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The theoretical basis for new signal transients and spectral features generated in field-correlated
four-wave mixing spectroscopies is developed. Special attention is given to those signal responses
that are sensitive to phase or amplitude correlation among the input driving fields, and not simply
their intensity correlation. Thus the cases of incoherent broadband excitation and of coherent
short-pulsed excitation will be discussed and compared. Applications to the coherent Raman spec-
troscopies, both electronically nonresonant and full resonant, are analyzed. Novel interferometric
oscillatory behavior is exposed in terms of radiation-matter detuning beats and matter-matter bilev-
el and trilevel quantum beats. In addition, new resonances are found that have submaterial
linewidths and detuning parameters that lock onto the mode frequency of the driven chromophore.
These spectral features are members of a class of bichromophore resonant line shapes arising from
nonlinear mixing with correlated driving fields. Analytic results are presented and modeled to anti-
cipate experimental results presented in the following paper [Phys. Rev. A 43, 3922 (1991)].

INTRODUCTION

Four-wave mixing (4WM) spectroscopies prove to be a
versatile probe of molecular spectra and dynamics in
both the condensed and the gas phase. ' " Actually at
the signal level 4WM is an eight-field mixing process in-
volving four conjugate field pairs (four photons). In gen-
eral, for arbitrary weak n+1 wave mixing, there are n!2"
channels, variously resonant, that together generate the
macroscopic polarization, so that a given measured
response may reAect complicated interferences among
these different amplitude components and, accordingly,
be rich in information. At the same time, the amplitude
and phase properties of the fields that are being mixed by
a nonlinear medium are influential in determining the
response. Ultrashort coherent light pulses and long, in-
coherent, light pulses have been used in several labora-
tories to record transient oscillatory behavior, as well as
sharp spectral features, in various 4WM measurements.
Damped sum and difference beating has been seen involv-
ing purely material oscillators, ' ' purely radiation os-
cillators, ' ' ' and hybrid radiation-matter oscilla-
tors. ' Their proper interpretation can provide new
insight into the nonlinear mixing process and the associ-
ated material relaxation dynamics.

Considerable theoretical work exists regarding material
relaxation on short-time scales and how the amplitude
and phase properties of the driving fields can expose and
even inhuence such dynamics. In one extreme,
transform limited (coherent) fields are used to permit easy
deconvolution from the signal of the purely field-
dependent contribution (the coherent peak). A more
refined approach consists of careful phase and amplitude
tailoring of optical pulses to enhance certain nonlinear
cross sections, while suppressing others, leading to a
more easily interpretable material response. At the
other extreme, much effort, both in theory and experi-

ment, has been given to the understanding of nonlinear
optical processes driven by incoherent excitation fields.
Such noise fields, characterized by a time-bandwidth
product that is orders of magnitude greater than the
theoretical bandwidth limit, have been shown capable of
sub-pulse-width timing (with accumulation) in various
optical mixing experiments. Incoherent excitation
introduces new resonances as well as additional broaden-
ing mechanisms not seen with coherent (transform limit-
ed) fields

4WM and related nonlinear optical techniques, so valu-
able in probing the fundamentals of radiation-matter in-
teraction, also offer great potential for applications in the
area of optical data processing, storage, and retrieval.
Of particular importance in communications technology
is the application of such phase-sensitive nonlinear pro-
cesses in the generation of squeezed states of the radia-
tion field. Thus the development of theoretical
models consistent with experimental results, in whatever
context, can only improve nonlinear optical processes as
analytic techniques and facilitate in the design of in-
tegrated optical circuitry.

Recently a subclass of new 4WM transients has been
reported from this laboratory in coherent Raman spec-
troscopies [both Stokes, coherent Stokes Raman scatter-
ing (CSRS), and anti-Stokes, coherent anti-Stokes Raman
scattering (CARS) processesj using incoherent light. In
these experiments two incoherent nanosecond light
beams, derived from a single broadband dye laser pulse,
are relatively delayed by time ~, and then simultaneously
mixed in a nonlinear medium with a tunable narrow-band
field. The narrow-band field is displaced in frequency
from that of the broadband fields by an amount that cor-
responds to a near-resonant Raman vibration. Strong
terahertz oscillations appear in the interferogram as long
as the CSRS or the CARS fourth wave, as well as the
narrow-band input field, are kept spectrally sharp to well
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within the Raman line width. In this limit, these
radiation-matter detuning oscillations carry both precise
vibrational memory and Raman frequency information.
In the present work (I), we present the general basis in

theory of these new signal responses. The setting is
within a general perturbative treatment of three-color
4WM interferometry in which the fields may be arbitrari-
ly phase or amplitude correlated, but where the "chromo-
phores" (our basic scattering unit) are uncoupled in their
absence. The previous analysis is generalized here to
include fully resonant scattering in mixtures of chromo-

p bores possessing different Bohr frequencies and
linewidths. The theory is also extended to include finite-
bandwidth effects for all of the intervening fields. For a
system of closely spaced electronic or vibrational reso-
nances that are spectrally embraced by the broadband
field, the signals vary with ~ as a superposition of detun-
ing oscillations, each detuned from a given Bohr frequen-
cy and damped by the, corresponding dephasing time. By
increasing the bandwidth of the signal field or the nonde-
generate field, these individual transients damp more
quickly in ~, giving rise to a much attenuated oscillatory
behavior that refIects interferences between inter- and in-
trachromophore states as well as other detuning beats.
Such oscillations are seen to decay in time with an
effective dephasing rate characterized by the coherence
loss of all the superposed material and radiation modes.

For the case of incoherent excitation in the coherent
Raman spectroscopies, predictions are made of new spec-
tral features having sub-Raman linewidths and which at
the same time precisely identify the Raman mode fre-
quencies of the chromophore(s). The realization of such
resonances, both in the electronic ground and electronic
excited states, will make possible a particularly accurate
decoding of complex multicomponent lines into their in-
dividual frequency components. At present, experimen-
tal verification of such narrowed resonances has been ob-
tained for ground-state coherent Raman scattering. This
is reported in the following paper, II, where other exam-
ples of the new radiation-matter features predicted in this
theory are given.

This paper is organized as follows. A general theoreti-
cal development of parametric 4WM wi11 be outlined in
Sec. I. We leave the reader with abundant (though in-
complete) references to the literature for details. The
4WM signal transients presented here are in some sense
weak-field Rabi oscillations. Therefore, to simplify the
theoretical development, a perturbative approach, with
respect to the matter-radiation coupling, will be used.
The nonconservation of the trace of the density matrix,
usually characteristic of a perturbation approach, can
lead to artifacts. The signal features discussed here sur-
vive this approximation, for they are confirmed experi-
mentally. Strong-field effects, although interesting, are
not essential to the interpretation of these signals. Re-
cently, Stehle ' has given a generalized quantum-
mechanical account of Rabi oscillatory behavior showing
its occurrence at all orders in the matter-radiation in-
teraction.

In Sec. II, the dependence of the susceptibilities on the
coherent properties of the input fields will be discussed,

I. COHERENT 4WM SCATTERING
WITH LIGHT HAVING ARBITRARY

PHASE AND AMPLITUDE PROPERTIES

The perturbative theory of four-wave mixing is taken
from its most general starting point at eighth order in
fields, including detection, to a form that is suitable for
discussing 4WM scattering from spatially uncorrelated
chromophores. Thus phase-matched scattering involving
as many as eight chromophores (Sec. I A) is reduced, in
Sec. I B, to a "bichromophore" model applicable to 4WM
in an amorphous sample of uncoupled chromophores
which are pairwise phase and amplitude dressed by the
driving fields.

A. Parametric four-photon processes with detection

Here we outline the theory of interferometric measure-
ments in different 4WM spectroscopies. The aim is to ex-

pose the effects of field correlation in such experiments.
In general, weak-field four-photon processes such as
4WM with spatial and temporal correlation among the
chromophores appears at eighth order in the radiation-
matter interaction operators. ' Initially, the signal can
be written as

S' '=Tr[Sp' '(t)j,

where S, an operator representing the measurement pro-
cess, is given by

5= =i [XD,H] . (1.2)

is written as a normal ordering of the detector
creation annihilation operators representing a photo-
count at time t,

distinguishing between the two cases of coherent and in-
coherent excitation, the former referring to fields whose
coherence time closely resembles the pulse width. Time-
domain interferometry with coherent driving fields allows
for a distinct time ordering between the exciting and
probing steps in the evolution of the scattering ampli-
tudes (the polarization amplitudes). Measurements with
incoherent light, however, involve interferometric delays
greater than the coherence times, which are typically
100—200 fs, but much less than the pulse widths, which
are typically 10 ns, offering a sensitivity for accumulated
material responses over a large dynamic range.

Analytic applications of the theory to both electroni-
cally resonant and nonresonant coherent Raman scatter-
ing in Sec. III is followed in Sec. IV by model calcula-
tions and a brief discussion of the physics that underlies
the theory. In light of this discussion, other closely relat-
ed 4WM spectroscopies will be considered. Experimental
methods and results will be presented in the following pa-
per (II) where the merits of these experiments for probing
condensed-phase dynamics are illustrated and discussed.
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8'D=gb t b (1.3)

H~R (t) = g [ V+ (t)+ V (t)],
A, , a&

(1.4)

Here nD and D represent the active absorbers of the
detector and the detected field mode(s), respectively.
This field is derived from the generated signal field which
is given as a superposition of individual signal fields S,
each originating on a given chromophore 0,'z
(V&= g V —). The total Hamiltonian in Eq. (1.2) can

S S A A A
be partitioned as 8=H~+ HR +HR +XVD

+HM~ +HM~ +HD~, where HM, H~, H~, and Hg)
represent the chromophore, bath, radiation, and detector
Hamiltonians, respectively. Coupling between the
chromophore-bath and chromophore-radiation subspaces
is determined by the stochastic interaction Hamiltonians
HMz and HM~. Projection of the modes of the signal
subspace onto the detector subspace is accomplished by
the Hamiltonian HDz . In the dipole approximation,
HM~ can be written as

two possible polarization states of a given field, unit vec-
tor e( with g=+, is indicated. Partitioning of the
radiation-matter interaction into an operator part U —,a
dimensioned field strength constant E&, a dimensionless
stochastic space-time field function e&(r, t), and a rapid-

ly oscillating space-time phase factor is done to aid in the
following theoretical development. The sum over A, in
Eq. (1.4) consists of the three input modes (A, = 1,2,3) and
the generated signal mode(s) S. Similar to Eq. (1.5), we
can construct the hotocathode detector field operator
(the case X=D), DR=VD+VD. Here the chromo-
phore dipole operator p, is replaced with the corre-
sponding operator for the detector absorbers (photo-
cathode) P, assumed linear in the b and b opera-

D D D

tors. In the simplest case, the detected field states can be
considered to be a subset of the states defining the gen-
erated multimode signal field. In the general case, the
detected field may be derived from the generated signal
field through arbitrary mode conversion (e.g., frequency
conversion with a gating field). Now Eq. (1.1) with Eqs.
(1.2) and (1.3) (using [b,b, ]=6, ) gives

D QD cxD QD

where (in Hz) =TrMR, R, D g (~~ ~~ )p (1.6)

i (k~ r —co~t)
V+(t)= iC& g )M e( ai Es(r, t)e

g=+

i {k~.r —co~t}= u
+ E',e,(r. , r)e

(1.5)1/2

Generally, the detector field is derived from the gen-
erated signal field through use of the convolution
theorem. This convolution is most naturally considered
in the nonlinear response function developed below. V—

D
can be written

+I (kD r~ —~D t)—= u
'+—

EDGED (r, t)e
D D D

(1.7)

with V =( V+ ) . In general, a& associates field A, with

chromophore o, , located at the vector position r . The
dipole operator for chromophore ai is p and &i (a i ) is

the annihilation (creation) operator for the kth radiation
mode. Box normalization is assumed and a sum over the

where the field dependence of the operator 0'+— contains
products of the form aD(as+a s ) and its adjoint.

Using nonlinear response theory, the density operator,
eighth order in the field-matter interaction HMR (for
A, = 1, 2, 3, and S), can be written as

0'"(r)=I «i I d&~ J «sG(»&i)L~R(&i)«&i &2)LMR(&2) «&»&s)LMR(&s)G(&s —~)p( —~» (1.8)

Here use is made of' the Liouville notation. The tetrad-
ic propagator G and the interaction Liouvillians LMR and
LID' are given as

C(t, t„)=T exp i J™dt'[Lo+L~R(t')+—LDR(t')]

(1.9)

LMR(t) = [HMR(t), .], LDR(t) = [HDR(t), ], (1.10)

with Lo=[(HM+8R+HD), ] and T representing a
time-ordering operator.

In the time evolution of the scattering represented by
the eighth-order density operator, all possible time order-
ings of the four fields (and their conjugates), including the
signal field, are permitted. Defining the propagators G(t)

to include the detector signal operator accounts for the
spectral decomposition step in the measurement process.
It acts automatically at the amplitude level, prior and up
to the moment of the photoelectric. detection step denot-
ed by the operator S in Eq. (1.1). Available to act at all
time intervals, it generates terms that survive the tracing
in Eq. (1.6) when it acts at those steps where the signal
field S and its conjugate are produced. Physically, propa-
gation under the action of LDz represents any spectral
filtering, frequency converting, or phase shifting (e.g. ,
homodyning or heterodyning) of the generated signal
field. Such a detector response propagator is essential
when probing material or radiation responses that aver-
age to zero in white quadratic detection.

Equation (1.6) serves as a general starting equation for
all four-photon processes (eight fields in quadrature pairs
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Viewing Pfane (when only one field acts on each chromophore), or as
few as one distinct chromophore (when all four fields act
on one chromophore). The spatial phase factor for each
field [see in Eq. (1.5)] accumulates to eighth order via Eq.
(1.8) to produce the generalized spatial phase factor that
controls phase matching. In the present notation one ob-
tains

F([ki ], [r I
—[re J)= Q exp[igqkq (r —

rti )] .

FIG. 1. Phase-matching diagram using the folded-box

geometry. In general, three input beams with wave vectors k&,

kz, and k3 (labeled 1, 2, and 3) interact in a nonlinear medium
generating a variety of spatially distinct signal beams. Three of
these beams (solid lines), represented by the squares and labeled
3, B, and C on the viewing plane, are dependent on all three in-

put fields and satisfy the phase matching given by
k~ =k)+k2 —k3, k~ =k) —k~+k3, and kc = —k)+k2+k3.
(The crosses (+) on the viewing plane represent signals from the
two-beam fourth waves (dashed lines) where one input beam
contributes two of three input fields to the mixing process.
These signal beams labeled D —I satisfy the phase matching
given by kD =2k& —k&, kz =2k3 —k&, k&=2k, —k3,
k& =2k3 —k2, kH =2k& —k3, and kl =2k& —k2. Any one of the
input beams can generate a 4WM signal by either acting alone
(three times) or acting once upon joining a second beam that
acts self-conjugately. Finally, of the several sum frequency sig-
nals there are the third-harmonic fields that copropagate with
each one of the three input beams.

summed over all possible permutations). Experimentally,
one may choose to study a subclass of mixing channels by
selecting a particular parametric or phase matched com-
ponent. Figure 1 displays the possible spatially coherent
fourth waves k& generated in quasidegenerate 4WM in-
volving only two (+) or all three ( ) of the input beams
k„k2, and k3. While establishing the basis for momen-
turn conservation in the scattering processes, phase
matching serves as a Fourier filter in selecting a certain
combination of field operators that generate the material
polarization. Several authors have noted the multiparti-
cle nature of parametric spectroscopies. These require at
least a two-chromophore scattering unit to retain spatial
phase information of the input fields. ' ' In fact, each
of the eight field operators can act on every chromophore
within the interaction volume. The enumeration of such
field-chromophore entities has been accomplished by
identifying the chromophore upon which the field A, acts
as a& (or P&, A, =1,2,3,S). Because at the signal level all
fields act conjugately, we can always prescribe a set of
four field phases [gi] together with the conjugate set

Here gz=+ and thus distinguishes the operator
(for field A, ) from its adjoint, or a complex variable related
to field A, from its conjugate. Thus without loss of gen-
erality let the set [g&J be associated with the chromo-
phore set [a&I and the conjugate set [

—
gi I, with the

chromophore set [Pz[. In principle, a given chromo-
phore set can consist of as many as four spatially distinct
chromophores of like or unlike chemical composition

For any prescribed set [gi], all phase-matching con-
straints on the signal appear through Eq. (1.11). For the
special case where all eight field operators (four quadra-
ture pairs) were to intervene on single chromophore, all
position vectors would be identical and there is exact can-
cellation in the spatial phase of the superposition field.
Phase matching is trivially automatic. The directionality
of emission in such a case is then determined by the
orientational average of the transition tensor on the chro-
mophore coupled to the eight specified field polarization
unit vectors. Maximum nontrivial phase constraints on
the signal are derived from chromophore sets [a&] and

[p&I for which a&Wp& for all A, . This extreme condition
ensures that r —

r& WO for all A, , and is the basis for fur-

ther conceptual development. Nontrivial phase-
matching constraints are partially lost as soon as even
one conjugate pair of fields acts on a single chromophore
(giving r —

r& =0 for some A, ).

For phase-matched four-photon scattering under arbi-
trary spatial and temporal correlation (introduced either
through spatial ordering of the chromophores or through
the radiation-matter Hamiltonian) Eq. (1.6) can be ex-
pressed as an eight-field, eight-chromophore correlation
function. Such a multifield, multichromophore correla-
tor description will be subject to the definition of the
zeroth-order state basis, and when applied to Eq. (1.5),
must comply with the dipole approximation. This latter
constraint requires that the spatial extent of the states of
the individual chromophore be small compared to the
wavelengths of the interacting fields. (The effects of qua-
drupolar and higher-order terms in nonlinear-response
theory has recently been treated by Knoester and Mu-
kamel. )

The chromophore notation is formally introduced into
the matter Hamiltonians H~, II&, and H~z.

