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The quantum theory of Stokes—anti-Stokes processes in a degenerate system in a cavity is
developed. The Raman transition is pumped by a coherent field. Effects of many atoms, cavity
losses, and thermal photons are included in the theory. An exact solution for the model is obtained.
An explicit expression for the reduced density matrix of the cavity field is given. The spectrum of
the cavity field is obtained and is interpreted in terms of the eigenstates of the effective Hamiltonian
describing Stokes—anti-Stokes processes. The spectrum develops sidebands due to strong Raman

coupling.

I. INTRODUCTION

The classical theory of the Stokes—anti-Stokes scatter-
ing and the coupling of Stokes and anti-Stokes fields is
well understood.! However, very little has been done in
quantum theory because of the tremendous complexity of
the Hamiltonian simultaneously describing both Stokes
and anti-Stokes processes. The situation is even more
complex in a cavity because of the losses from the mir-
rors. In the special case when one considers a highly de-
generate situation, an exact solution can be obtained.?*
The degenerate situation corresponds to (a) the initial and
the final energy levels of the atom being degenerate, and
(b) the same field mode interacting on both pump and the
Raman transitions. If the field is initially in a Fock state
|n), then the Rabi frequency of oscillations of the atom
making two-photon Raman transitions is proportional to
n. As a consequence, the atomic population and the pho-
ton number, etc., exhibit periodic behavior even in a field
having arbitrary photon-number distribution. Schoen-
dorff and Risken® generalized the work of Knight? to ac-
count for the losses from the cavity mirrors and for the
presence of thermal photons in the cavity. They calculat-
ed the analytical expressions for various quasiprobability
distributions like the P function, the Q function, and the
Wigner function. It is rather remarkable that the degen-
erate Raman problem is exactly soluble even for cavities
with finite Q and at finite temperatures.” The model so
far considered has to be generalized in an important
way—one has to include the pumping of the Raman
transitions by an external field. Besides we will show that
in order to see some of the quantum effects predicted in
this paper, one has to include many atoms in the cavity.

Thus in this paper we consider the coupling of Stokes
and anti-Stokes fields in a degenerate system consisting of
many atoms. The Raman transition is being pumped by
an external coherent field. The cavity losses and the
effects of finite temperature are also included. We
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present the basic mathematical equations for the model
system in Sec. II. In Sec. III we discuss the dressed states
of the model. We also discuss on the basis of dressed
states the kind of spectrum of the cavity photons one ex-
pects. In Sec. IV we present an exact solution for the
density matrix of the field. The time evolution of the cav-
ity field and its statistics can be obtained from the solu-
tions of this section. In Sec. V we show how the strong
Raman coupling between many atoms and the field can
lead to new spectral features which may be termed as
vacuum-field Raman splittings of the spectra.

II. MODEL

We consider a system of atoms undergoing Raman
transitions between two degenerate states |1) and |2) on
interaction with a single-mode quantized field inside a
lossy cavity. The Raman transitions take place through
the intermediate states |j). By eliminating the virtual
levels |j) from the equations of motion, the Raman cou-
pling between the levels |1) and |2) is described by the
effective Hamiltonian?

Hyp=%ga'a(ST+S " )=2#ga'as, , 2.1)

where a' () is the creation (annihilation) operator for the
cavity field and S T=11)(2|, S ~=|2)(1]| are the atomic
dipole operators. The term a'aS™ in Eq. (2.1) is respon-
sible for the Stokes transition whereas a 'aS ~ gives rise to
the anti-Stokes transition in the scattered radiation.
These lines, however, coincide in frequency as the Raman
coupled states |1) and [2) are degenerate in the model
considered here. Equation (2.1) is for a single atom,
where the operators S correspond to spin value equal to
half. We will account for the presence of many atoms (V)
in the cavity. The Hamiltonian is still given by (2.1) but
now S will correspond to angular momentum value N /2.
Since it is the properties of the field which are of interest
in the study of Raman scattering, it is, therefore, desir-
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able to excite the cavity field mode. This can be done by
coupling the mode to an external pump. The coupling of
the cavity field mode with the external pump is described
by the Hamiltonian

H, =hexp(—iwot)GaT-%-ﬁexp(ia)ot)G*a , (2.2)

where the pump frequency o, is assumed to be equal to
the frequency of the mode driving the Raman transitions.
Under the action of the interactions (2.1) and (2.2) the
density matrix p of the system, in the frame rotating with
the frequency w, of the field, evolves as

dp _ _;
= —ilHpl/H, 2.3)
where
H=Hy+#Ga +#G*a . (2.4)

Equation (2.3), however, ignores the cavity losses and
also the interaction of the atoms with thermal photons
which are always present in many experimental situa-
tions. The effects of the thermal photons are particularly
significant in the experiments involving Rydberg atoms
even at very low temperatures.("7 The density-matrix
equation including the effects of thermal photons and
cavity damping is given by

%gz—i[H,p]/Hpr, 2.5)
where
Lp=«(n+1 )(2apa*—aTap—paTa)
+«7(2a Tpa —aa Tp—paa*) (2.6)

describes the irreversible cavity losses at a rate k in the
presence of thermal photons with average number 7.
These losses are expected to broaden the otherwise sharp
Raman lines.

