analytical estimate, following from (3.33) and (3.34) by el-
iminating m, is given as B&. The quantum result gives a
higher dissociation threshold which is well explained by
Cantorus localization derived from (4.19) and (3.35) with
m =2. The position of the Cantorus with m =2+y is
indicated in the lower part of the figure. Its fIux of action
EWz estimated from Eq. (3.35) is orders of magnitude
smaller than A, whereas 68'3 is found of order A, but
m =3 is no longer in a region where (3.35) is reliable.
The estimated quantum chaos border resulting from the
Cantorus at m =2+y is given as B&. In our numeri-
cal data the localization by Cantori is the most consistent
scenario to describe the onset of dissociation.

For initial energies above B& the quantum dissociation
probability is also below the classical result, which can be
understood as a consequence of incomplete dynamical lo-
calization, as explained in Sec. IV B. Dissociation is

O.O

0.31 O.4 -cuN 0.5

FICx. 10. Dissociation probability after 100 vibration periods
(upper curve classical, lower curve quantum) vs initial molecu-
lar energy and corresponding phase-space structure. m is the
position of the primary resonances and Cantori 2 =2+@
3 =3—y, B& is the classical chaos border, B& is the position
of the last impenetrable Cantorus, B~ is the Anderson delocali-
zation border. The position of the Cantorus with m =2+@ is
included in the lower part of the figure as a dashed line. (The
quantum probability is defined for a discrete set of initial ener-
gies, the continuous curve merely serves as a guide to the eye. )

genvalues lie practically on the unit circle, but some are
displaced visibly and a single one even strongly inside the
unit circle, due to the decay of the eigenstates close to the
dissociation energy. The mathematical reason is, of
course, again the appearance of the projector P on the
bound subspace in the definition of U.

merely reduced and not suppressed completely, despite
the localization of the Floquet states, because the states
!A, ) have a finite lifetime due to their small but finite
overlap with the unbound energy range. Because this
overlap increases systematically as the initial energy is
moved towards the dissociation energy —, the dissociation
probability increases systematically, on the average. Su-
perimposed on this systematic increase are strong Auctua-
tions which correspond to the fIuctuations in the width
function shown in Fig. 8. A resonant enhancement of the
dissociation probability is seen to occur near the primary
resonances m = 3 and 4, while the analogous resonance at
m =2 is not seen; the latter connects the initial vibration-
al quantum number v=48 with v= 50 and both states are
located below the quantum chaos border. Still, a dissoci-
ation peak below B& but above the m =2 resonance and
the actual Cantorus at m +y occurs for an initial ener-
gy corresponding to a vibrational quantum number
v=55. This peak corresponds to the maximum of the
width function in Fig. 8 and probably owes its presence
to the neighborhood of the classical m =2 resonance.
The localization length lz is also indicated in Fig. 9.
Roughly it defines a distance to the dissociation energy—mN= —,

' within which there is little difference between
the classical and the quantum dissociation probability.

D. Scars

As another remarkable feature of Fig. 10 we point out
the very low dissociation probabilities surrounding the
m =3 and 4 resonances. Likewise pronounced minima of
the width function near the m = 3 and 4 resonances can
be seen in Fig. 8. It is tempting to explain this apparent
resonant enhancement of localization by the scarring
phenomenon: the enhancement of wave-functions
(l!k) near the primary unstable periodic orbits of the
classical system with winding number m. Such unstable
periodic orbits appear together with each stable periodic
orbit defining a primary resonance, at the same energy
(3.30) but phase shifted by vr Taking int. o account the re-
cent observation ' that such scars are extended in
phase space along the stable and unstable manifolds of
the periodic orbits which surround the classical reso-
nances, one is led to predict that stabilization due to scars
should occur immediately above and below the one-
photon —m-phonon resonances, in agreement with the
resonance structure of Figs. 8 and 10 near m =3 and 4.
The resonances at m = 1,2 are not in the chaotic domain,
hence the above considerations do not apply, the reso-
nances for m ~ 5 are too closely spaced and too close to
the dissociation energy to be relevant in the present con-
text. In order to check the scar hypothesis we have
determined the Husimi function ! ( a!A, )!,where !a ) is a
coherent state with (bX) = (by) =iri/2. The eigenstates
!A, ) were those having the maximum overlap with the ini-
tial states with the selected vibrational quantum numbers
v=64, 65, 66, 67. These v values just correspond to the
four states near the m = 3 resonance in Fig. 10 where the
dissociation probability is, respectively, minimal, inter-
mediate, maximal, and again minimal. The result is
shown in Fig. 11, where contour lines of the Husimi func-
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zation cannot be complete unless the dimension ap-
proaches infinity and manifests itself, in the finite-
dimensional case, merely as a reduction of the dissocia-
tion probability instead of prohibiting dissociation corn-
pletely. In fact, the "dissociation border" one would pre-
dict from the localization length assuming complete lo-
calization is much higher than the observed dissociation
border, and really describes a regime where the quantum
reduction of the dissociation probability essentially disap-
pears. Another difficulty is the appearance of pro-
nounced resonances where one photon can excite an in-
teger number of vibrational quanta. These resonances
can lead to sharp increases and decreases of the dissocia-
tion probability as a function of initial state or external
frequency and are not contained in the simple quasiclassi-
cal picture describing dynamical localization in terms of
the classical diA'usion constant. In further numerical
studies we found that these resonances are sharper and
more pronounced for weaker coupling, i.e., smaller am-
plitude of the driving field, and become broad and less
pronounced as the driving field is increased.