HM+Hii+H~ii(t)= g H +H~ +H ii (t)+ g V p
0! a, /3

(1.12)

H„(H& ) are the chromophore Hamiltonians. H s a

(H&ii ) couples the chromophore a (P) with its individu-
P

al bath subspace. They are responsible for the relaxation
of the optically prepared states. Interchromophore cou-
pling is described by V.p. For the present discussion,
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however, we choose to define the chromophore such that
its zeroth-order state basis is diagonal in H (H&), re-
gardless of its monomeric or oligometric molecular con-
struction. We thus take V &=0 by definition and regard
any remnant interchromophore coupling as subsumed in

H p (Hei ).
In materials thus built of independent chromophores,

the eighth-order expression for the signal [Eq. (1.6)] fac-
tors into one containing a product of two fourth-order
density operators. Thus

s'"=Tr~ D [F([ki ], [r I
—[rp I){p

(
)(r, r))( ){p (p )(rp, t))

t'ai
}+H.a. ]pRDa& & a& (1.13}

~(4)+ ~(4)—in which p ( ~

(and p ~& j) are density operators (dis-

cussed further below), fourth-order in the intervening
fields, each representing a set of up to four chromophores
(H.a. denotes the Hermitian adjoint). In writing Eq.
(1.13), separability of the initial density operator p( —~ )
with respect to the M, B, and R (D) subspaces is as-
sumed. Each of the fourth-order terms contains an inter-
vention from the S mode(s) operator at some point during
the time evolution where it is promptly convolved with
the detector response propagator. A given phase-
matching prescription fixes the Fourier components [gi )(4)+
in p ( ), and necessarily fixes the set [

—
gi ] appearing in

p I&'
)
. The choice of a set [g&I fixes the superscripts of

the fourth-order density operators. Once traced over the
matter states (bath and chromophore) as indicated by the
brackets ( { )

~ )
) these fourth-order operators remain as

tetradic operators with respect to the radiation subspace.
Thus the radiation-averaged quantities must be calculat-
ed at quadrature in the fields (eighth order). In general,
we have eight unconstrained sums involving chromo-
phore sets [ai] and [Pi J. Simplification to the conven-
tional bichromophore model will be introduced in Sec.
I B.

Equation (1.13) serves as a fully quantized expression
for the signal measured in 4WM and, through the detec-
tor propagator, allows for general detection, the simplest
case being frequency resolution in the signal. Saturation
effects, in this limit (small-fiip-angle limit), are accounted
for by allowing the signal field to build up from, and feed
back into, the mixing process via the fourth-order term.
However, the trace of the density matrix would have to
be explicitly conserved to avoid artifacts. Analogous to
the development in Ref. 53, we will only be concerned
with the "seeding" events of the mixing process by allow-
ing the initial signal mode(s) to be produced by the vacu-
um operator (~vac), , {vac~). At the seeding level, signal
contributions arise from the amplitude level terms in
which the vacuum blackbody operator V z ( r } discharges
the induced dipoles (superposition states) generated at or-
ders up to and including third order in the incident fields.

l

The vacuum blackbody operator possesses all possible
wave vectors and frequencies (k~, co+) defined by the set
of mode indices [S]. For a given phase matching
(defined by the experiment), only a certain subgroup of
zero-point radiation modes will experience gain from
these four-photon parametric scattering channels. Such
gain has a strict spatial directionality determined by the
sum over chromophores ai and Pi, in Eq. (1.13). The ful-

ly quantum-mechanical development allows for the zero-
point field to intervene at any order in the evolution to
fourth order. However, only a subclass of these scatter-
ing channels exists where the vacuum operator resonant-
ly discharges an induced dipole such as in a Raleigh-type
process. The much weaker, nonresonant vacuum inter-
vention is the analogous Raman-type process. For a
scattering channel where only superposition states are
generated up to fourth order (general three- or four-color
4WM), the zero-point field can resonantly intervene only
at fourth order. That is, it acts to collapse the complete
third-order polarization. For the remaining develop-
ment, the vacuum black body seeding intervention is tak-
en at fourth order where it is assumed not to introduce
correlation among the frequency components of the sig-
nal field other than that conveyed through the third-
order polarization amplitudes that generate it.

Since the detector propagator containing LD+ acts only
on the signal mode(s) of the radiation subspace, it can be
factored from the material related propagators [6( t ) ]
and labeled separately as the detector response operator

+RD(t). With Vs acting last in the time sequence, and at
room temperature only able to discharge in one direction
any material optical coherent state built by p' ', p' ' at
time t can be expressed in terms of the time convolution
of RD(t) with {Vsp' ')~ ). This term, stripped of the
spatial phase factors of all four fields and the temporal
phase of the signal field, shall be called simply p 'I

'
I
—an

"electric dipole operator. " [See Eq. (1.5) for phase fac-
tors and the dipole operator p from which its name is de-
rived. ] The detected signal at co+, Eq. (1.13) can now be
written as

I

ds g g t g p
—s e p t

I I p pp 5
I p
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More specifically, P(
'

)
in (hz) is the electric dipole mo-

ment operator developed at time t' on chromophore a&
as a result of the previous action of the incident fields
(X= 1,2,3) on chromophores ai, a2, and a3. ( ) l, D
represents the average over the radiation and the detector
subspaces [from Tris D in Eq. (1.13)].

In one typical class of experiments the signal, first sub-
jected to the detector response, is then integrated over
real time at the photocathode. It is usually measured as a
function of the delay in time ~ of one of the input fields
(e.g. , k„co, ) relative to the other two (k2, co2, k3, co3). One
is interested, therefore, in the full time integral over
S' '(t). Towards this end it is useful to replace the detec-
tor response operator RD(t) by the Fourier transform
operator of its complex spectral density jD(cos ), where

QO 1 COS

RD(t) = dcosj D(~S )e (1.15)

Equations (1.14) and (1.15) give

I(~s;r)= f dt S' '

—f dcos JD(cos )

i (co~+co~ )(t' —s')

(1.17)
I

X C(t', s';~), (1.16)

where J&(~s)=
~ jD(~s)~ and the so-called "polarization

correlator" is given as

C(i', s'; )=rg F( [kk}, I r }
—

[rl3 } )

I a~I, I f3

At the other experimental extreme we propose a
type of "white" detection where PD ( t t '—)
~5(t t—') gs ~S)(S~ and Eq. (1.14) becomes simply

I(t;~)=f dcosS' '=C(t; r) . (1.18)

B. Spatial and temporal field-matter correlation
and the bichromophore model

Long-time signal averaging with spectral resolution of
the generated fourth wave is fundamental in many appli-
cations, including our own, so we proceed from Eq.
(1.16). Here the dipole operator P ' ' [in Eq. (1.17)] built
from polarization on chromophore set [ak} is taken at
time t', while that on chromophore Ils from tl(lk} is taken
at time s', independent of t'. Equation (1.16) [with Eq.
(1.17)] is the starting equation for calculating frequency-
resolved interferograms generated from incoherent as
well as from coherent broadband 4WM. The two
radiation-space operators, (p ' ') from Iak} and (p ' ' )
from [Pk }, are coupled by field correlation so that
averaging over the radiation subspace ( ) ji cannot lead
to a simple product, even though the chromophores
themselves are, by definition, otherwise uncoupled. The
radiation-subspace average is actually a two-part average,
a quantum-mechanical one involving the [a f } and a
classical average involving the stochastic space-time field

functions [ef (r, t)} [see Eq. (1.5)]. To expose these

two kinds of radiation-space quantities let us express the
dipole operator in terms of a nonlinear material response
operator and the stochastic field functions:

(E )kf dt, f dt2 f dt3A, 23(R I
'

~(t, (e„t, ), (e2, t2), (e3, t3)))(
A, =j

X& i (r, &,
—r)e2 (r, t2)e3 (r, t3) (1.19)

[and analogously for (P ' '
( {r& },t;r) )(& )

]. ft represents a permutation operator over all possible time orderings of

the three fields. The quantum-mechanical field operators Ia & } are hidden in the nonlinear-response operator R
I

' ~(t);a&

the I e k" } appear explicitly.
All relevant information concerning the microscopic material dynamics is contained in the third-order nonlinear-

response operator R I„' )(t) after it has been reduced to an operator only in the radiation subspace (R
I

' )(t) )
i ~. Be-

fore returning to the issue of field correlation at the signal level, we express this reduction in more detail. The reduction
over the space of Ii2&} includes both a trace over the chromophore basis and one over the bath basis I8 } that is

relevant to the chromophore set [ak}. Tracing over the chromophore basis leaves (in matrix form)

(R
I

')(~, (e, , r, ), (e2, t2), (e3 r3)))(

X X X X (( a )ijGij kl( & 1) klmn( 1)G mno ( i& 2)+ o ( 2)G qrst( 2& 3) st (r)3()B
i j,k, l m, n, o,p q, r, s, t g

(1.20)
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in which the commutator operator

(1.21)

where the

(1.22)

contain the (previously hidden) field operators [a & j that,

at signal level, are subject to the quantum-mechanical

part of the field averaging. In this limit, dynamical evo-

lution of the optically prepared single-chromophore state

is governed by the field-free propagators G (t) for chro-

mophore a&. Since by definition the chromophores are

uncoupled with respect to HM and HMz, the bath average

( ) (ii )
over the three propagators reduces to a product

of independent averages, each associated with propaga-
tion on an individual chromophore.

We now return to the classical part of the field averag-
ing. When Eq. (1.19) is inserted into Eq. (1.17) a six-field

classical correlation function appears upon averaging
over spatial and temporal fluctuations of the input radia-

tion fields [e& j, A, =1,2,3. In general, such field coher-
ence, responsible for correlating the two dipole operators
in Eq. (1.17), cannot be factored into its separate spatial
and temporal parts. However, to simplify the discussion,
the fields are taken to be "cross spectrally pure" to allow
the factorization of the field correlation into independent
spatial and temporal correlators. The six-order field
correlator is now written as

(e, (r, t, ~)e2 —(r„,tz)e~ (r, t~)Z, (r&,s, ~)ez (r&, si)e& (r&,si))t,
—

sg

=4&([r j, [rp j)I ' ' '(t, —~, t2, ti, s, —~s2, s~), (1.23)

where I ' ' ', space independent, is just the full [e z'j correlator integrated over space. (The space integral on 4& gives

unity. ) @([r j, [r& j) is the pure-space field correlation function. This factorization of the field space-time correlation

allows for the independent evaluation of the spatial and temporal dependence of the polarization correlator, Eq. (1.17),

glvlng

(1.24)

in which the spatial field correlator becomes intimately coupled to the generalized phase function, Eq. (1.11), through

the eightfold unconstrained summation over chromophores:

(1.25)

and the temporal field correlator becomes coupled to the material response through two sets of linked threefold time in-

tegrals:

I I S} S~

(t', s';w)= f 'dt, f dt f dt f ds, f ds f ds I ' ' '(t, —r, t, t, s, —r, s , s )

X (A$ 2 3(R
(
')(t', (e„t, ), (e2, t2), (e~, t~)))( )A, 2 i(R (&')(s', (e„si ), (e2, s2), (e3 $3)})(ti )

)~ (1.26}

It is convenient to replace each of the eight chromophore summations in Eq. (1.25) by the volume normalized integral

over the position coordinate of the chromophore. Thus we now write for the spatial correlator [Eq. (1.25)]

N N
:-([kzj )= f dr f dr f dr& F([ki j, [r j

—[r& j)4([r j, [r& j ) . (1.27)

A change of variables from chromophore position vectors ( [r j,[re j) to position vectors [r j and relative position

vectors ([r j
—[r& j

—= [r & j ) is useful when the spatial correlation function depends only on relative positions of the

chromophores. Integration over the four chromophore coordinates [r j leaves simply V to give

N N . Np
:-([ zj)= ' ' fdr & fdr ti

. fdr & F([kij, [r & j)e([r & j) . (1.28)
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1. The bichromomohore model and spatial correlation

There exists a (large) subset of experiments, specified
by their phase-matching constraints [via I/i j' and Eq.
(1.11)] and the nature of correlation among the fields,
such that field-induced correlation can take place neither
within the set Iai j nor within the set IPi j. (In such a
case field-induced correlation is absent even when all four
fields act on one chromophore. ) For this kind of phase
matching either the four fields acting on Iai j (and their
conjugates on IPi j) are simply mutually uncorrelated, or,
if not, only high-frequency multichromophore correlators
appear. These vanish on cycle averaging. In such cir-
cumstances third-order polarization can develop only
among the eigenstate of a single chromophore so that we
set Iai j ~a (IPi j ~P), Ir j ~r ( Irp j ~r&), and

( I r & j ~r ti). The eightfold sum on chromophores in

Eq. (1.14) (and beyond) now reduces to a simple double
sum, one over a, the other over P. Thus the absence of
any radiation-induced correlation across a multichromo-
phore set [ai j (or IPi j) causes all terms in the eightfold
sum to vanish, but for those that correspond to fu11
third-order polarizations on single chromophores (a and
P). This is termed the two-chromophore or the "bichro-

I

mophore" model. Having lost a sixfold summation (and
the corresponding V from center-of-mass integrations),
and:-( Iki j) function [Eq. (1.28)] now becomes simply

:-(bk)= fdr &F(br r &)@(r &), (1.29)

where

F([ki j, Ir t3 j )~F g (pike r &) =F(bk. r &)

~k=

Khaki.

If the field spatial correlation function in terms of the
chromophore separation 4(Ir &j) is taken to depend
only on the magnitude, r

&
scaled by a correlation dis-

tance /„we might write

/I4(r &) cce (1.30)

The spatial integral in Eq. (1.29) can be performed to pro-
duce a polarization correlator that depends on the phase
mismatch (b,k). Such a phase-matching function is given
by

:"(~k)= 2vrX Xp g ( „g()
dr r e c d g sjn( g)e (~ts "r cosine~)

V 0 0

t, ak ~~i ~ I,sin(b kR) —b kl, cos(b kR)
+Re

[1+(/,bk) ] 1+(hkl, )

i, &i ~ [1—(bkl, )2]sin(hkR) 2bkl, co—s(hkR)
+12 c

[I+(Akl, ) ]
(1.31)

The upper limit (R) of the spatial integral is determined
by the overlap of the incident fields. As the characteristic
coherence length /, increases, the signal becomes more
sharply peaked about 6k=0. For arbitrary correlation
lengths and an exponential form for the correlation, the
signal dependence on b, k will be determined by Eq. (1.31).
More generally, one must convolve the multichromo-
phore spatial phase function [F(Iki j, Ir & j)] with the

spatial correlator of the field [@(Ir i, j, [r& j )]. (Analo-

gously, any breakdown of the uncoupled chromophore
model that leads to their long-range spatial correlation
will likewise infIuence the dependence of the signal on the
phase mismatch b, k. ' )

Since the 4WM experiments to be analyzed in Sec. III
all fall within the bichromophore model, it is retained in
all further development. Furthermore, we consider only
the dependence of the signal on the temporal part of the
field correlation where material memory can prolong the
interference among correlated fields. By definition ma-
terial spatial coherence due to HM and HM~ alone ap-
pears only within a chromophore, whose extent must not
exceed a small fraction of the wavelength of the fields (the

dipole approximation). Any spatial correlation in the
scattering process beyond that inherent in the incident
fields (discussed above) is neglected. A reduced descrip-
tion of the field correlation function then follows upon in-
tegrating over the spatial dependencies in Eq. (1.31). [In
general, though, the space-time factoring of the field
correlator in Eq. (1.23) is only approximate. ]

2. The bichromophore model and time correlation

We return now to the field time correlator I' ' '(t) [Eq.
(1.23)] and see how through it the amplitude and phase
structure of the excitation fields can bring about correla-
tion among the chromophores in the polarization correla-
tor of Eqs. (1.24) and (1.26). First, a characteristic time
(coherence time r, ) associated solely with the fields, and
defining the short-time signal component, can be defined
through I ' ' '(t). [This is equivalent to the assumption of
an infinitely rapid material response G(t —t')
~6(t —t'). ] Thus the temporal field correlator, written
as an ensemble average in Eq. (1.23), can be rewritten
here in terms of a time average as
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I ' "(r)= lim
+T

dr Z', '(I —r)Z 2'(t)E 3'(I)
T~~ 2T —T

6
(3,3)( ) p(3, 3)( } ~ P(1,1)(0)

A. =1

' —1/2

(1.33)

XZ'1 '( —r)Z 2 '(0)Z 3 '(0) .

(1.32)
In general, the equivalence between Eqs. (1.23) and (1.32)
represents ergodic fields. The absence of space coordi-
nates in Z& implies integration over @. Equation (1.32}
follows by the stationarity assumption where t =t' —s'.
Using the normalization condition introduced by
Glauber, a normalized temporal field correlator can be
given as

A coherence time ~, of the superposition field is now
defined by integrating the normalized correlator with
respect to the delay parameter v".

(1.34)

For systems possessing response times greater than ~„
time ordering of the field interventions becomes impor-
tant. The temporal correlation function, for a given time
ordering, can be expressed as the Fourier transform of
the spectral correlation function J(co) (a sixth-order field

spectral density):

I ' (I) r, t2, t3—,s, —r, s2, s3 )(3,3)

I It 3"
d~) f" dco2. f dco3'J(coI, co2, co3, co,"cg2', co3')Xe ' ' ' exp i g—g, (co,'I; —co.,"s,. )~ ~ ~

~

QO QO QO i=1
(1.35)

Assuming stationarity of the optical fields, the resonant frequency condition g; g;co; =0 must hold. Thus the stationary
six-field spectral correlation function can be defined as

J(CO»CO2, CO3&CO(&CO2&CO3 ) (E 1 (Ql))E2 (CO 2) E3 (IM3) E) (CO) )E2 (Cl72 )E 3 (CO3 ))5(CO +)CO +2CO3 CO) CO2 Cl)3 ) (1.36)

where E) (co)„) is the Fourier transform of the temporal field function Z) (t). In the time domain, this is equivalent to
the time translational invariance of the temporal correlation function.