Our work is based on the exact analytic solution of the
master equation (2.5). Note that special cases of (2.7)
have been discussed earlier.?® For a single atom Knight?
introduced the model Hamiltonian (2.1) and obtained the
time-dependent populations in the states [1) and [2). He
found periodic behavior. Again for a single atom and in
the absence of any pumping Schoendorff and Risken® ob-
tained an expression for the density matrix in the pres-
ence of cavity losses and thermal photons. In this paper
we study the statistical and spectral properties of the field
for N#1, GFO.

III. THE DRESSED STATES

One can understand the dynamical features by examin-
ing the eigenstates of H. In order to solve the eigenvalue
problem we first introduce the eigenstates of S,. Let the
cigenstate of S, be denoted by |¢,,?. Here m takes
values from —N/2 to +N/2 in steps of unity. The
eigenstates of S, can be related to the eigenstates |m ) of
S, and S? via the rotation operator

lm) . (3.1)

¥ ) =exp | =S,
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Let us now write the eigenstates of H in the form

where |4, ) is the photon part of the wave function. On
using (2.4) and (3.1) in (3.2) we get the eigenvalue equa-
tion for |¢,,, )

(3.2)

(2gma’a +Ga'+G*a)l, n ) =0pm|bum ) - (3.3)
The eigenvalue equation can be written in the form
T IGZ| _ Dy
blb,, agm? [ m ? = . | @ ) » (3.4)
where
G +| G G
b =a+—=D —_— _— y 3.
m=a 2mg 2mg 2mg 33
and where D(a) is the displacement operator®

exp(aTa—aa*). Note that b operators obey the same
algebra as a operators. Thus the eigenvalues and eigen-
functions are

- |GI?
@Dy =28M n_4g2m2 ,
(3.6)
—pt|-G
|$m » =D mg In),

where |n ) is the Fock state of the operator a 'a. Thus to
summarize, the eigenstates |y,,, ) of H are

. i
[Xmn )= |exp —TSy [m)
x |exp |—21C 4 aG* || (3.7)
p 2mg  2mg ’
with eigenvalues
_ |GI?
@y, =2mg |n ——4;2—’”—2‘ . (3.8)

The ground state of the combined atom-field system is
Xn/2,0- Note that for a single atom, m =+1.

We next examine the expression for the spectrum of
the cavity field. Note that the field operator a has no ma-
trix element connecting states with two different m
values. Using (3.7) one finds that

— G t]|_G >
y=(n|D|=— |aDp" |-
Xomn 1@ X ) <n o oz | |
:<" T 2mg ’n >
Vs, —=C s (3.9)
’ 2mg

Thus in the rotating frame the operator a will have a time
dependence determined by

2gm(—n +n')=2mg if n'=n—+1
0w YO =g ifn=n" (3.10)
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Thus the cavity field is expected to have frequency com-
ponents

Q=wy, 0 t2glm| . (3.11)

Therefore for a large number of atoms, the spectrum of
the cavity field will show additional sidebands at +2g|m|,
m=—N/2to +N/2.

IV. EXACT SOLUTION OF THE MASTER
EQUATION (2.5)

In this section we derive the exact solution of (2.5). We
define a set of field density matrices by

pm=(y, lplv, ) /p"™,

4.1)
P(m):Trf< 1/Jm |pt¢m >7&1 .
The density matrix p‘f ) of the field alone is given by
+N/2
P(f)___ 2 p(m)P(m)’ Trfp(f)zl . 4.2)
m=—N/2

It can be shown from (2.5) that p'™ is a constant of
motion. On combining (2.5) and (4.1) we obtain the equa-
tion for p'™

p(m)= —ngi[aTd,p(m)]'Fpr(m)“'i [GaT-l-G*a,p"")] .
4.3)

Equation (4.3) is to be solved subject to the initial condi-
tion determined by (4.1). The solution of equations like
(4.3) is well known. This equation is the same as the
equation for a damped, driven harmonic oscillator’ in-
teracting with a heat bath. The driving field is not on res-
onance with the oscillator frequency. The detuning pa-
rameter is 2 mg.
The steady-state solution of (4.3) is

—B [aT_L

(m):N
P m EXP K—2igm

[ G

where

(eP—1)7'=m, 4.5)
and where N, is determined by the normalization condi-
tion

(4.6)
|

Trp™=1.