Localization by Cantori best describes the border of
dissociation observed in our numerical data such as Fig.
10. This is consistent with earlier results demonstrating
Cantorus localization in a similar model. However,
even this mechanism presents us with practical
difficulties. For one, the scaling formula (3.35) for the
flux A8 has only limited validity in the scaling region
very close to the breakup of the Cantorus. In addition,
for the present system the values for 68' turn out to be
very strongly dependent on m and it would seem neces-
sary, therefore, to determine the breakup of the last
KAM torus not by the primary resonances, which are
spaced too far apart, but from higher-order resonances
sufficiently close on either side of the KAM torus. While
this problem may be overcome a serious shortcoming is
the absence, so far, of a theoretical underpinning of the
plausible quasi-classical heuristic condition A8 )A for
a Cantorus to become quantum-mechanically penetrable.
Further theoretical work deriving this or a similar condi-
tion from a quantum theory seems necessary.

Localization by scars is similar to localization by Can-
tori in that a classical phase-space structure is at its ori-
gin. Both are quasiclassical in nature and require the
condition A((1 for the e6'ective A, i.e., the number of
bound states must be very large. However, while Can-
torus localization must appear for any initial state with
support on one side of the Cantorus only, in order to see
a scar it is necessary that the initial state be composed
predominantly of wave functions all scarred in a similar
way, i.e., by the same unstable periodic orbit. Such initial
states are difficult to prepare (either numerically in our
model or experimentally). One way to achieve this is to
use an adiabatic switch-on of the external field, which
makes it possible in principle, to prepare a single Floquet
state. In fact, in further numerical experiments with a
continuous switch-on of the external field for the parame-
ter values of Fig. 10 we found a significant enhancement
of the stabilization in the neighborhood of the I= 3 reso-
nance which we have attributed to scars.

We believe that the driven molecule considered here as

an example is rather typical in that various quasiclassical
e6'ects occur at the same time and compete with each
other. The quasiclassical behavior of such a classically
chaotic system is therefore seen to be very rich. The
dynamical description in terms of a single quantum map
valid in the quasiclassical region and still containing all of
these eftects together in an easily computable way there-
fore seems to be particularly useful.
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APPENDIX A: FOURIER TRANSFORM
OF THE CLASSICAL UNBOUND MOTION

Here we wish to evaluate the Fourier transforms V„(I)
and W„(I) of x (I, ilj) and p(I, g), respectively, defined by
Eq. (2.16). First we note that Eq. (2.16) implies

p(I, Q) =+2HO(I) —1 (Al)

which induces the relation

W (I) = pV„(I)+—2H o (I) 1— (A2)

between W„(I), defined by Eq. (2.20), and V„(I) defined
by

x(I,Q)=2f dp V„(I)cospg+~f~ . (A3)

It is therefore sufficient to evaluate the Fourier integral
for V„(I)

V„(I)=f (dg/2')[x(I, Q) ~P~]e '"~ . (A4)

Inserting x from Eq. (2.16) and substituting z =exp(g) we
obtain, after some rearrangement of the integrand,

' 1/2

[2HO(I) —1]
2

Ho(I)
V„(I)= —5(p)ln

+—f dz z '" 'ln(1 —2az+z )
2K 0

dz z " lnz
00

7T l
(A5)

2

Ho(I) [2HO (I)—1 ] + 1V„(I)= —5(du, )ln

p arccos[ —1/+2HO(I) ]
2

cosh
STD sinh(pn)