Making use of Eq. (1.26) for the bichromophore case with Eq. (1.35) for I ' ', the polarization correlator [Eq. (1.24),
with Eq. (1.26)] can be written as

QO I CO
3

X dao) dcoz dco'3'J(co'»co&, A@3, co'1', co'2', co'3')e ' ' ' exp —i g g, (m,'I' —
m. ,"s')

+S, 1, 2, 3 ~S(~S ~S ~~1 ~1 ~1 ~02(~2 ~2)~f3(~3 ~3))
(3)4+S, 1,2, 3((ks(~S ~S)~Pl(~l ~l )~02(~2 ~2 )~43(~3 ~3 }))g

(1.37)

where the generalized third-order macroscopic susceptibility (an operator in the radiation subspace) is written in terms
of the reduced temporal response operator [Eq. (1.20)] via Fourier transformation:

XS, ),2, 3(ES(~S ~S)~41(~1 ~1)&f2(~2 ~2)&43(~3 ~3))
QO QO ~ (3)=N dr) dr2 dr3tt12 3(R ' '((e„t' — ),r(e t'2r, —r2), (e3 I r—) 12 13)))~ 2)

0 0 0 a
I I I I I I

I ( g]

AJAR

+ f2602 +$3co3 )T] I ( $2C02 $3c03 ) T2 I f36037 3Xe e e (1.38)

Here the change of variables from field intervention times
t; to intervals between field interventions ~,. =t,. 1

—t, has
been utilized. Permutation of the temporal ordering of
the fields via ft; effectively permutes the frequencies
(co;, co,') with respect to the time intervals r, to allow for
all possible histories of time evolution.

3. The bschromophore model
and matter-bath stochastic processes

The averaging of the response operator over the chro-
mophore bath [B in Eq. (1.38)] is now associated with

one chromophore and can be simplified by taking the sto-
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+y,' (jl&&kl+Ik && jl)]

+leo; (t)(li & &il+ lj &(jl) (1.39)

and similarly for H&z . For a given time ordering of the
P

input fields, the third-order nonlinear response operator
[Eq. (1.20) for the multichromophore case Iai„], or Eq.
(1.38) for Iai I ~a] represents eight (2 ) diff'erent scatter-
ing channels (or Liouville space pathways of Ref. 27),
R ~ '(t) = +8 i R ' '(t) for q = 1 —8. Such channels are
defined by fixing the action of each field operator in terms
of its bra- or ket-side intervention. In general, for every
unique channel, R ' '(t), the material states being driven
actually can change in time if the third-order polarization
is allowed to build up (or to accumulate) over times
exceeding the characteristic time needed for transfer
away from the initially prepared states. In this case, the
states on chromophore a available for polarization con-

chastic part (B ) of the material-bath interaction

HID(t) =H ti (t), to be diagonal (elastic) in the basis of
a

H . ' Any state-changing (inelastic) process can be in-
corporated through the phenomenological addition of a
damping constant. Therefore the following form for
H ti (t) is implemented here:

a

(R "'(t, (e„t, ), (e2, t2), (e„t3))~ &

—i ( gl col + $2co2+ (3co3)t=e

X (E ( tetiet2)t3) &iiF (t, ti, t~, t3), (1.40)

where

stitute an open set, not restricted to a simple closed set of
four levels. Thus the product of four dipole moment ma-
trix elements, contained in R ' '(t), need not be joined by
common material states. The mixing of different states in
the development of the polarization is represented by the
off-diagonal elements of the material propagators in the
chromophore basis [G, ki(t)]. This contrasts with
scattering confined to a closed four-level system or to a
multilevel system with excitation times short compared
to interstate transfer times. Although processes such as
interferences among different material superposition
states, or transfer in general [represented by G,J „i(t)],
may constitute important contributions to the material
response (particularly if allowed to accumulate), their in-
clusion here would only complicate the following devel-
opment. Therefore only diagonal elements of the materi-
al propagators will be considered [G;, ;,.(t)]. Thus for the
qth channel, the reduced material response operator at
time t can be expressed as a product of its phase factor, a
reduced, phase-free, inelastic response operator (IC

a
and the (elastic) stochastic function F:

(K q(t ti tp t3)&ii g U f U fU g U ge
m, f, n, g

I ( +7 + $2+)2 +$3 3
+ / )/ )( t I t2 ) I ( cj)f + g I d7 ]+$2co2 + f3~3 + I

e mn 2 2 3 3 mn 1 2 e (1.41)

and the stochastic function is

p, ()e„e„e,)= (exp i ,f de5ee)„)e)
1

Xexp i I d~'des „(r')

Xexp i I dr"de„(r")
t3 B

(1.42)

where the f, m, n, and g labels on F (t) have been
suppressed. The bracketed quantity ( &z represents the

a
average over the degrees of freedom of the a the chromo-
phore bath. In the absence of "pure dephasing" I' = 1.

In Eq. (1.41), the damping constants are given by

y;, = gk Iy,'k+y,'k I. In ordered media when rotational
averaging is called for, it must be carried out at the signal
level. In such a case eight direction cosines (for one set of
polarizations Iez]) appear [see Eq. (1.5)] that involves a
set of as many as eight (spatially correlated) chromo-
phores. Each direction cosine represents the projection

l

of the unit vector of a given transition moment (on a
chromophore) onto the unit vector of the polarization
direction of the intervening field. However, in the ab-
sence of long-range order among the chromophores (in
amorphous media), rotational averaging can be carried
out separately on each chromophore. In the common bi-
chromophore model where the polarization develops ful-

ly on just one chromophore, the averaging over the four
direction cosines is equivalent to a rotationally averaged
projection of a fourth-rank chromophore transition ten-
sor onto the polarization vectors of the four intervening
fields.

Given the appropriate statistical models for the Auc-

tuations of the material Bohr frequencies [via F~(t) in
Eqs. (1.40) and (1.42)] and also for the phase-or amplitude
noise of the radiation field [via the spectral correlation
function Ji(t)], Eq. (1.16) with Eq. (1.17) [or the mul-

tichromophore version of Eq. (1.37)] for the polarization
correlator, can be used to calculate signals in arbitrary in-
terferometric 4WM experiments. However, Eq. (1.16)
with Eq. (1.37) applies to the subset of such experiments
that are based on the bichromophoric model. We contin-
ue with a closer look at the role of field correlation in
these spectroscopies.
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II. PHASE OR AMPLITUDE TEMPORAL FIELD
CORRELATION IN 4WM WITH INCOHERENT

AND COHERENT EXCITATIONS

The field time correlator I ' ' ' is analyzed in more de-
tail for three-beam 4WM experiments with incoherent
light (Sec. II A) and with short-pulsed coherent light (Sec.
IIB). Recall that "incoherent" in this context refers to
experimentally relevant fields having a time-bandwidth
product several orders of magnitude greater than the
theoretical transform limit. For such fields, the slowly
varying stochastic temporal part of the electric field
operator, given by Zi(t) [where the space dependence of
Zz(r&, t) in Eq. (1.5) has been suppressed], can be fac-

tored into its slowly varying (dimensionless) amplitude
21&(t) and a (dimensionless) function pz(t) representing
random short-term phase fluctuations. In contrast,
short-pulsed coherent input fields will be represented by
Z&(t)~ei(t), an envelope of the pulse. A diagrammatic
view of field correlated 4WM is given in Sec. II C.

A. Incoherent long-pulsed excitation

X (Z, (s )Z', (s )), (2.1)

where the ft(fi„d „„)operator generates the six diFerent
ways of arranging the fields as conjugate pairs. Here we
have

Mathematical simplification is gained by taking the
random phase and amplitude noise of the input radiation
fields to be described by circular complex Gaussian statis-
tics. We take the given field-time ordering indicated in
Eq. (1.23), and as an example of near degeneracy, assign
the phase-matching condition [gz}=(+,—,+, —) to
give Ak= —k, +k2 —k3+k, . This allows us to write the
sixth-order temporal correlation function I' ' ' as

(e,+(t, —~)Z2 (t2)Z3+(t3)Z, (sl —r)Z2 (s2)Z3 (s3))

~(field pairs) &~1 ( 1 +)~ 2 ( 2) )

X (Z 3 (t3)Z, (s, —r) )

A[field pairs) (Z l (tl 7 )Z2 ( t)2)(Z 3(t )3Z (lSl 7 ))(62 ($2)E 3 ($3))
= (I l+(tl —r)&2 (t2) )(&3 (t3)e, (s, —r)) (e 2+(S2)e3 (s3) )

+(el+(tl —r)Z2 (t2))(Z3+(t3)e3 (S3))(e, (sl —~)Z2+(S2))

+ ( & l+ ( t l
—r)& 3 (s3 ) ) (& 2 ( t2) ~+2( S2) ) (Z +3( t 3)e, (s l 7 ) )

+(&l (t, —~)&3 (s, ))(e2 (t2)&3 (t3))(z, (s, —r)e2+(S2))

+(& (t, —~)~, (s, —r))(&, ( t)Z,+( s))(Z,+(t, )e, (s, ))

+&~i (t, —~)&, (S, —r))(r2 (t2)Z3+(t3))(Z2+(S2)e3 (s, )) . (2.2)

Eberly and Wodkiewicz have pointed out how a clear dis-
tinction in the time scales governing fluctuations in the
field amplitude, or the phase, validates the factorization
of the field autocorrelation (and cross-correlation) func-
tion (and consequently their spectral densities) into their
slow and fast moving parts. Since the classical field

function Zf (t) can be expressed in terms of a slowly

varying amplitude function g z (t) and a rapidly fluctuat-

ing phase function p 2 (t), each of the pair correlators in
Eq. (2.2) can be written in factored form

and the correlation among the fast stationary stochastic
degrees of freedom for the same case is given by

(2.5)

After cycle averaging, the high-frequency correlators
vanish. Thus

(2.6)

Next we examine the stochastic correlators f; J' ex-
pressed as Fourier transforms of their spectral densities.
Thus

t +s„
(2.3)

fi.;2.+(~t s. ~)= f d~i.f
tl

l (CO~t Cd~iS )
Xe

Here the experimental delay time ~ is taken to be a small
fraction of the pulse width. If field k acts on chromo-
phore a at time t, and field A,

' on chromophore P at
time s, , then the ~-independent intensity function for the
long pulse, evaluated at the mean local time (t +s„)/2,
is

(2.7)

where the spectral densities (Ji &
=J& ) take the form [see

Eq. (1.36)]

(2.8)

~ +s„ t~ +s„
2 2

2

)
(2.4)

There has been much effort in modeling phase fluctua-
tions in the electromagnetic field and their inhuence on
nonlinear optical processes. Recently, Kofman
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et al. have developed a non-Markovian model describing
phase noise in laser fields having an arbitrary degree of
coherence. Such a description recovers the commonly
used noise models (e.g. , phase-diffusion model, telegraph
noise model, Burshtein model, etc. ) in the appropriate
limits.

It is instructive to consider the similarities in the treat-
ments of phase noise in the excitation fields and in the
stochastic origins of material line broadening. For in-
stance, the often used two-time fluctuation correlation
function of the molecular (atomic) Bohr frequencies,
originating in Brownian motion theory, has the follow
form:

$2f (t)=exp — (e ' —1+At)
A

(2.9)

2

J (co)= (v'2~5) 'exp
26

In the fast modulation limit (5/A «1) I.orentzian spec-
tral densities are recovered:

1 I
J(co)=-

7T Q) + I

(2.10)

(2.11)

where

where 6 and A ' are measures of the amplitude and
correlation time of the frequency Auctuations, respective-
ly. Such a functional form is recovered in the generalized
jump model of Ref. 65 in the limit of small, highly corre-
lated, phase jumps. Here the factor (5/A) is replaced
with [8/(I —y)], where 8 is the variance of the distri-
bution of phase jumps and y represents a correlation pa-
rameter.

Fields having inhomogeneous bandwidths are obtained
in the slow modulation limit (5/A)) 1) where the spec-
tral densities become gaussian,

$2r= (2.12)
A

%'hereas the fast stochastic fluctuations of the Geld
[represented by Jz(co)] are directly responsible for gen-
erating the short time (r) behavior of the signal, the
slower degrees of freedom (defining the pulse envelope)
will accumulate material responses on a much longer
time scale. To account for the accumulation, the time lo-
cal intensity factors ez z+ [(t +s„)/2] are directly con-
volved with the material response function in the expres-
sion for the generalized susceptibility, Eqs. (1.37) and
(1.38). The convolution of the material dynamics
((R &'(t)) ~&), Q =a,P) over the time local intensities
leads to an averaged steady state that rejects dynamical
processes on a time scale as long as the pulse width itself
(i.e., intensity correlation time) and no shorter than the
coherence time ~, of the incoherent light. A closely re-
lated point, previously discussed by Bai and Fayer, con-
cerns the discrepancy in optical dephasing times of com-
plex condensed-phase systems, probed by long-time hole
burning or by various short-time photon-echo spectros-
copies.

In Sec. I it was emphasized how when all of the input
fields are correlated, the time evolution of the third-order
polarization amplitude may involve more than one chro-
mophore (set [az]). Here we stay with the bichromo-
phore model in which a single chromophore acquires full
third-order polarization, and two-chromophore scatter-
ing unit leads to the phase-matched signal. The long-
time averaging involving the local intensities [Eq. (2.4)]
causes the individual chromophore third-order response
operators R ' '(t) and R &

' (t) to become linked, thus
producing a bichromophore sixth-order spectral response
function. From this end, the polarization correlator
given in Eq. (1.37) can be rewritten here as

C(t', s', r) = :-(hk)
X X

X j dC01 f dCO2 ' ' f dC03 IIts 1d; )
J1 2(Ci)1, C02)J3 1(CO3, CO1 )J2 3(CO2, C03 )

X PS, 1,2, 3((~1 ~1)& (~2 ~2)& ' '
& (~3 ~3 )

I II 3

Xe ' ' exp —i g g. [(co.—co' )t' —(co —coj")s'] (2.13)
j=1

The spectral material response function it)s1 11 2 3, sixth order in the fields, is not a general sixth-order susceptibility, but is

constructed from the product of third-order susceptibilities (j' 'p ' )Ii [see Eq. (1.37)]. Representing the accumulat-

ed steady state of the driven material system, this spectral material response function can be written with the help of
Eq. (1.40) as

PS, 1,2, 3((~1 ~1)& (~2 ~2)& ' ' & (~3 ~3 ))

=N N f d, j d, f d, j «, f d, j d 31112311123(+ ( 1 2 3)+ ( 2 3))
o

'
o o o

'
o o

XF (T1, 72, 7 3)F (C71 C)2 CX3)e 1+2
2t 27 i 72

X e3+)
)

7 ) 7 2 +3+s' —o
& + 2s' —2o.

&

—2o.
2
—o.

3e+'
2 2) 3 2



RADIATION-MATTER OSCILLATIONS AND. . . . I. 3889

The product K ~F~ (Q =a and /3) is associated with the third-order response operator (P &'(t))(&) and has been
defined in Eqs. (1.41) and (1.42) for a given channel q identified with (R ~&'(t) ) (&).

Where the short-time stochastic fluctuations of the radiation fields (Pi—) are responsible for its spectral width
[through Ji i (coi, coi. ) ], the material stochastic dynamics (via Hei ), contained in the function F (t) (Q =a,P) and con-
volved with the local time intensities in Eq. (2.14), bring out the spectral widths of the material resonances. Modeling
of such material stochastic processes has been extensively discussed in the literature. ' In general (Appendix A),
the result of stochastic averaging over the material Bohr frequency fluctuations associated with qth channel [Eq. (1.42)]
can be written as

F~(r„r,r )= g'exp
2 2

(&i+f3)— [e ' '+e ' ' —2+e ' '(1 —e ' ')(1 —e ' ')]
I

X Q'exp
2

(e ' '+1—A rz)
A

(2.15)

where the product is over different statistically indepen-
dent random processes, the ith being characterized by a
rms amplitude 6; and correlation time A,. '. The super-
scripts e and u on the product operator anticipate the
Born-Oppenheimer approximation and stand for decou-
pled electronic and vibrational random processes, respec-
tively.

A few general qualitative comments can be made con-
cerning the integration in Eq. (2.14). The numerical
modeling of accumulation effects important in long-pulse
incoherent 4WM will be the focus of future work. The
real-time material response characteristic of each time in-
terval (r or o ) will be averaged over an accumulation
time determined by the local intensity functions. Wheth-
er a given random process is to be characterized in the
slow-modulation limit [Eq. (2.10)], fast-modulation limit
[Eq. (2.11)],or in between [Eq. (2.9)] depends on the ratio
of the accumulation time (or the time scale of the experi-
ment, t„,) to the correlation time of the bath, namely
At„, . Dynamical processes that are static relative to the
field coherence time (Ar, (&1) may be motionally nar-
rowed on the time scale of the intensity correlation
(At„, ))1). In such cases, line shapes that are measured
with long-pulsed incoherent light may appear homogene-
ous in nature, having widths that reflect dynamics aver-
aged over 3 —4 decades. The same stochastic processes
may lead to inhomogeneously broadened lines in mea-
surements that use coherent short-pulsed light (where
r, =r„,) of comparable bandwidths. In such experi-
ments any remaining homogeneous components would
have to reflect only very short time dynamics.