(a'(z +T)>=Tr[p(f)(t +T)aJr]
= Ep"‘Tr[p(’")(t +7‘)aT]

=>p" exp(—KT+2ing)Tr[p('”)(t)aT]+iG L
m

3951

Thus the complete density matrix for the field in the
steady state is

N X (m) N t iG*
P _m=§N/2p nexp | = |a k—2igm
iG
X |a+—5—
a4 k+2igm
4.7)

Hence the field in the steady state is the incoherent super-
position of the density matrices which themselves
represent the superposition of thermal and coherent
fields. Thus the mean value of any physical observable
can be expressed as

+N/2
(G)= 3 pmem,
m=—N/2

(4.8)

where G'™ represents the mean value with respect to the
density matrix (4.4). The field in the steady state exhibits
no nonclassical features since each individual density ma-
trix (4.4) represents superposition of thermal and
coherent fields. '°

The time-dependent solutions of (4.3) can also be ob-
tained. For this purpose it is convenient to work with the
Glauber-Sudarshan P function defined by

p(m):fp(m)(a)la)<a'd2a s (4.9)

where |a) is a coherent state. The function P is found
to obey the equation

(m)
al;t =5a;[( +iG +2img)ap'™)
2 (m)
—Hcﬁaa—g . T cc (4.10)
a Jda

The equation for P'™ has the same structure as the
linearized Fokker-Planck equation whose solution is well
known. !!

V. SPECTRUM OF THE CAVITY FIELD

In this section we calculate the spectrum of the field in
the cavity. We show how the spectrum can develop side-
bands even if the external field is zero. Such sidebands
can be termed as vacuum-field Raman splittings like the
vacuum-field Rabi splittings which are well known!? in
the context of the Jaynes-Cummings model. Note (4.2)
and (4.3) show that

—exp| —r(k—2igm)]
K—2igm

Trlp'™(1)] | . (5.1)

The two-time correlation function {a'(¢ +7)a(#)) can be obtained using (5.1) and the equation regression theorem.

Thus in the steady state
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t— o0

lim (a'(t +7m)a(0)) =3 p™

The expectation values appearing in (5.2) can be obtained
from (4.4):

G
T (m) y— __ !
rip™a) Kk+2igm ’
2
G
T (m) T — —_— n .
tp™a’a) k+2igm " 53

On substituting (5.3) in (5.2) we get

lim (aT(t +71)a(t))=n zp(m)e*KT—FZigmr
t— oo .
G

—_— 4
k+2igm 54

+ zp(m)
m

Note that the spectrum of radiation in the absence of any
atoms is obtained from

lim {a¥(t +7)a(2))=7e .

t— 0

(5.5)

The spectrum of the cavity field thus consists of a
coherent component at w, and a number of incoherent
components at the frequencies

Q,, =wyt2g|m| , (5.6)

with half-width k. The weight factor of the incoherent
component at ,, is determined by p'™ which in turn is
determined by the initial conditions. At time ¢ =0, the
density matrix of the system will be factorizable in terms
of the atomic and field parts. Thus in terms of the atomic
part p' 4’ one will get

"= lp V)

If at time ¢t =0, the atomic population is equally distri-
buted in two states, then p'?’=]0){0| and hence

(5.7

—in/2S
im ylm)|2

p'™=1(0le (5.8)

exp( —kr+2igm7)Tr(p'™a ta)+iG*

G.S. AGARWAL AND R. R. PURI 43

1—exp[ —1(k—2igm)]
Kk—2igm

Tr(p'™a) (5.2)

which on using the properties of the rotation matrices'

reduces to

N N N N
. 7+m ! 7 !-2“!‘2*!
N/2—m 2
> (=1p
X - (5.9)
%—p Iplp —m)! [—]21+m —p|!

Note further that p'™ =0 if N/2+m is odd. Thus the
sidebands, corresponding to m values such that N/2+m
is odd, disappear. The sidebands will be resolved if g > «.
Generally the Raman matrix element g is rather small
and hence it may be difficult to observe such sidebands
unless the number of atoms is large!* when at least the
last couple of sidebands should be observable. The origin
of these sidebands can be traced back to the matrix ele-
ments of the field operators among the dressed states
[Egs. (3.9)-(3.11)].

Thus, in conclusion, we have shown how the exact
solutions for the quantum dynamics of Stokes-anti-Stokes
transitions in a degenerate system of many atoms in a
cavity with finite Q and thermal photons can be obtained.
The pumping of the Raman transition is included. We
have further shown how the strong interaction with the
cavity mode leads to vacuum field Raman splittings in
the spectrum of the cavity field.
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Hz (corresponding to say wo~ 100 GHz, Q ~10°) then one
should be able to see the sidebands with N~ 10°. For optical
transitions a similar situation can be obtained by a suitable

choice of parameters.