(A6)

The expression (2.20) for W„(I) now follows from Eq.
(A2).

with a = 1/'(/2Ho(I). In order to ensure convergence at
z —+ ~ we replace p by p —ie. Then the integrals may be
done and we obtain, letting @~+0,

1/2
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APPENDIX B: SHORT DERIVATION
OF THE HAMII. TONIAN

OF THE REFINED MAP AND EXTENSION
TO THE UNBOUND ENERGY RANGE

We start from the Hamiltonian H, Eq. (3.11). For the
purposes of a map from t„ to t„+, the interaction with
the external field may be approximated by a symmetry
preserving kick at the molecular time t = t„=2~n, when
the nuclear distance minimum is passed. Hence we seek
the Hamiltonian of the map H, z in the symmetry
preserving form

coaxX sin(mx )sin i/1+ 2coN

with

(83)

(3.7), and using the Fourier expansion (2.14) we arrive at

g(N, @)

cosy g f dx k(N )
CO

] 7T

H, tt=HO(N)+ , g -&(t —t„) g(N(t+e), cp(t)) 1 —V 1+2coN
1+i/1+ 2coN

(84)

+g(N(t e)y(—t))

(Bl)

Comparing with the interaction term of Eq. (3.11) we ob-
tain

g(N, p) =—f dx h, (N, x )sin +q)
CO —vr i/I+ 2a)N

Here we used the fact that in this first-order expression in
g /i/1+2coN we may use the zero-order results for N(t )
and tp( t ). Substituting the expression for h, (N, t ), Eq.

To evaluate the sum over I approximately we replace it
by an integral. This has the consequence that the in-
tegrand decays as a function of x over distances
lxl) link(N)l. Thus for link(N)l «m. we may extend
the x integration to —~ ~ x ~ + ~ and obtain

g(N, Q) — g cos+g(N)rl a)v+ 2atN
—2'

(85)

The eff'ective Hamiltonian now equals Eq. (3.23) withf(N) and k(N) given by Eq. (3.25). While so far the cal-
culations have been restricted to bound states, it is possi-
ble within the present approach to extend the effective
Hamiltonian also to the unbound domain. %'e just have
to use the Fourier expansion (2.19) and (2.20)

h, ( N, x ) = —2f d)tt
cosh [p arccos[ —1/+2HO(1) ] ]

slnpx
sinhup

in Eq. (82), with I=1+i/l 1+2coNl. Substituting z=A(N)x, v=p/A(N) with A(N)=co/i/l 1+2coNl we arrive at the
expression g(N, (t()) =cosset()f (N) with

4g i()tr) cosh[vA(N)arccos( —1/+HO)]f(N) = dz d v sinz sinvz
tt) 0 0 sinhvi. (N)~

(87)

We are interested in the case A, (N) ))1, where the in-
tegral (87) simplifies and approaches the asymptotic form

APPENDIX C: KICK OPERATOR

4.gf(N)= — f dz f dvsinz sinvz
0 0

—vk(N)arctani/2Ho —IXe

which yields

(88)

The kick operator may be obtained from

It (g) —e) [f(N)cosp+cosyf(N)] (Cl)

for A, = —i (g /2A'). It is determined by solving the
differential equation for the matrix elements
z„,(x)= (I lac(x) l&'),

f(N) = — exp
2&g —co arctani/l 1+2tt)N

l

&ll+2~NI
(89) OIC„,(X)

Ir rl' (C2)

This result can also be obtained directly from Eq. (85)
by the analytic continuation i/1+2coN ~i i/ —1 —2uN
where it is irrelevant which branch of the square root is
taken. The physical reason for this analyticity lies in the
fact that bound orbits and unbound orbits are physically
indistinguishable in the interaction region around the
turning point at the nuclear distance minimum.

A(r= —,'g [f(N()+f(N„)](5„1 )+5„() . (C3)

We note that intermediate states lr ) in the unbound en-
ergy range contribute to this equation, i.e., the extension
of the quantum map to this domain given in Appendix B



43 QUANTUM EFFECTS ON THE MULTIPHOTON DISSOCIATION. . . 3981

is needed here. The matrix 3 is real, symmetric, tridiag-
onal, and its diagonal-elements vanish. Its eigenvalues e„
and the orthogonal matrix of its eigenvectors T, „are
constructed numerically. The kick operator then is

—i(ge /2A)
+11' Tlm e TI'm (&4)

Even for time-varying g (adiabatic switch on and switch
off), the diagonalization has only to be performed once.
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