The accumulated steady state is not only determined
by the long-time averaging of independent stochastic pro-
cesses associated with pure dephasing, but also reflects
the averaged dynamics associated with the possible
transfer of excitation to dark states (the inelastic contri-
bution to the dephasing process). On a time scale charac-
terized by a y," ' up to the temporal widths of the field en-
velopes, initially unexcited modes that are nevertheless
coupled to the driven states can acquire excitation ampli-
tude and thereby initiate new scattering pathways among
the material states.

For long-pulsed incoherent excitation, the temporal
pulse shape, contained in the local intensities, serves as a

real-time filter in averaging the dynamical responses of
the material. Suppose the distribution of relaxation rates
in F~(t) and the distribution of the inelastic rate con-
stants y;. 's are both narrow compared to the field en-
velopes. In that case the field envelopes are constant over
the time where F (t), F~(t), and (K (t')k~(s'))i, are
nonvanishing in the integral in Eq. (2.14). For such ma-
terial systems, the exciting fields are effectively continu-
ous wave, and therefore their envelopes do not contribute
to the dynamic polarization. Should the dynamical
response of the system be characterized by a broad distri-
bution of relaxation times, the slower ones would not
significantly contribute to the material response in the
leading part of the excitation pulse. However, if the exci-
tation persists these slower processes are allowed to build
up and influence that portion of the spectral line corre-
sponding to their characteristic time scales. The inter-
ferograms then would show the decay of the steady-state
material excitation. Such decays, in ~, potentially could
be dramatically different, both in functionality and time
scale, from those measured with short-pulsed excitation.

In general with incoherent excitation, the measured
linewidth of the polarization correlator [Eq. (2.14)] corre-
sponds to the six-dimensional Fourier transform of the
product of the generalized spectral densities of the fields
with the spectrum of the nonlinear response averaged on
the time scale of the pulse width. Since the pulses are in
constant temporal and spatial overlap, the ~ dependence
of the correlator is generated by delaying a given field(s)
from any correlated conjugate field(s) and will be dis-
cussed further at the end of this section.

B. Coherent short-pulsed excitation

A formal transition to experiments that use coherent
short pulses can be accomplished by allowing the tem-
poral widths of the fields to narrow while maintaining a
constant bandwidth defined by the spectral densities
J(co). While still maintaining a clear distinction between
the time scales describing short- and long-time fluctua-
tions (Pi and i)i, respectively), the effect of narrowing the
duration of the pulse is twofold. First, the reduced dura-
tion over which real-time averaging of the material dy-
namics occurs leads to a new steady state of the driven
system. Second, for experimental delays exceeding the
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~r" "(t„s,)~'=r" "(t„t,)r""(s„s,) . (2.16)

Analogous to the notation in Eqs. (1.32) and (1.33), Eq.
(2.16) refers to the pair correlators I""(t;,s )
=(E—(t, )e (s~ ) ). Equation (2.16) can be used to show
pairwise correlation of the superposition field at two
different times in terms of the average at one time to. To
this end, one writes

J[F()i)()]200
=C (t;)C (s )

—.

Here the function C+(t, ) and C (s& ) are given by

r""(t,, t, )
C+(t, ) =

[ (11, 1)( t t ) ] (/2

(2.17)

(2.18)

and

C (s. ) =
[ (11'l)(t t )]i/2

(2.19)

In an identical manner, the full sixth-order temporal

I

pulse width, the interferograms acquire an asymmetry
that rejects the distinction between pumping and prob-
ing steps in the scattering process. The necessary time
ordering of the field envelopes when they are not cotem-
poral reduces the permutation symmetry of the operator
A appearing in Eqs. (1.38) and (2.14).

For the case of bandwidth-limited (coherent) excitation
fields, the factorization of the sixth-order field correlation
function, based on both complex Gaussian statistics and
distinct stochastic time-scale arguments [Eqs. (2.1), and
(2.3)], is no longer valid. Now, depending on the pulse
shape, the coherence time (phase correlation time) is
essentially equal to the width of the envelope (or the in-
tensity correlation time). However, a difFerent factoriza-
tion approximation can be used based on the degree of
coherence among the mixing fields. From the analysis in
Ref. 54, fu11 coherence at arbitrary orders leads to a gen-
eral factorization condition. At second order, this corre-
sponds to maximum visibility of the interference fringes
where one can write

correlation function for the mixing process can be written
as

I (ti r—, t2, t3, s) r,—s2, s3)(3,3)

= (e+(t, r—)e+(t2) e (s3) )
3 3=)' 'g C+(t; —~8;, ) g C (2.20)

where the normalized degree of coherence y' ' ' follows

y""=
[I-('"(t,t ) ]3

(2.21)

Again the + superscript on the superposition field e (t)—
denotes the complex conjugate set of fields defined
through the chosen phase matching condition [$2 I. t, is
an arbitrary time point and therefore can be placed any-
where during the temporal evolution of the polarization
amplitudes of chromophore a (t space) or chromophore P
(s space). By assun"ing full sixth-order coherence, y(
can be set equal to unity and the correlation function can
be expressed as a sum of products of the normalized pair
correlators C (t; ), C (s ). Full coherence at arbitrary
orders of correlation can be realized, for example, by
fields in a coherent state. (In contrast, incoherent, or in
some sense chaotic fields, can only exhibit full coherence
at first order where y""=1, but y'"'")%1 for n ) 1.)

The field e (t), in E—q. (2.20), represents a linear com-
bination of fields whose active Fourier components are
determined through the phase-matching condition.
Therefore we write

3

e—
( t~ ) = g e)„(tj ) .

EI =1
(2.22)

The above superposition field is inserted into the C (t;)—
functions [Eqs. (2.18) and (2.19) using the definition ofI""].Only those relevant terms giving three different
fields along with their conjugates are considered. The
six-field correlator I ' ) [Eq. (2.20)] now gives a sum of
products of pair correlators associated with a given or-
dering of the three fields on one chromophore a and a
given time ordering of the three conjugate fields on chro-
mophore)33. We have

(t &)& (t )&+(t )&, (s, —r)E'+(s )e (s ))
3 3=~.2. (t. ) + C,'(t, +rfi, , ) ~ C;(s, +&g„)

i =1 j=1
(2.23)

(ei. (sf)~A. (Eo))(~A, (to)e'2. (t ))
Cz (s~)C& (t, )=

~2, (to)FE. (Eo) )

(2.24)

A second type of pair correlator represents cross correla-
tion between two different, yet phase correlated, fields
given by

The operator ft i 2 3(t, ) permutes the three fields and con-
jugate fields at t among the Cz (t )functions (A, bein. g

E

the field associated with the time variable t, ). Two gen-.
eral types of pair correlators are reached after consider-
ing all permutations. The first type is one where a given
Geld is correlated with its self-conjugate and includes in-
tensity cross correlation. It is given by the product of
C& functions such as

E
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(~, (;)~, (t„)&~, (t, )~;(t;) &

Cq (s~ )Cq (t; ) =
e~ (to)eA, (to)

(2.25)

Correlators of the type given in Eqs. (2.24) and (2.25),
and found in Eq. (2.23), are convolved with the material
response through Eq. (1.26) (in its bichromophore ver-
sion). Just as in the case involving incoherent excitation,
nonlinear parametric mixing with correlated bandwidth
limited fields can lead to correlation on a single chromo-
phore (a or P) or across two chromophores (a and /3). In
fact, extensive correlation among the fields would require
a return to the multichromophore picture (Ia&I, IP&I )

developed in Sec. I.
In addition to the 4WM transients generated by delay-

ing mutually coherent conjugate fields, an additional ~
dependence is introduced into the optical mixing because
of the brief duration of the pulse envelopes. In general, a
pumping step, represented by a ~ independent field inter-

vention, followed by an uncorrelated (or unconjugated)
~-dependent probing field, will produce signal transients
that reAect material relaxation. If the material response
is sufficiently fast, a direct intensity cross correlation of
the uncoupled fields will be measured as given by Eq.
(2.24) with A, =A, '. The r dependence would refiect the re-
duced overlap between the A, = 1 correlator of Eq. (2.24)
with the analogous correlator for either the A, =2 or 3
fields. When all input fields are fully uncorrelated the ~
dependence is solely derived from correlation of the type
in Eq. (2.24) with A, =A, '. Such signals, not sensitive to the
phase coherence among the driving fields, would not be
seen in analogous measurements with long-pulsed in-
coherent light where these correlated fields always over-
lap in time because the ~ parameter in the experiment
normally scans on the scale of the coherence time of the
light, not the time scale of the pulse duration. Further-
more, signal transients derived from the intensity cross
correlation (an amplitude level envelope correlator), in-
dependent of the phase of the driving fields, do not direct-
ly depend on field induced interchromophore correlation,
but originate at the polarization level. Such signals can
be interpreted as a superposition of classical third-order
polarization waves.

C. A diagrammatic view of the field-induced
two-chromophore correlation in nonlinear mixing

The signal generated in 4WM processes (or general
nonlinear mixing) using either long-pulse incoherent exci-
tation or short-pulsed coherent excitation can be based
on the phase-sensitive field correlator [Eq. (2.3)], on a
field intensity correlator, or both. For the measurements
involving incoherent exciting fields considered here, the
phase correlators are solely responsible for the transient
responses (in r), and the local intensity correlators gen-
erate the constant background signal as well as define the
accumulation time of the material dynamics. On the oth-
er hand, the use of coherent short-pulsed fields can lead
to signal transients based on both field phase correlation
and field intensity correlation. Both types of correlators

will generate r dependence on the same time scales (de-

pending on material response time or "memory"). Exper-
iments with incoherent light offer the chance to isolate
signal responses that are phase sensitive to the exciting
fields (though averaged in real time). Of primary interest
in the remaining discussion will be such phase-sensitive
responses based on the pair correlators of long-pulsed in-
coherent fields as well as coherent short-pulsed fields and
both capable of inducing interesting interchromophore
interferences.

Mutually coherent fields may have their intervention
on the same chromophore or on separate chromophores,
depending on the phase matching requirements of the
detected signal (set by the choice of IgzI). Qualitatively,
this can be understood by considering the Feynman dia-
grams in Fig. 2 (for the bichromophore model). Here the
two time lines ending in t' and s' represent a given tem-
poral evolution of the density operators for the a and P

M2 t2 —M), t)+z (b)

pP g
m

g

g

g g '.
p

'
g g

g:. g ..--&.--., g g

m ( g n

(c)

3 3 —0)2y S2 tt))y S)y g —COS, S'

g

g g

m g n

g g

g g

g

g g
m g n

(e)

g:. g.:g
g ~ g s 9

ga g

0

g g

g

g

~ g

I

g

g 9 g

FIG. 2. Two-chromophore dual Feynman diagrams
representing the optical mixing at eighth order in the field-
matter interaction. Each of the two horizontal lines represents
the time evolution of the density operator on a single chromo-
phore, a (top line) and P (bottom line). A wavy arrow (field
operator) touching a vertex point at the top side of a line
represents a ket side field-matter intervention and one touching
the bottom side of a line denotes a bra side intervention. Time
increases from left to right, ending with the generation of a field
quantum in the signal mode S at times t' and s' for the a and P
chromophore evolution, respectively. Each of the six diagrams
represents a unique combination of three field pair correlators,
represented by the dashed lines, all for the same time ordering
of the fields. The fields are labeled in (a) only. Every time or-
dering generates a new set of six such correlation diagrams.
The dashed lines containing arrow heads indicate a source of
direct dependence on the experimental delay parameter w (see
text).
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chromophores, respectively. The incoming (outgoing)
wavy arrows represent a positive (negative) frequency
field intervention resulting in a promotion (demotion) of a
ket amplitude shown at the top of the lines. Likewise, the
promotion (demotion) of a bra amplitude component,
represented by the vertex points on the bottom of the
lines, results from an incoming (outgoing) arrows denot-
ing a negative (positive) frequency intervention. The dia-
grams are for the rotating-wave terms only. The assumed
centra1 limit nature of the field statistics for incoherent
excitation, or the assumed full coherence for bandwidth
limited fields, permits factorization of the sixth-order
field correlation function and results in six different prod-
ucts of pair correlators for the case of correlation among
all of the driving fields [Eqs. (2.1) and (2.20)]. Such possi-
ble first-order coherences are schematically represented
by the dashed lines connecting intervention points. The
arrows on these lines serve to indicate the sign of the ~-
dependent phase obtained in the Fourier transformation
of the pair correlators. Of the six different sets of mutual
coherence functions [Figs. 2(a) —2(f)], four of them [Figs.
2(a) —2(d)] are phase sensitive to delaying field e —, (t —r),
by time ~, and thus are responsible for the signal tran-
sients observed in the interferogram. In general, these
phase-sensitive transients (sub-pulse-width transients for
nonbandwidth limited fields) can be generated by mutual-
ly delaying any field, or combination of fields, from a
given correlated field, or set of fields.

Further distinctions can be made among the
dependent field correlators [e.g. , Fig. 2(a)] based on
whether correlation is introduced at two points within
one time line (single chromophore) or across the two time
lines (dual chromophore). A physical interpretation of
such mixing processes can be given in terms of quantum-
mechanical interferences between coherent radiation-
material oscillators (see Sec. IV).

Coherent oscillators are generated by allowing the
phase structure of the driving fields to be imprinted in the
material in the form of a radiation-chromophore super-
position state. The contrast of this imprint will degrade
due to the dephasing of the joint radiation-matter coher-
ence, which oscillates at the detuning of the field carrier
frequencies from the (near-resonant) chromophore Bohr
frequencies. The coupling of such an oscillator to a mu-
tually coherent probe field will occur as long as phase
memory of the excitation step is retained. For example,
this process is represented by the curved, dashed line con-
necting intervention points coz, tz and —co„t,+~ in Fig.
2(a). In the same diagram, the two-chromophore field
correlators denoted by the dashed line connecting the
—co3, t3 and co&,s&+~ interventions, represent the in-
terference between the mutually coherent superpositions
involving the off-diagonal material density-matrix com-
ponents p and p~„. A generalized coherence time
characteristic of such an interference can be defined in
terms of the dephasing times of the near-resonant materi-
al transitions, as well as the reciprocal bandwidths of the
driving fields. In Sec. III, this point will be further dis-
cussed analytically in the context of particular 4WM ap-
plications.

Each of the six products of pair correlators, given in

Eqs. (2.1) and (2.20) and illustrated in Fig. 2, contains at
least one term independent of w. In general, the effect of
such ~-independent phase correlation is to introduce ad-
ditional line-broadening mechanisms, or to mix the
different resonances reached during the evolution of the
third-order polarizations. In certain applications (see
Sec. III), bandwidth control of the spectral densities,
defined in terms of these ~-independent correlators, will
serve to filter certain mixing channels to produce charac-
teristically new features in the 4WM interferogram and
signal spectrum.

In Sec. III, the previously generalized topics will be
given analytic expression for certain 4WM mixing pro-
cesses. An attempt is made to classify the various tran-
sient responses that can be seen under different condi-
tions of excitation.

III. FIELD CORRELATED COHERENT RAMAN
4WM ANALYTIC RESULTS

A class of three-color 4WM processes known as the
coherent Raman spectroscopies will be considered analyt-
ically in this section. Later, in Sec. IV, the results will be
modeled. We begin with some general observations.

A. CARS and CSRS contrasted: some general remarks

By changing the wave vector and frequency labels
k3, co3 to kz, co2 in Fig. 1, the anti-Stokes (CARS) signal
component can be represented by the wave vectors kc,
kD, and kE for co, &~z, while the corresponding Stokes
(CSRS) vectors are those labeled kH and kI. Conversely,
for co& & coz the CSRS signal vectors are identified by kc,
kD, and kE, where the CARS signal vectors are those la-
beled k~ and kI. As a probe of Raman-active vibrational
dynamics, the three-beam geometry, generating the
fourth wave in the k&=kz+kz —

k& direction, is often
used. Here one of the degenerate fields, for instance,
kz c0z is delayed relative to the other, kz, coz, which simul-
taneously mixes with the nondegenerate —

k&,
—co, field.

The resulting signal frequency ~z =2coz —~, is up-
converted (down-converted) relative to the input funda-
mentals for the CARS (CSRS) process.

The diagrammatic representation discussed by Lee and
Albrecht is used to express some of the important
rotating-wave terms that contribute to the evolution of
the single-chromophore density matrix for a two-level
electronically nonresonant case (Fig. 3) and for a four-
level electronically resonant case (Fig. 4) in coherent Ra-
man mixing. Here the energy levels connected by a solid
(dotted) arrow represent a ket (bra) amplitude transition.
For example, the fully resonant CARS process that is il-
lustrated in Fig. 4(d) can be described as an initial bra-
side intervention from the field-matter coupling Hamil-
tonian V2 (t3) to give the radiation-matter superposition
state generated by the density operator

The input radiation modes A, are denoted by the occupa-
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CSRS

0)s

m (g)

m (b)

—0&, 0)Z

CARS

0)g

—0&s

tion number n &, which for realistic fields, ought to
represent a linear combination of number states for each
mode (e.g. , a coherent state). This coherence, oscillating
at a carrier frequency given by the detuning m„—~2, ac-
quires a spectral width determined by the convolution of
the co2 field spectral density with the ~„g resonant line.
Evolving under the assumed "dark" propagator for a
time period ~3=t2 —t3, the chromophore is then driven
to the new radiation-matter superposition by

bef
re~

g' 1' 2' 2 1, n)+1,f
= Ig, n „n„n,', O, &(Os, n2', n2 —l, ni+ 1fl .

FIG. 3. Energy-level diagrams showing the Raman reso-
nance in electronically nonresonant CSRS and CARS. The
solid and dashed arrows represent a ket and bra side transition
between the connected levels, respectively. Here, time increases
from left to right. (See text for further discussion. )

(3.2)

In the usual application of this technique, the Raman
mode coherence is probed by delaying the
coz[ V2 '(t, +r)] intervention, which creates the output
polarization given in terms of the off'-diagonal state by

p g, n], n2, n2', n2 —1,n2 —1, n 1+1,m

=Ig, ni n2 "2 Os&&OS n2 1 n2 —l, ni+l, ml .

(3.3)

CSRS

COp' —«O s

CARS

«O2 «O2' —«O s

Here the superposition oscillates at a radiation-matter
frequency beat called a detuning, co —

co&
—co&+co„and

possesses a phase characteristic of the driving fields. An
excitation of the signal mode S occurs due to the collapse
of the third-order polarization [i.e., an intervention from
the vacuum blackbody field V s (t')], leaving the material
unexcited, but the light fields in altered superposition
states,

—
«O& «O2 «O~'

E m (b)
«O2' —«O, p nl, n2, n2, 0&', 1&,n2 —1, n2 —1,n&+1

lg nl n2 n2 Os&{ls n2 1 n2 1 ni+1 gl

(3.4)

(02 —
«O& «O2' —«O s

m (C)
«O2' —«O s

«O2' —«O s

Y
m (d)

«O2' —«O s

FIG. 4. Energy-level diagrams for fully resonant CSRS and
CARS. The solid and dashed arrows represent a ket and bra
side transition between the connected levels, respectively. Here
time increases from left to right. (See text for further discus-
sion. )

As indicated by the correlation diagrams of Fig. 2, the
fields are brought into quadrature by allowing the adjoint
set of interaction operators to intervene on the partner
chromophore required to achieve directionality in the
emission. This leads to the final redistribution of energy
among the active modes of the radiation field
(ni n2 n2 Os~ni + n2 l, n2 —1, ls). In order to
conserve momentum and energy in parametric (phase-
matched) scattering, it is commonly accepted that there
is no net energy exchanged between the chromophore
and radiation. In other words, energy is conserved sepa-
rately in the radiation and material subspaces. This is the
case in the above example of resonant CARS, as well as
for resonant degenerate 4WM and nonresonant paramet-
ric scattering in general (e.g., optical parametric oscilla-
tion).

An interesting situation arises when considering CSRS.
Figures 3(b) and 4(d) show scattering terms where the
material is left in the same initial state after the four-field
intervention sequence. However, now the relevant initial
state is thermally unpopulated whenever I co, —co2 I)k~T/A. On the other hand, CSRS, initiated from the
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ground state, leaves the chromophore in a different final
state [Figs. 4(a) —4(c), or Fig. 3(a)], suggesting a net light-
matter exchange of energy. Characteristic of these terms
(usually referred to as nonparametric contributions) is
that the off-diagonal state reached at third order in the
field-matter interaction is a superposition between two in-
itially unpopulated energy levels. Four-color frequency
domain 4WM experiments have shown the importance of
such terms for measuring homogeneous linewidths within
an inhomogeneously broadened line. '

The remaining diagrams in Figs. 3 and 4 are included
to demonstrate the complete symmetry between (fully
resonant, or not) CSRS and CARS, provided level f is in-
itially populated. In what follows, we take Ace& )kz T in
order to consider only scattering that is initiated from the
ground state of our chromophore.

The analytic signal limit of Eq. (1.37) is explored next
for CSRS with incoherent light fields. This limit can be
obtained in the usual manner by assuming a fast-
modulation limit for the stochastic perturbations of the
material Bohr frequencies [like Eq. (All)] as well as an
exponential temporal correlation among the driving
fields. Furthermore, the nondegenerate fields will be tak-
en to be statistically independent. Correlation between
the nondegenerate fields, +co2 (or +co&. ) and +co&, in
CARS spectroscopy has been investigated by Li, Rad-
zewicz, and Raymer.

Here the six-field correlation function in Eq. (2.1), for
the generic time ordering, can be written as

(f2 (ti x)Pi (ti)P, (t3)gi (si r)Pi (sz)P—i (s3))

(a) O)2, &)
—t

g g

g
e

0

(b) -(o, , f3

—CO. S s s

s

g.:g

I) S3 S2

FIG. 5. The dual Feynman diagrams of Fig. 2 applied to the
CSRS process: (a) the field correlation as given in Eq. (3.5); (b)
the field correlation after permuting the 2 and 2' interventions
on chromophore a. The corresponding energy-level diagram is
that of Fig. 4(a) (for CSRS).

Xf,+i ( lt3 s31) . (3.5)
The modeling of possible accumulation effects of the ma-
terial response on the time scale characterized by the lo-
cal intensities e& &+, (t) will not be developed here. In-
stead, these are taken to be constants over the time scale
of the interferometric experiment. We consider explicitly
only the short-time stochastic degrees of freedom of the
fields. As discussed in Sec. II such field coherence draws
correlation among the evolution of the separate chromo-
phore scattering amplitudes. In this CSRS spectroscopy,
the phase-matched selected field components, acting on
one chromophore, are such that the ~ dependence arises
only from dual-chromophore pair correlators. This is il-
lustrated in Fig. 5 where the t' and s' time lines each
stand for a particular amplitude level scattering channel,
the same one represented in Figs. 3 and 4. The first term
on the right-hand side (rhs) of Eq. (3.5) represents a prod-
uct of self-correlation between beams 2 and 2'. Under the
present assumption of stationarity, this term is indepen-
dent of ~ and contributes to the constant background sig-
nal. Built upon this dc signal is the w dependence gen-
erated by mixed dual-chromophore correlators (beam 2
with 2') such as those found in the second term of Eq.
(3.5). Since correlation only between degenerate fields is
being considered, the nondegenerate co& field serves as a
constant source of polarization at frequency co, to which
the 2 and 2' fields may couple. The corresponding pair

correlator f» (t) (solid lines in Fig. 5), when Fourier
transformed [J i (cubi )], will act as a spectral filter in much
the same way as the signal filter JD(cps).

In this co, , ~2 decoupled limit, the ~ sensitivity in in-
coherent CSRS (and CARS) has its origin in the four-field
correlation function involving the 2 and 2' fields and their
conjugates. This field coherence is identical to that
probed in noncollinear autocorrelation via second-
harmonic generation (SHG). For both measurements,
theoretical predictions give a peak (&=0) to background
(r)&r, ) ratio of 2:l. A comparative study of noncol-
linear SHG and nonresonant three-beam CSRS or CARS
signals can serve as a diagnostic for incoherent light and
the validity of its being uncorrelated with field co&. A
contrast ratio that is consistent in both measurements
will test the central limit assumption for the field statis-
tics. Any discrepancy between the two signals would test
the assumption of independent statistics for the nonde-
generate field used in the CSRS (CARS) experiments. If
present, this residual coherence between the fields of
different color could be probed more directly by measur-
ing the fast coherent transient to be found in a non-
resonant two-beam CSRS (CARS) experiment.

With the above approximations leading to the field
correlator given in Eq. (3.5), the filtered signal [Eq. (1.16)]
[with the polarization correlator for Eq. (2.13) with Eq.
(2.14)], in the presence of constant accumulation, can be
rewritten here as
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1(~S;r)= ~ lE', l' — f d~S f d~', f d~2 f d~'2JD(~S')J, (~, )J2(~2)J2 (~2', )
t)(. = 1 Np —oo —ao —ao —aoa

X 5(co2+ co2, —cos —coi —(cos +coi+ co2+ co2, ) )

X ( lXs2', 2, 1((~S+~S )~(~1+~1)& (~2 ~2)~(~2' ~2'))l

l (&2 &2r )V (3+ I [ XS 2', 2, 1((~S+~S) (~1+~1) (~2 ~2') (~2' ~2))

XS 2', 2, 1((~S+~S )~(~1+~1)& (~2 ~2)& (~2' ~2'))]+ ' } ) (3.6)

It is assumed that the quantum-mechanical trace over the
susceptibility operators in Eq. (1.37) [Eq. (2.14)] has been
carried out. In Sec. IV we present an interpretation of
the scattering in terms of projectors of the quantum-field
operators, but neglect their contributions here. Originat-
ing from the self-correlators, the first term in Eq. (3.6)
represents the constant background signal. Of direct ex-
perimental interest is the ~-dependent second term de-
rived from mixed 2,2' correlation.

B. Analytic results for electronically
nonresonant coherent Raman scattering

1. Phase fluctuations in the fast modulati-on limit
for the broadband ftelds 2 and 2'
and monochromatic ftelds 1 and S

We first treat the simple case of electronically non-
resonant CSRS where a vibrational resonance is driven at
second order. This resonance can be viewed at the ampli-
tude level [e.g. , Fig. 3(a)] nas a near-resonant stimulated
Stokes Raman process on the ket side (fields —co, and F02)

followed by a spontaneous Stokes Raman step on the bra
side (field co2. and the signal field —cos). In considering
all resonant possibilities, the fields co2 and cu2 are allowed
to exchange roles and the stimulating fields —

co& and co&

or cu2 are permuted as well.
To anticipate the presence of more than one Raman

active line within the bandwidth of an experiment, a
"binary" system is considered in which the spatially
separated system of two chromophores, essential to
coherent scattering, may involve identical Bohr frequen-
cies on each chromophore or different Bohr frequencies
on each chromophore. Such a system can be modeled by
a sample consisting of chemically identical molecules
having two Raman frequencies within the experimental
spectral range. It can also be modeled by a binary mix-
ture of chemically distinct molecules each having one Ra-
man frequency within the spectral range. In either case,
the bichromophore scattering unit can involve "like" Ra-
man frequencies or "unlike" Raman frequencies. To
achieve such generality the sample is taken as a mixture

I

of two chemically distinct chromophores a and /3, each
having two levels with relevant fundamental Bohr fre-
quencies &of and cof, linewidths I f and I f, and num-
bers N and Np. Until now the a and P indices have
identified the two spatially distinct chromophores of the
bichromophore model. In this binary system scattering
arises from two spatially distinct chromophores which
may be like or unlike. We now take a double index to
stand for the bichromophore model, but use a, a (or P,P)
for the like bichromophore and o, ,P (or P, a) for the un-
like bichromophore.

The integrations in Eq. (3.6) are performed initially un-
der the assumption of 5-function spectral densities for the
roi and cps fields [JD(cos) =5(cos) and Ji(roi) =5(coi)] cor-
responding to zero spectral widths: I z = I

&
=0. It turns

out that the signal intensity then can be written as a sum
of the three contributions,

I P(r)=Imp (r)+IrP (r)+I;P
fg+fg "2+2 (3.7)

I Pp ~212[y F(a, a)+ypF(I3, I3)
fg+fg

+y.y p[F(,0)+F(I3, ~) ] I (3.8)

where

a a a a
I jfI gj PfiI ig

(CO;
—

CO1)(COy& +C01 —
O12 )

(3.9)

and similarly for y&,

where I„p decays in r with the time constant (2I 2) ', a

measure of the field coherence time. I ~p decays in ~
fg+f~

with the reciprocal material dephasing rate constants
(2I fg) '- and (21fg) ', where I fg 7 f +I fg
( I fg 5fg /Afg ) and similarly for I f . Finally, I, is the
constant background signal. It is equal to the sum of the
first two terms evaluated at ~=0.

For the term damped by the material dynamics, we ob-
tain

—'f'+f. ~ ~

F n, [(&1)'+(Ifg+2)'][(&1)'+(I fg 2) ][(&S)'+(Ifg+2)'][(&S)'+(I fg —2)']

Re[A (b, , I )]b, +Im[A(b, , l )]If f Re[A (b„I )]6fg fg+Im[A (6 I )]I fg+fg
X fg fg sin[6, r ]

[(a P)2+(rfP f, )'] [(&Pff )'+(I fP f )']
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Re[A(b„r)]I ~ ~ +1m[A(b„I )]b, ~

[(gaP)2+(I af3 )2]

Re[~ (a, r)]rfg+ fg+Im[A (6 I )]6f~g fg+ cos[b, r]
[(h~ ~ ) +(rf~+~ ) ]

(3.10)

for Q (or Q') =a,P, we have b, P=cogz+co2 —
co&, the detuning on the stimulated Raman process; and bg=cog +co+ —co2,

the detuning on the spontaneous Raman process. Their sum combination is A~~ =A~&+bg =cog +cog +co+ —
co&, from

which b, 2~=6~=2cog +co+ —co&. To condense the notation, the various detunings and linewidth parameters will be
written as

(3.11)

unless otherwise specified. The ordering in the chromophore superscript level is to match the ordering of the
chromophore-based state pairs indicated by a double subscript. The single subscripts 1, 2, or S identify, as before, the
field whose property (frequency, width parameter, spectral density) is so labeled.

Interchange of a, P in F(a, /3) gives F (/3, a ), and a =P produces the like chromophore functions F(a, a ) and F (P, /3):

—r( +( ~~~

eF a, a =
[(b, , ) +(rfg+2) ][(6,) +(rfg ~) ][(bs) +(I fg+2) ][(As) +(I fg 2) ]

Re[A (b„r)] + 1m[A (b„I )] .
&

~ ~

+ 1m[A (b, , r)] + Re[A(h, l )]
pcs 2I cx

fg 2I fg

and similarly for F(/3, P). In both Eqs. (3.10) and (3.12) the complex function 2 (b, , I ) is written as

Re[A(b. , r)]=[(6, )
—I f +2I f —p][(hg) I f I f p] 46sk](I f )

and

Im[ 2 ( b. , I ) ]=b I gg (b s b )
—I gg+21 Ig 2) .

(3.12)

(3.13)

(3.14)

The second term on the rhs of Eq. (3.7) represents the fast transient response of the fourth-wave signal. Just as in the
material damped term, this component has contributions from like chromophore pair (Q =Q ), as well as cross terms
between unlike chromophores (Q&Q'). It can be expressed as

IP~ ~ I 2Iy G(a, a)+y&G(/3, /3)+y y&[G(a, /3)+G(P, a)]],
where

(3.15)

r2+2~ ~

G (a, /3) =
(s, )'[(s, )'+(r, ,)']

Re[B(b,, l )&]cos(bzz)+Im[B(b, , l )&]sin(bz ~r~)

[(a;)'+(r~ ,)'][(a~)'+(r~~, ,)']
Re[8(b., I )z]cos(bzr)+Im[B (b„r)z]sin(b~ ~r~)+

[(6 )'+(ry, )'][(&~)'+(r~y, ) ]

Re[B (b„r)3]cos(bzr)+Im[B (b„I )3]sin(b~ ~r~ )
+ [(a;)'+(r~, )'][(a~)'+(r~~„,)']

Re[B (b., I )4]cos(bzr)+ Im[B (b„r)4]sin(bz ~r~ )
+

[(b~) +(I ~g 2) ][(As) +( kg+2) ]
(3.16)

from which G(P, a), G(a, a), and G(/3, P) can be ob-
tained. The ~ dependence of this signal component oscil-
lates at a frequency given by the detuning of the radiation
fields, Az =2m2 —

cu&
—

co&, and is damped by the spectral
width of the broadband fields. The multiplicative factors
on the sines and cosines consist of algebraic expressions
involving the detunings and line widths. For example,

i

Re[B(b,r)&]=bz(Ash&+rf 2rf —2)

—2s, r,(a,r~, —a;rI, , ) (3.17)

Im[B (b., r), ]=26~ l 2(bshe~)+r fg 'zr fg —2)

+a', (a~r~, a;r~~, , ) . (3.18)—
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Given Eq. (3.17) and (3.18), we can define
B (A, I )&=B(bs, h~&, I fg z, l ~& 2) from which the
terms B(b,, I )~=B(bs,b, If +2, I f +~), B(b,, l )3
=B (b, ), b, ), I fg p I fg 2), and B(E,I')&=B(hs, bs,
I fg 2 I fg +2 ) are obtained.

Though these equations involve field-mediated coher-
ences across distant chromophores, it is striking that no
beating is seen between two different Raman frequencies.
Such beating might have been expected from the a&)t3
signal component, yet for it, only a superposition of two
detuning oscillations is found, one based on a Raman fre-
quency from a, the other on a Raman frequency from P.
Each is damped by twice the dephasing rate constant of
its Raman mode. On the other hand, the denominators
of these terms (that dictate their spectral line shapes) do
recognize a joint two-chromophore (a, a; P,P; or a,P)
resonance, not to be seen at the amplitude level of the
susceptibility. The rigorous absence of interchromophore
Raman beats is relieved as soon as a nonzero spectral
width is assigned either to the nondegenerate field or to
the detector response (or both). This becomes apparent
in Secs. III 8 2 and III B 3 that follow.

2. Phaseguctuations in the fast modulation limit
for all

intervening
fields

I ~(r) =If (r)+I;i' (~)
fg+ fg+1+S fg +2+1

+I(~ (r)+Ir~ (r)
fg +2+S fg+fg

+I t' (r)+I t' (~)+I t'.
2+2+1+S "2+2 C (3.19)

We discuss each in turn. The first term is similar in form
to the first term in Eq. (3.7). However, nonzero I", and
I s introduces additional broadening to the existing reso-
nances found in Eq. (3.10). Ir~ (r) can replace

fg +fg+1+S
Ir~ (r) on the left-hand side of Eq. (3.8) and the un-

fg+fg
like chromophore component [F(a,/3) in Eq. (3.10)] can
be written as

Next, the effect on interferograms and spectra is exam-
ined when the spectrum of the nondegenerate field and
that of the signal field is made Lorentzian with nonzero
I, and I s, respectively. Upon integrating Eq. (3.6), the
signal proves to be a sum of seven contributions,

i aa
fg +fg +1+S

F(a, f3) =
[(b7) +(I fg+2+1) ][( 7) +( fg ~+, ) ][(Qs ) +(I f +2+s) ][(Qs ) +(I ~+s) ]

X
Re[& (b„l )]b ~+1m[A (dk, l )]I j~ f +,+sfg —fg+1+S

fg fg + 1+5)—
Re[A (b, , I )]bg~ f +1m[A (b„I )]I f+f sin(a ~~~)[(af, f, )'+(rf„f,

Re[A (A~I )]Ifg fg+~~s+Im[A (6&I )]5+
[(5 ) +(Pfg —fg+i+s) ]

Re[& (b„I )]I"f+f +Im[A (b„l )]bpf

f;,g +(rf gf+g
(3.20)

Here the exponentially decaying envelope is damped by

fg +fg + ]+s now containing contributions from two
nonzero spectral widths in addition to the purely material
component 2I fg. Thus in the limit where I

&
and I s are

nonzero, but still only a small fraction of the Raman
linewidth (I fg), these detuning oscillations continue to
damp essentially with the dephasing time of the driven
material mode. However, as the bandwidth of field 1,
and/or that of the signal field increases, such transients
rapidly attenuate with ~ and becomes unobservable, for
instance, in the limit of white detection.

In Eq. (3.20), the real and imaginary parts of the com-
plex function A (b„l ) [Eqs. (3.13) and (3.14)] are now
written as

Re[3 (6,1 ))=[(&,) I'f +2+1I f —2+1]

and

1m[~(~ I')]=~(I f +1[(~S) f'f +2+sI f 2+s]—
+a;rf „[(a;)'—I f „,rf „,] .

(3.22)
New transient responses appear in the interferogram as

a result of the nonzero spectral width of the nondegen-
erate input field and of the detector field. The second and
third terms on the rhs of Eq. (3.19) represent detuning os-
cillations from the stimulated and spontaneous Raman
steps in the scattering process, respectively. For oscilla-
tions on the stimulated Raman detuning (b,

&
) one has

Ir (w) ~21 21's[y K(a, a)+y&K(f3, P)

+y y&[K(a,P)+K(/3, a)]J,
X[(b, ) —If If ]
—4~s~i ~fg+ 1~fg+s (3.21) where

(3.23)
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K a,
[(& )'+(rf, )'][(& )'+(rf, )'][(&,)'+(rf )'][(~ )' (rf )']

Re[C(b, I )]6,, +Im[C(E, I )]I fg ~ ) Re[C(b„I )]bf f +Im[C(A, I )]I fg+«X
[(&~))'+( r j~g p ) )'] [ ~f: «-'+ rf'+«)']

Re[C(5, 1 )]I ~f z, —Im[C(b„I )]A~ Re[C(b„I )]I fg+fg
—Im[C(&, r)]~fg+

[(&)) +(rfg —2 )) ] [(~fg-«) +(rfg+«) ]

(3.24)

Important to the phase of this detuning oscillation is the
relative weighting of the sine and cosine functions
through C(6, 1 ) whose real and imaginary parts are
given by

Re[C(h, r)]=[(b, ) —1 f sI f — ]

x [(a;)'—rfg+, +,rf, ,+, ]

—4Q~Q) I f (3.25)

Im[C(6 I )]=2[k~rf +~[(5s) I f 2+sI f 2 s]
+bsrf 2[(b, , )

rfg+2+irfg —2+&]] .

(3.26)

The third term on the rhs of Eq. (3.19) represents an
oscillation at the spontaneous Raman detuning frequency

It turns out that this component can be obtained
from Eqs. (3.23)—(3.26) upon interchanging the variables
Az and 4& and the parameters I & and I &. Thus we can
write

(r) = T(SP a~ rP re)1;i' (~), (3.27)

where T represents the indicated variable or parameter
interchange. Damping of both of these spontaneous and
stimulated Raman detuning oscillations is dominated by
I z of the fields 2 (2'), and, therefore, cannot persist for
time delays greater than the coherence time of the broad-
band light.

New transients oscillating at beat frequencies of the
material, and damped only by material dephasing times,
are represented by the fourth term in Eq. (3.19). For the
a,p mixture, this component can be written as

I.I

If~~+f (r) ~2r2(y e f' [12r,J,(a,a)+I zI sJ2(a, a)+rsr, [J3(a,a)+J~(a, a)]I

+y@ f' II ~r,J, (P,P)+r~l sJ2(/3, P)+1 sl, [J3(P,P)+J~(P,P)]]
~aP

+y y&e Il I &[J&(a,P)+ J&(/3, a)]+r2I 5[Jz(a,/3)+ J2(P, a)]
+I sl", [J3(a,P)+J4(a,P)+J3(P,u)+ J4(Pa)]] ),

where, for instance,

(3.28)

L, , (s, r)
J, (a, )=

[(& )'+(rf, )'][(~ )'+(rf, )'][(&~)'+(r~f, )'][(&~)'+(rf )']

X( tRe[D, (6, 1 )]Re[E,(b„l )]—Im[D, (b„l )]Im[E, (hr)]Icos(h&~ f r)
—tRe[D&(b, , r)]lm[E&(b, , r)]+Im[D&(A, I )]Re[E&(b,, r)]jsin(hfz~ f ~r~)) . (3.29)

Oscillations are now seen at the difference between the material Bohr frequencies where Afg fg Nfg cclfg The
remaining terms in Eq. (3.29) are defined as follows:

Re[D (~ r)] [(+ ) rf — rf —— ]I (~ ) rf +2+srf —2+s]+ S~S f —s f +s

Im[D, (b, , I )]=25. I f [(b, ) —I f I f ] 2b, 1 f [(a, )' —rf —I f ]

Re[Ei(~ r)]=(~ ) rf f +i+s f f —i+s— —

1m[x, (s, r)]=2s i'rf
1

n- o[(a ) +(rf; f, +,+, ) ][(a ) +(rf; «,+s) ]

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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J2(a,p) can be obtained from Ji(a, /3) by interchanging bs ~b
&

and I s —+I i. The expressions for J&(a,p} and J4(a, /3)
are similar in form, but contain resonances different from those in Eqs. (3.30)—(3.34). For J3(a,p) we can write

I.2(b„l )
J3(a,p) =

[(a~ )'+(r~f. . .)'][(a~ )'+(r~f. . .)'][(a;)'+(If. . .)'][(a;)'+(rf. . .)']
X( IRe[Dz(b„l )]Re[E2(6,1 )]+1m[De(6, 1 )]Im[E2(b„l )]jcos(bf~~ fgr)

+ IRe[Dz(b„I )]Im[Ez(b„I )]—Im[D (b, , l )]Re[E2(b,, l )]]sin(hf~ f ~r~)),

where

R [D,(S,r) ]= [(a;)'—rf. . .rf. . .][(a, )' —rf. . .rf. . .]+4a;a, l f, ,rf. . .
Im[D2(b, , l )]=2b~sl f ~[(b, , ) —I f 2,1f +, ]—2b, , I f p[(bs) —1 f 2 sl f s],
Re[E (E,I )]=(bf f ) If f If f
Im[Ez(b„l )]=26f f I f +—f

and

1

f f ( —f +f —— ][( f f ( f +—f

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

J4(a, p) can be obtained by substituting 1 pg+z+& and

+2+i for I $ 2+s aild I $ 2+i iespecflvely, as well as
interchanging the detuning parameters 6, and 6, in Eqs.
(3.35)—(3.40). Again, an interchange of a and p gives

J, (p, a ), while a =p gives J; ( a, a ) and J; (p,p). The latter
terms, representing like chromophore pairs, are at zero-
frequency difference beats and do not oscillate with z.
They only decay exponentially with a rate constant given

by twice the reciprocal dephasing time of the chromo-
phore pfg superposition state for a or for p.

The fifth and sixth terms in Eq. (3.19) decay with a rate
constant given by I &+2+,+z and I 2+&. These fourth-
wave signal components represent the coherent peak, or
the purely light-related signa1 transient. The coherent
peak contribution given by I r~ is the nonzero

2+2+1+S
I i, I z analog of the signal component given by Eq.
(3.15). Both like and unlike chromophore contributions
to this signal oscillate in ~ at the four-field detuning fre-
quency hz. A zero-frequency transient represented by
the signal term I„decays with the rate constant I 2+2.2+2
A large number of terms is required to fully represent
these components. These are given in Appendix B [Eqs.
(B 1)—(B10)].

Finally, the last term in Eq. (3.19) represents the r-
independent background signal which can be determined
from the equation I, ~=I ~(r=0)I2, assuming statistical
independence of the cubi and co2 (co2. ) fields. Next we com-
pare these results with those obtained for the case where

l

the light field statistics are in the slow-modulation limit
of Eq. (2.9).

I,~( }~r Iy'. Z, (a, a)+y pSi(p p)

+y y&[J,(a,p)+2, (p, a)]],
(3.42)

where

3. Field statistics in the slow-modulation limit

Consider phase perturbations of the driving fields that
are large in amplitude, but infrequent, resulting in a static
distribution of excitation frequencies. Here the spectral

densities are Gaussians of variable width. (A Gaussian
for the signal field is nonstochastic rejecting, instead, a
proposed spectral filter function. ) Substituting Eq. (2.10),
for all four spectral densities, into Eq. (3.6), one finds that
the signal can be written as a sum of three contributions:

I ~(r)=I, ~(r)+I,P(r)+I,P, . (3.41)
Most of the oscillatory transients obtained in Eq. (3.19)
are recovered, though now in different functional form.

Purely material quantum beats, represented by Eqs.
(3.28) —(3.40) in the motionally narrowed regime of the
field phase fluctuations, are described in the Cxaussian
limit by the first term in Eq. (3.41). In terms of its like
and unlike chromophore contributions this component
can be written as

1/2

52(5i+5s )
&i(a,P) = exp —bg [165,(B +C)] ' 1+

&i&s
exp[ —(25~) '(b, , 5~i+I f I ~f )]

XexpI Bgzb, i [2522(B+C—)] ']expI BC(B+C) '[(+~i ) —(I—fi f ) ]I

—r }+Xe + cos[bf f r+pi(b, , l )] . (3.43)
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Coherently prepared, closely spaced Raman modes beat at the difference frequency with a phase given by

P (b, , r )=(2b, ) '[b. , I &i
b~l—

& +6 I &~ & B(B+C) ']+2Bb, ~I &~ & [B(B+C) ' —1] (3.44)

and attenuate with the sum of the dephasing rate constants of the superposed modes. The parameters B and C in Eqs.
(3.42) —(3.44) are defined as

$2+ Q2 $2+ $2B=, C=
4g2g2 ' 4g2g2

respectively. Contributions to this signal component from like chromophores, a=p, give a zero-frequency transient
damped by twice its dephasing rate.

The radiation-matter transient behavior described by the first three terms of Eq. (3.19) is contained in the second
term of Eq. (3.41). Here we have

~z&~&s
Iii (r) 2. . . , , , ty'S„(a, a)+yp J„(p,/3)+y yp[J„(a,p)+ J»(p, a)]],[(52+52)(52+ 52 ) ]

i/2
(3.45)

where

1
exp + b, , b,s

—(I Is ) exp
26,' 2

[(a;)'—(rI )'] [(a;)'—(r~ )']
B C

J„(a,P)=
[(~7'' ~. )'+(ri'+~. )']

B+C
4 BC

X exp exp —I B+C
4n', BC

X I rg+~, cos[Z;+y»(a, r)]—af f sin[5 ~r~+P„(b., I )]] (3.46)

This signal component shows oscillations at a frequency

(3.47)

and phase

P»(A, I )= —I ~ (25 ) 'Ib, , [1—(4B5 ) ']

+b,s[1—(4C5~) ']] . (3.48)

When the nondegenerate field and the signal field are
spectrally narrow compared to the broadband fields (i.e.,
5, , 5s ((52), Eq. (3.46) oscillates with a frequency and

phase of b, ~= b, ~ and P»(h, I ) = —b, r)~(252)
Although a more detailed discussion will be given in

Sec. IV, noted here is the presence of new ultranarrow
spectral features found in Eqs. (3.28) [i.e., L i(b., I ) in Eq.
(3.34)] and (Bl), for the case of Lorentzian spectral densi-
ties, and in Eq. (3.43) (fourth exponential terms on the
rhs) when Gaussian spectral densities are convolved into
the theory. In both cases, like chromophore term (a =p)
show spectral resonances that track with the detuning
resonance 6 =0 and possess widths given by 1,+I"&
(5,+5s for the Gaussian case), which are entirely in-

dependent of the Raman linewidth in the assumed Mar-
kovian limit of material line broadening. For Lorentzian
spectral densities for the fields, an additional sharp reso-
nance appears at a detuning given by b~ =0 that is in-

dependent of the material Bohr frequencies. These new

resonances do not appear in the amplitude level suscepti-
bility, but arise from an interference between different
susceptibility-level resonances (here referring to the spon-
taneous and stimulated Raman branches) on the paired
chromophores of the bichromophore scattering unit.

Zinth, Nuss, and Kaiser have recently reported sub-
material linewidth narrowing phenomena in CARS spec-
tra when a Raman-active mode is excited with short-
pulsed driving fields and probed with a delayed long
pulse. For Gaussian pulses, spectral features whose
width is determined by the bandwidth of the probe field
can be obtained under certain excitation conditions.
These conditions require probe delays greater than its
pulse width, which in turn must be greater than the de-
phasing time of the driven vibration. Such narrow reso-
nances are therefore necessarily strongly quenched by the
material dephasing and are exposed only through loga-
rithmic plots. These narrow spectral features appear in
the anti-Stokes spectrum upon tuning the Stokes field and
the laser field difference frequency through a Raman vi-
brational resonance (b, i =0). They are entirely derived at
the level of the third-order polarization, unlike the nar-
row resonance phenomena presented here. The ultranar-
row resonances reported in the present work are derived
from interference between the time development of the
polarization amplitude on the different chromophores re-
quired to generate the phase-matched signal. Most im-
portantly, the sharp resonances at 6~=0, as well as the
analogous resonances in the excited electronic state (to be
discussed later), appear at all r delays less than the
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nanosecond pulse width. They are best seen at ~=0, but
are quenched at most only by a factor of 2 for any ~ less
than the pulse width of the incoherent light.

Always present in the signal are contributions from ful-

ly nonresonant scattering amplitudes arising from the 24
different mixing channels in the (unsaturated, three-color
limit) CSRS (CARS) third-order susceptibility. Most of
these amplitude components are inherently nonresonant
due to the particular intervention sequence. Each field
intervention involves a sum over states, which for those
scattering amplitudes able to reach material resonances,
leads to both nonresonant and resonant contributions.
The nonresonant components can greatly outnumber the
resonant channels and therefore potentially overwhelm
the resonance enhancement. When two such non-
resonant amplitudes (involving conjugate fields) pair to
form a signal component, the ~ dependence is given only
by the coherence properties of the fields. Here only the
purely light related transients discussed in this section are
obtained. Stronger signal channels, though less
numerous, involve the quadrature pairing of resonant
scattering channels with nonresonant scattering channels.
If the ~ dependence were generated directly at the level of
the CSRS (CARS) polarization [for example, by the field
envelope (or intensity) correlation of a short pulse], then
such signal components would decay in ~ with the coher-
ence time of the light fields. With incoherent light, or, in
general, with a phase-sensitive amplitude correlation of
the fields, the v. dependence arising from these resonant-
nonresonant cross pairs contains a contribution from
terms oscillating at the detuning frequencies b, ~ (damped
by I $g+fg+i+s), just as in the resonant-resonant chan-
nels treated at length above. Here Q is the chromophore
involved in the resonant polarization channel. Naturally,
not seen in the mixed channel are the new spectral
features that require resonant contributions from both
chromophores.

In Sec. IV, both the interferograms and the signal spec-
trum generated by these analytic results will be modeled
and discussed for both single- and two-component sys-
tems. Oscillatory and spectral phenomena appear in
CARS that are fully analogous to those found here for
CSRS. In CARS, the material oscillations, as I „Iz ap-
proach zero [via Eq. (3.20)], tune with the frequency
5~=2mfg+m, —co~. The additional transient features
obtained by introducing nonzero I &, I & also appear in
the CARS process.

C. Analytic results for electronically resonant
coherent Raman 4WM

When vibronic levels are brought into near resonance
with the co, and co2 fundamentals, three fully resonant
terms appear in the CSRS process. The corresponding
scattering diagrams are shown in Figs. 4(a), 4(b), and 4(c).
The latter two contain vibrational coherences in the ex-
cited electronic state, generated at second order. At the
signal level of the bichromophore model, these three mix-
ing channels ( A, B, and C) on chromophore a join their
respective conjugate mixing channels ( 3 *, B*, and C*)
on chromophore P, to create a total of nine different com-
ponents in the phase-matched signal. Three of these are
the exact conjugate scattering amplitudes (the diagonal
terms) and the remaining six are the cross terms. Each
cross term must be summed with its conjugate partner to
represent a real signal component. After integrating over
the four spectral densities [Eq. (3.6)], each of these signal
terms produces a set of oscillatory and zero-frequency
transients. The ~-dependent interferograms generated in
electronically nonresonant CSRS (Sec. III B) represent
only a subset of the total possible signal components ob-
tained with electronically resonant mixing. Such signal
components require a contribution from a ground-
electronic-state Raman amplitude ( A and/or A *). Al-
though identical in both their oscillation frequencies and
effective dephasing rates, the electronically resonant ver-
sions of these signals differ in their spectral line shape, or
resonance structure, depending on whether they involve
an excited-state vibrational resonance, a Raman ampli-
tude in an excited electronic state (B or C), or a reso-
nance drawn from a vibronic transition.

It is impractical to give the full analytic solution to the
problem in this manuscript. Only the strong signal terms
in the limit I i, I s ((1~ (where I ~ is a representative
material linewidth) are presented in their entirety. The
omitted "weak" components are identified only by their
characteristic oscillation frequencies and their damping
constants.

When both I
&

and I z are nonzero, but small corn-
pared to the I I's and any active Bohr frequency
differences, the major contributions to the electronically
resonant signals are similar to those described by the first
term on the rhs of Eq. (3.19). With the notation of Eq.
(3.8) and with Lorentzian spectral densities for all fields,
one obtains

IP~ ~ 2I 2Iy [F„„(a,a«)+F„(a,a)+F „«(a,a)]+y&[F „«(/3,P)+F„„(f3,P)+F „«(P,13)]fg+fg+ i+s

+y y&[F „(n«,P) +„F(a«, )f3F+ „(a,P«)+F (P,«u)+F„(P,«a)+F (g,«a)]

+ 'T(B~C) J,
where 'T(B ~C) represents preceding terms with B replaced by C and where now

a a a a~a cv aI nfI gnI fml mg

The ground-electronic-state Raman process occurring on mixed chromophores generates the term

(3.49)

(3.50)
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F„„(a,f3) =L (b, I )L (5, I )e
paa

Re[A„~(h, l )]b, ~+1m[A„„,(E, I )]I ~g

)'+ ( I fg —fg+ i+s )']

Re[A„„(A,I )]Afg fg+Im[A„„(b, l )]I fg+fg

[(bf f )'+(I f f )']

Re[A n(5 I )]I f f ~ S+Im[A g(A I )]6
) +(If —f +&+s) ]

Re[A ~(b, I )]I f~+f +1m[A„„~(A,I )]hj~g

[(hfg fg) —(Ffg+fg) ]

where 6 and b, ~ have been previously defined (Sec. III B). Here the common resonant denominators are given as

L„'„~(K,I )= [(~;)'+(I;„, , )'][(~;)'+(I;. ...)'][(~ )'+(I f, , )'][(~ )'+(I f, , )']

I 2 1

[(&„f )'+ ( I „f )'][(&„f )'+ ( I „f )'][(3, , )'+ (I,)'][(b~, )'+ ( I"~,)']

(3.51)

(3.52)

(3.53)

and the expressions for the complex functions 3„z (b, , I ) are given, using Eqs. (3.21) and (3.22), by

Re[A„„(b I )]=Re[A (b I )][(b f s6 f s+I' f+sI f s)(b, )6 )+I +)I,)

p p a p a a p(~mg —1 mg —I ~mg —I mg+ I)(~nf —SFnf+S ~nf —SFnf —S ))

+21m[A (A, I )][(b,„f she s+I „f+sI ~f s)(b, , I ~, bS, I +,)—
+(a, ,a~, , +r, ,rf', , )(a~f,r„f, a„f,I f'f, )]— (3.54)

and

1m[A (b., l )]=2 Im[A (b, l )][(A„f Sb„f S+I' f+SI f —S)( g —f g —] g+] g —f)

(a, ,r~, ,
a~—, ,r „,)(a'„f—I f ll f I' f — )]

—Re[A (b„i )][(b„f she +sI „f +Is„f s)(&

+(~, ,~~, , +I- „,l-~, ~)(~1„'f sl.„f+s—~„f sl (3.55)

The new detuning parameters found in Eq. (3.53) represent the near-resonant vibronic transitions b „f s =~„f—~s and
AQ"mg —i =~If

A detuning beat, similar to g~ in Fq. (3.52), originates in the excited state when the difference frequency coi —coz is in

near-resonance with, for instance, a vibration in an excited electronic state. Such terms require in their construction at
least one amplitude component involving the diagrams of Fig. 4(b) or 4(c) and can be expressed as

p =2I 2~[y2 [F' ~ (a,a)+F', (a,a)+F'„~ (a, a)]
mn +mn +1+S

+yp[F' *(P,P)+F„'~~(P,P)+F~„~(I3,P)]+y yp[Fs~*(a, P)+F' n(a, 13)

+F' „,(a,P)+F' ~(P,a)+F„',(P, a)+F' „~(P,a)]+ V (B—+C)], (3.56)

where, for example,
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Z.aa
I~I+(a P)=L +(6 I')L (Q I )e ""+ +'+

Re[A ~(h, l )]5' ~+1m[A ~(E, I )]I ~„

[(a"~)'+(rg „„,)']
Re[A (6, I )]b~„„+Im[A,(E,I )]I g+

„)'+(rg .„)']

Re[A (A, l )]1~„„, +Im[A (b„l )]b, ' ~

[(a"~)'+(r„g .„„,)']
Re[A „(b,, I )]I g „+Im[A (&, I )]&

+ [(~~:„.„)'+(Ig, „)'] cos(A 7 ) (3.57)

Here L (E,I )=L„„+(b., I ) and

L' (b I 1

[(a', )'+(I „„,P][(S', )'+(I „, , )'][(a,")2+(r „„,)2][(a,")'+(r „,, )'] (3.58)

The primes on the detuning parameters denote the
excited-electronic-state version of the detuning with

+a,'~, d a'~~'=a', ~+a,'~'.

A permutation of the stimulated Raman driving fields
results in the diagram shown in Fig. 4(c). This scattering
channel, when squared with its identical conjugate, or
crossed with the conjugate channels of Fig. 4(a) or 4(b),
also generates detuning beats at the frequencies A~ and
6'~, but involves different energy denominators at the co&

and cuz transitions. These expressions are presented in
Appendix 8, Eqs. (811)—(820).

Cross terms ( A B) between g-round- and excited-state
Raman channels are responsible for the ground-state Ra-
man signal components F +(Q, Q')+F +(Q, Q') in Eq.
(3.49) and excited-state Raman component in
F„' ~(Q, Q')+F' „~(Q, Q') in Eq. (3.56). When mixed

chromophores (a binary system) are considered, the
F ~(Q, Q')+F „~(Q,Q') component can be equated to

F„„+(a,p) Eq. (3.51) by writing co~ „ instead of co&~, and

I ~ „ instead of I f~ . This parameter exchange results in a
new resonance with a detuning cof~+co, +co& —co, and ap

damping I f~ „+&+&. Also a different field-independent
Lorentzian is found with a resonant frequency 6 „ fg
and width I f~+ „. Similarly, F' „(Q,Q')
+F'„~(Q,Q') can be obtained from F' ~(a,p) by re-
placing both MP „with MfPg and rP „with rfPg in Eq
(3.57).

Cross terms of the 2-8 type show the identical ~
dependence as their respective diagonal components (i.e.,
AA*, and BB*). However, additional resonances are
seen in the cross amplitude terms that corresponding to a
mixing between ground- and excited-electronic-state Ra-
man modes. The diagonal terms, instead, show a mixing
between two ground-state Raman modes or between two
excited-state Raman modes. In both cases, the two ma-
terial Bohr frequencies involved in mixed resonances are
from different chromophores.

A third signal feature appearing with electronically
resonant scattering originates from channel C [Fig. 4(c)].
Unlike all previous signal components, the material
dependent part (i.e., resonant frequency and dephasing
rate) of this transient is vibronic in nature. Its contribu-
tion to the fourth-wave signal is given by

Ir =2I By~[Fcc*(~ a)+F",(a, a)+F" g(a, a)]+yp[F" „(p,p)+F" (p, p)+F" „(p,p)]

+y yb[F" ~(u, P)+F„" ~(a,P)+F"„~(a,P)+F" „(P,a)+F",(P, a)+F"„~(P,a)]

+ J(A ~B)], (3.59)

where for the diagonal CC* component
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F",(a,P)=L, (A, I )L, (b, , l )e

X Re[(,(h, I')]

+1m[/, (b„I )]

Im[(2(b, , 1 )] Im[(3(b„l )]

I g, (a, r) I' g, (a, r) I'

Re[$2(b, , r)] Re[g'(b„I )]
cos(A" r)

+ Re[(,(b, , I )]
Re[(2(b„'1 ) ] Re[$3(6, I")]

—Im[g, (h, I )]
1m[$2( b„r ) ] Im[(3(h, 1 ) ]

Ig,(a, r)I' Ig,(a, r)l' »n( 5' (3.60)

Here oscillatory behavior at a frequency 6" =2'„g —
co&

—cu
&

is damped by twice the dephasing rate of the p„vibronic
coherence (for I „g ))1, and I s ). The two common energy denominators are combinations of single-chromophore vib-
ronic resonances and are written as

L (b„I")

[(&„,)'+(r„-,)'][(~„,)'+(r„"2)'][(~„+2-, )'+(r"„, , )'][(~„, , )'+(r„, , )']

(3.61)

1

[(a~f, )'+(r~f, )'][(s„f,)'+(r„f,)'][(a, , )'+(r „„,, )']

The expression for the complex function g, is written as

g, (a, r) =( I [(a„;,)2 —r„, ,r„„,][(s„;„-,-, )' —r„, „„,r„;.. . ]

4~ng 2~ng+2 ——s —1rng +s+ lrng ]

1 I ~ng —2rng [('ng+2 —S —1) ng —2+S+lrng+2+S+1]

+~ng+2 —S —lrng+S+1[('ng —2) rng —2rng+2]] )

(3.62)

[ [(~nf —S~nf —S+ ng —Srng +S )'mg —I (rnf —S'nf —S ~ng —Srng +S )rmn —ng —1]

+& [r-„„, ,(s~f-,s„f-,+r~, ,r„, , ) a-, -,(r Pf—,a„ f, —a„,-,r„, , )]] . (3.63)

This signal component shows enhancement from mixed
two-chromophore resonances given by the functions $2
and g3, in Eq. (3.60),

X(b,~ „, + 1 r~ „, ), (3.64)

g, (a, r) =(a~; „,—1r~;,„,)

X(b, „+„',+ll „g+„g+,) . (3.65)

Similar vibronic detuning oscillations also arise from
the A-C cross terms F„" «(Q, Q')+Fc'„«(Q, Q') as well

as from the 8-C cross terms Fz'c «( Q, Q
'

)

+F" «(Q, Q'). The latter component can be converted
to the diagonal CC* component [Eq. (3.58)] by replacing

I „g „~, ~ and I ~g +„~ by I ~g, The substitution of

cofg for co „and I f for I „in the resulting equation

generates the 3-C cross term.
The r dependence of Eqs. (3.49), (3.56), and (3.59)

rejects single-chromophore dynamics even though the
resonant enhancement draws on mixed chromophore res-
onances. Just as for the electronically nonresonant mix-
ing (Sec. III B), other transient features, refiecting both
radiation-matter detuning beats and purely material
quantum beats, appear in the interferograms. As before,
their magnitudes are sensitive to the spectral widths of
fields 1 and S, among other parameters (e.g. , material
linewidths and detunings).

In order to complete the discussion of this complex
mixing process, the remaining contributions to the
dependence of the signal, along with all of those signal
components already discussed in Sec. III, are organized
in Tables I—III. Table I refers to "material only"
responses. There the oscillation frequencies and effective
dephasing rate constants are listed for those signal tran-
sients which beat at various combinations of material
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TABLE I. Different signal transients showing material quantum beats listed in terms of their oscilla-
tion frequency and effective dephasing constants. The different oscillations reAect beating between (a)
ground electronic state, (b) excited electronic state, (c) mixed ground excited state Raman modes, as
well as (d) vibronic state beating and (e) mixed vibrational-vibronic trilevel beats. All of the above os-
cillatory transients involve two chromophores.

Scattering
channel

Material Bohr frequency beats
Oscillation Oscillation
frequency type

Effective
dephasing constant

BB* and CC*
AB*+BA*,
AC*+CA*
AA*, AB +BA*,
AC*+CA*
BB*,BA *+AB*,
CC*,CA *+AC*

CC glg

CA + AC*

CO)g Ci)gg

coQ —coQ'
mn mn

~$g ~mn

2m)g
—

COgg + n)ny

2mmn ~mg +~nfQ Q' Q'

COQg CO„g

~ng ~mn C nf
COng +COmn COmg

~ng ~$g ~ny
I I

~ng +~K

(a)
(b)
(c)

(e)

(d)
(e)

(e)
(e)

(e)
(e)

r$, +rg,
'

r~„+r~'„

r), + rg'„

2r), +rg,'+rg, '

2r.„+r.,'+ r„,'

rQ, +rQ,'

2r„,+r.', +r„,'

r~, +I Q'„+r~,'

r~, +rQ. +rQ,'

r~, +r$,'+rg,'

rI-', +rg+ r~,'

Bohr frequencies and attenuate at a rate that depends
purely on the rate of material coherence loss. Radiation-
matter oscillations and their dephasing rate constants ap-
pear in Tables II and III. Those listed in Table II are in-
dependent of the broadband fields 2 and 2'. Table III lists
components (including contributions from zero frequency
and pure radiation detuning components) that are sensi-
tive to the properties of these twin fields. The com-
ponents in Table III labeled as "coherent peak" contribu-
tions define the short-time response (r=r, ), or the
effective temporal resolution of the measurement. In
each table, the first column, labeled "channel, " indicates
the combination of mixing channel (Fig. 4) required to
generate the corresponding signal transient. Contribu-

tions from unlike chromophores are identified by the Q
(cr or I3) and Q' (p or cx) superscripts. For like chromo-
phore signal terms, we have Q =Q'.

The information in all three tables only pertains to the
~ dependence of the interferograms. It does not indicate
the relative strengths of the various signal components,
nor does it contain spectral information. While different
combinations of scattering amplitudes may lead to the
same transient response, the line shapes, particularly
those reflecting combination resonances between chromo-
phores, turn out to be unique to the signal level mixing
channels.

Of the many types of oscillatory behavior listed in
Tables I and II, two show interesting quantum interfer-

TABLE II. Different I 2-independent detuning transients generated in fully resonant CSRS listed in
terms of their oscillation frequencies and effective dephasing constants. The nature of the material res-
onance involved in the detuning is (a) vibrational, (b), vibronic, (c) bichromophore (Q, Q ) mixed
vibrational-vibronic, or (d) bichromophore mixed vibronic.

Scattering
channel

Detuning oscillations (I 2) independent)
oscillation Resonance
frequency type

Effective
dephasing constant

A A *,AB*+BA *,
AC*+CA*

gQ

2CO)g +Cil „y Ci)
~

2CO)g CiPgg + CO~

(a)
(c)
(c)

2rg, +r, +r,
2r), +rI",+r,
2I $ +I gg+I,

BB*,BA *+AB
CC*,CA + AC*,

g&Q

2'~~„+CO„y CO~

2COm~ Ct)~g + CO~

(a)
(c)
(c)

2r~. +r, +I-,
2r~„+rQ~+ I,
2r~, +r~'„+r,

CC*,CA *+AC*
CB *+BC*

gl g Q

2'„g + ct)~g + Ct)~

2'«+ CO„p+ M~

(b)
(d)
(d)

2r~, +r, +r,
2r~, +r~,'+r,
2r„,+ r„I'+r,
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TABLE III. Fast-t™( r2-dependent) signal transients listed
in terms of their oscillation frequencies and effective dephasing
constants.

Scattering
channel

Oscillation
frequency

Coherent peak components ( I 2 dependent)
Effective

dephasing
constant

Cl

og

o

AA, AB +BA
AC +CA *

gQ

gp
CO)& +Cg„y C02

~gg ~mg +~Z

rp, +r, + r,
r$, + r, +r,
r$, +r~~+r,
rg+ r~,'+ r,

BB*,BA *+AB
CC*,CA *+AC*
BC )fc +CB g

CC, CA *+AC

gIQ
1

pig
I

~mn +~nf
~mn ~mg +~2

CO COng 2

r~. +r,+r,
r~„+r, + r,

r~„+r~,' +r,
r~, +r,

'pi

~ r4

o
g
H

All six
independent
components

—2cg2+ mmg +co„

2cop+ corn& + cps

2C02 +CO nf +CO
~

0

2I +rs+I
2r, +r~, +r~,'
2r, +r~, +r,
2I" +I nf +I I

2I 2

ence effects between a vibrational and a vibronic coher-
ence on different chromophores (either Q =Q' or
QWQ'). In one case (Table II), this vibronic-vibrational
beating involves either the co, or cps modes of the super-
position field (a detuning oscillation) or another vibronic
mode of the chromophore (purely material quantum
beats). These latter transients are controlled by material
parameters, with an attenuation given by the combina-
tion of different vibrational and vibronic dephasing rate
constants. Also seen is beating between two modes that
are both either vibrational or vibronic in nature. When
like chromophore contributions are considered, such os-
cillations, having zero difference beats, cannot appear. In
their place, smoothly decaying transients appear that
refIect pure material coherence loss of the driven vibra-
tional or vibronic state.

IV. DISCUSSION AND RESULTS

The analytical development in Sec. III is now examined
in some detail. Model calculations are presented and an
interpretation of the new light-matter oscillations is given
in terms of "base" radiation-matter oscillators. Experi-
mental details, with relevant data, will be given in the fol-
lowing paper (II).

A. Modeling

guided by experiments on benzene, we initially consid-
er the case of electronically nonresonant CSRS in a one-
component sample, where the Raman-active mode is—1given a Bohr frequency of vf =99 1 cm
[vfg =cof (2nc) '] and a width [half width at half max-
imum (HWHM)] of I f =1.2 cm ' [I fg I fg(27rc) ].

g69

FIG. 6. Electronically nonresonant transient CSRS spectra
for exponentially damped pair correlation between the broad-
band fields 2 and 2' (coherences time = 100 fs and v2 = 1 6 750
cm ' ). There is one Raman-active mode. The parameters are
vfg 991.0 cm ' and I f~

= 1.2 cm '. (a) v&
= 17 741 cm

Jl ( co/ ) =5(col ), and JD(cog ) = 5(Gals ) p (b) vi = 17 753 cm
Ji ( co i ) =5(~ i ) and JD ( cos ) =&( ~s )

The twin broadband excitation fields are taken to have a—1carrier frequency (co2=coz. ) of v2=v2. =16750 cm and
I =53 cm ' (a coherence time of 100 fs). In Fig. 6, the
fourth-wave signal according to Eq. (3.7) is plotted as a
function of the interferometric delay ~ and the signal fre-
quency v for two different narrow-band excitation fre-quency vs
quencies. For zero detuning on the stimulated Raman
branch 6&=0 (or v&=16741 cm '), the plot in Fig. 6(a)
is found. The center of the broad spectral feature,
defined by the resonant condition on the spontaneous Ra-
man branch As =0, is also the point of zero oscillation in
the interferogram (r axis). Here the interferometric sig-
nal profile is seen to be a smoothly decaying exponential,
damped by twice the Raman dephasing rate constant. As
v is tuned away from the spectral peak, either to thevs
blue or to the red, these oscillations, which track with the
detuning 6~, decrease in period. Upon tuning the—1narrow-band input field to v& = 1 8 753 cm, the signal
frequency at which the detuning oscillations vanish shifts
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12.3 cm ' to the blue of the spectral peak [Fig. 6(b)].
The purely light damped component found in Eq. (3.7)

is a small contribution to the total signal intensity. In
general, time domain measurements that use excitation
fields having a spectral width large compared to that of
the driven line (I 2, I „Is))l M) lead to a material
damped signal that is much attenuated compared to the
purely light related transient (the coherent peak). In such
cases, logarithmic plots are commonly used to expose the
relatively weak material response that remains. In the
present case where I „Is ((I M (in fact, zero in this
modeling), the material damped term dominates the sig-
nal, and interestingly, its contribution increases with the
ratio I 2/2I f in the limit that I z ))I f .

However, upon assigning nonzero values to I, and I z
(but still less than I ~) qualitatively new features appear
in both the interferogram as well as in the signal spec-
trum. A plot of Eq. (3.19) is shown in Fig. 7 for the same
parameters used to generate the plot of Fig. 6(b), except
now I,=0.40 cm ' and I &=0.25 cm '. Modulations
similar to those seen in Fig. 6(b) are observed in the inter-
ferograms. However, in the spectrum of the signal two
entirely new sharp resonant features appear at frequen-
cies v~ =15747 and 15 771 cm '. These represent the
zero detuning points of the resonances defined in terms of
the di6'erence combination of the stimulated Raman and
spontaneous Raman branches b, ii =b,~—b,P=O and the
corresponding sum combination b~=b~+bP=O. (It is
important to note that these resonances, constructed
from the two Raman branches, involve identical modes
on spatially distinct chromophores. ) The width of each
of these new spectral lines is just the sum of the widths of
the nondegenerate field and of the signal field (I &+I i)
which, experimentally, can be made less than Raman
linewidth. The emergence of the purely-light-related
coherent peak in the interferograms is seen in the spectral
region around the narrow resonance at b, ~ =0 [Fig. 7(b)].

Upon going from the motionally narrowed limit
(Lorentzian) to the static limit (Gaussian) of the field
phase Auctuations for fields k=1,2, 2' and a Gaussian
detector spectral response function for A, =S, the purely-
light-dependent narrow resonance at Az =0 disappears.
Still, the feature at 6~=0 remains, provided that the ma-
terial dephasing remains in the fast-modulation limit.
The line shape is now an overall narrow Gaussian profile
[full width that half maximum (FWHM) of
4Vln2(5, +6+)], again having no reference to the materi-
al dephasing rate constants. This is illustrated in Fig. 8(a)
where a plot of Eq. (3.41) is shown using 52=51 cm
5, =0.24 cm ', 6&=0.15 cm ', and otherwise the same
set of frequencies as used in Fig. 7. The removal of the
purely-light-related sharp resonance at Az =0 for Gauss-
ian spectral densities can be understood by regarding the
broadband fields to consist of a static distribution of fre-
quencies, that are inhomogeneously broadened. Just as
for the two-chromophore narrow resonance at 6~=0, the
two co2 contributions in the Az =0 resonance arise from
the intervention of degenerate fields +coz and +cu2, on
separate chromophores. Now each statistically indepen-
dent frequency in the inhomogeneous spectrum of field 2,

~pf
1O

8

0
~Q

Cl

5'1

CO

0

M

FIG. 7. Electronically nonresonant transient CSRS spectra
for exponentially damped pair correlation between the broad-
band fields 2 and 2' (coherences time is 100 fs and v2=16750
cm ' ). There is one Raman-active mode. The parameters are
vfg 991.0 cm ', I fg

= 1.2 cm ', v= 17 753 cm ', Lorentzian
J&(co&) and JD(co&) with 1",=0.24 cm ' and I =0.15 cm
HWHM, respectively. (a) Avz = 15 700—15 830 cm ', (b)
hv& = 15 746—15 747 cm

say, will act conjugately with every statistically indepen-
dent frequency of conjugate field 2'. This leads to a dis-
tribution in the Az =0 condition. A broad spectrum of
the overlapping, narrow, resonances will merge with the
broad spontaneous Raman spectral feature and will
thereby not be seen. An experimental CSRS spectrum of
neat deuterated benzene (C6D6) showing the narrow ma-
terial sensitive resonance at 6~=0 is reported in paper II.

The signal structure, seen in Figs. 7(a) and 8(a), is lost
whenever I, and/or I ~=I 2, that is, the bandwidth of
the nondegenerate field and/or the signal field is compa-
rable to the spectral width of the twin ~z, ~z fields. For
example, if only the bandwidth of the nondegenerate field
is increased to 6& =50 cm, the interferogram in Fig.
8(a) changes to that in Fig. 8(b). Now only a coarse vs
dependence remains in the spectrum and the interfero-
grams show a rapidly decaying detuning beat (A~) super-
imposed upon a spontaneous Raman detuning beat (b,z~).
Both the b,~ oscillation and the b,P oscillation are rapidly
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FIG. 9. CSRS (a) and (b) interferograms and (c) and (d) spectra for a two-component system with mode frequencies (dephasing

times) of 991.0 cm ' (4.6 ps) and 970.0 cm ' (5.3 ps). Gaussian spectral densities are used for all fields. For Jz(co2), v2= 16750 cm

and 62=51 cm '; JD(mz), 6&=0.15 cm ' and v&=15805 cm ' (for the &scans); JI(c0&) V&=17733 crn ' and 6I equals the following:

(a) 0.24, (b) 48, (c) 0.24, and (d) 48 crn

between radiation and matter oscillators that are created
by mutually coherent fields driving material superposi-
tion states that are located on spatially distinct chromo-
phores. The interference of' correlated fields in vacuum
has its classical interpretation in terms of a superposition
of phase-coherent .waves. It can be viewed quantum
mechanically as a field quantum exchange between the
correlated radiation modes. Analogously, the interfering
radiation-matter oscillators of our problem involve
radiation-matter amplitude level quantum exchange.

Correlation among our radiation-matter oscillators is
derived entirely from coherence among the interacting
light waves, since the chromophores themselves are oth-
erwise uncoupled. The spectroscopy of a conventional
coupled chromophore problem leads to an "exciplex"
description. Here, by analogy, we shall refer to
radiation-bichromophoric "exciplexes. " In fact, we find
that a properly defined combination of these radiation-
matter exciplexes, expressed in operator form, leads to
each of the signal beats that are found analytically in Sec.
III.

Though in the present problem full correlation is at
sixth order in the incident fields, we have seen how such
high-order interferences reduce to pairwise intensity level

Et=(E2+E2 )=—,'[(E ~++E2 )+(E2++E2 )] . (4.1)

Now let fields 2 and 2' have unit magnitude (Ez= 1), car-
ry noise, and 2' be relatively delayed by w from 2. We
now write, as before E & (t)=e& (t)d1, and

E1 (t)=Z& (t)a & [where e~(t) is the stochastic field
function for field k].

The superposition field can be represented by a density
operator of the coupled 2 and 2' modes, which for realis-
tic fields should represent a statistical mixture of such
states. However, to simplify the development we consid-
er an amplitude stabilized field represented by the pure

interferences (first-order coherences) as long as the cen-

tral limit approximation [Eq. (2.1)] is used for the phase

noise of incoherent fields, or coherent fields are used that
retain full nth order coherence [y'" "'=1, Eq. (2.21)].
Thus by way of demonstrating quantum exchange we first

recall, brieAy, the quantum description of the interference
in a vacuum between two correlated fields as might be ob-

served interferometrically.
To anticipate the use of such operator formalism in our

4WM application, the following field operator is defined
by superposing fields 2 and 2':
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state density operator of the superposition field given as

p, = /!n, )(n, /

n2, nz n2. , nq

n2i n2 f np n2
2 (nI. ) nz, n, ,

& m, ~ & mz ~Qmz!Qmz! .

(4.2)

The prime on the sums denotes the constraint that the to-

tal mode quantum number nr=nz+nz (ni=mz+mz. ),
is conserved for each product state in the sum.
Throughout what follows the state vectors for field 2
(I ~nz)] or [(nz~}) are taken at time t. Those for field 2'

([ ~nz. ) ] or I ( nz ~ ]) are taken at time t +r.
The intensity operator I(r) of the superposition field is

usually given in terms of the measurement process, where
for photoelectric detection, a normal ordering of field
operators is used. Here, however, we want to consider
the possible first-order coherence that gives rise to the
signal in nonlinear 4WM when four of the six input fields
are coupled. To this end, the intensity operator is written
simply as the square of the field operator in Eq. (4.1).
The intensity of the superposition field is then given as

"I nI + 1[f;,+(o)+f;, ,+, (o)]+ [f,+,-(o)+f,'. , (o)]

+ f, z+(~r~)+ fz+z, (~r ) g' (nz —1 (nz +l~nl)(nl~nz &~nz&
2 2

nI nI+ 1
,+(~r~)+ f+, (~r~) g' (nz+1~!(nz, —

1~ n)l( nl ln&zlnz) .
2 2

(4.3)

where the functions fz. 'z (~r~ ) are just the previously in-
troduced t 2

—,e2 pair correlators defined in terms of a
classical average over field fiuctuations [see Eq. (2.1)].
The first four terms on the rhs of Eq. (4.3) are diagonal in
the A, =2,2' basis and represent the average occupation
number of the k mode in the superposition field. In-
terference between the two correlated field modes, or
quantum exchange between them, is represented by the
off-diagonal matrix elements of pI in Eq. (4.3) in the
A, =2, 2' basis. In this picture, the coupling strength is
defined in terms of the temporal pair correlation functi. on
fz 'z (~!r~ ). Thus the coupling is maximized at r=o when
the two fields are identically overlapped in time, as is al-
ways the case for the self-correlators fz z

+—(0) and f z~ z~(0).
On the other hand, for r such that fz~'z ( ~r ) =0, the ra-
diation modes A, =2, 2' are no longer coupled and the in-
terference has vanished. This interference coupling, in-
herent among correlated fields, is just the means for es-
tablishing a coupling between distinct chromophores that
are excited by such radiation fields. Quantum exchange
between radiation-chromophore oscillators can then
occur.

For application to our nonlinear radiation-matter
problem it is useful to rewrite Eq. (4.3) in terms of radia-
tion exciplex operators. Thus the interferogram [Eq.
(4.3)] can be expressed as a beating between oft-diagonal
states of the coupled 2 and 2' radiation modes. By intro-
ducing the identity operator 3. = g„~nI )(nI~ we canI
write

(I(r)) =Tr g [p+(nr, r)+p (nl, r)]
nI

(4.4)

in which the operators p (nl, r) represent —the following
linear combinations of states connected through quantum
exchange. They are written as

p +(ni, r) = [e z+(t)
~ [nz —1, nz ] )

+e z (t +r)[[nz, nz. +1] ) ]( I nz. , nz] f

(4.5)

and

p (nl, r) = [@z (t) ~{nz+ l, nz ] )

+&z (r+r)l[n„nz —1] &]& In, , n, ] I
.

(4.6)

These operators project exciplexlike (r-dependent) pure
radiation states from an original ket

~ I n z, n z ] ) . Thus

p +(nI, r) creates the exciplex superposition between a ra-
diation state where field 2 is diminished by one quantum
and a second radiation state in which field 2' is raised by
one quantum. [p (nr, r) projects the complementary ex-
ciplex superposition. ]

In the presence of a resonant nonlinear medium, the in-
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terference (or coupling) is mediated via field-correlated
radiation-matter superposition states. In the bichromo-
phore model for 4WM two otherwise uncoupled material
modes, vibrational or vibronic, one each on two separate
chromophores, will couple if driven by interfering fields.
It is necessary that the two chromophores lie within the
coherence volume V of the fields [defined by 4(r t3) of,
e.g., Eq. (1.30)]. The interchromophore coupling is
generated by the radiation-matter operators
V z (t) Vz+(s —r) and V &(t r—) Pz+('s) (in general,
their commutators [ Vz (t), [ Vz+. (s —r), ]] and
[ V z. ( t —r ), [ V z ( s ), ] ]) which bring about interchromo-
phore coupling through their field dependence. In this
picture, the coupling (or interference) between different
single-chromophore-based coherences allows one to write
a basis representation in terms of a linear combination of
their projection operators. The particular linear com-
bination of these single-chromophore radiation-matter
coherences is dictated by the nature of the field-induced
correlation in the scattering process. For electronically
nonresonant CSRS there are four elementary radiation-
chromophore (quadrupole) oscillators from which exci-
plexes are created by field correlation. These four oscilla-
tors correspond to the two kinds of two-field polariza-
tions that appear on chromophore e and on chromo-
phore /3. One kind is the stimulated Raman polarization.
On a, say, it is generated by p„(a)= V i+( t), V z (t), or by
P„(a,r) = V i+(t) V z (t —r). The second kind is the sPon-
taneous Raman polarization. On P, say, it is gener-
ated by P, (P)= Vz (s)Vs (s), or by P, (/3, r)
= Vz (s —r)Vs (s). Such stimulated Raman polariza-
tions oscillate with the detuning frequencies 5i and A~i,

and the two spontaneous Raman oscillators oscillate with
their detuning frequencies 6& and A~z. These four ele-
mentary radiation-chromophore oscillators can be pro-
jected from the initial radiation-two-chromophore state
lg ) with their corresponding operators (p„(Q), p,„(Q),
p„(g, r), and p, (Q, r) for Q =a, /3). (To account for all
scattering channels these operators should be considered
in their tetradic form. ) In their place we consider the
corresponding four oA-diagonal projectors. Written ex-
plicitly in terms of the time-dependent state vectors of
the four fields (2' shifted by r) and the two chromophores
Q and Q ', these are

Ip„(g) ) & gl =e,+(t) In, —1& & n, I

lp„(g, r) & &gl =~ i+(t) lni —I & & n i I

re ~ (t +&)
I [nz, nz. +1}& & [n, nz } I

lo, ) &osl Ifg &&g~l lg~ &&g& I,
(4.9)

IP.'p(g, r) &&gl = lni &&nil

~ z+(t +r) I [nz nz —I}& [nz nz } I

Xees(t) ls)&Os

Ifq&&gallgq &&gg I
(4.10)

aIld

+ i(rg ) = Ip„(g) & &gl+ Ip „(Q';r) & &gl, (4.1 1)

q'z(., ) = IP„(g;.) & & gl+ IP.',(g') & &gl, (4.12)

and for the like projectors

q' '( g ) = lp „(Q)& &gl+ lg & &p„(g', )I (4.13)

in which QWQ'. Explicit mention of r tells that field 2',
not 2, is involved in preparing a given oscillator. We next
prepare the exciplex states that superpose these elementa-
ry oscillators, through 2,2' correlation, thus exposing the
~ dependence. The exciplexes built of 2,2 or 2', 2' correla-
tion show no ~ dependence and are not considered here.
Similar to the example of first-order coherence previously
discussed, quadrature phase field operators for the 2 and
2' modes, analogous to that given in Eq. (3.1), can be
defined which project these radiation —two-chromophore
exciplex superposition states.

There are two kinds of radiation-matter exciplexes
based on the two types of field induced correlation. In
one, exciplexes are built of like elementary oscillators [ei-
ther both spontaneous Raman polarization or stimulated
Raman polarization; Fig. 5(b)]. These are projected by
the operators of the form P„(Q) +.P„(Q',r) and

p,~ (Q, r) + p, (Q') (and their adjoint operators). In a
second kind, exciplexes are built of unlike oscillators
[mixed stimulated Raman polarization, spontaneous Ra-
man polarization; Fig. 5(a)]. These are projected by
p„(Q).+p, (Q', r) and P„(g,r) +p, (Q') . For the
unlike projectors we have

ez (t)[nz+1

los & & os I Ifq & &
gq I Igq & & gq I, (4.7)

alld

)=IP.',(Q; )&&gl+lg &&P,„(g')I (4.14)

lp tp(g) & &gl = lni & & n i I

ez+(t)l [nz —l, nz, } ) & [nz, nz } I

ez;(t)ll, &&o, l

If@ &&gzl lgz &&g& I, (4.8)

The state vector space of fields 2 and 2' appear in the ex-
ciplex projector 4 i [Eq. (4.11)] exactly as they do in the
quantum exchange (interference) projector p [Eq. (4.6)];
4 z [Eq. (4.12)] is similarly related to P [Eq. (4.5)]. The
Projectors 4 i [Eq. (4.13)] and 'Pz [Eq. (4.14)] involve
mixed ket- and bra-side projection, but similarly involve
quantum exchange between the interfering modes 2 and
2'.
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That two radiation-bichromophore superposition pro-
jectors exist for like and unlike correlation is related to
the fact that each broadband field can intervene equally
in the stimulated Raman step or in the spontaneous Ra-
man step. Therefore, to fully display correlation Fig. 5
must be supplemented by another in which the roles
of the twin broadband fields are interchanged (let
+Q)i~+Cg)i ).

The operators in Eqs. (4.11)—(4.14) represent inter-
mediate states in the mixing process. For the scattering
channel shown in Fig. 5(a), the amplitude level radiation-
bichromophore coherence is given by g ", (r&) and

f z (r ). These project the superposition state generated
by the interference of a stimulated Raman coherence on
chromophore a(pf ) and a spontaneous Raman probing
of a p~f coherence on chromophore P. (They differ only
in exchanged roles of 2 and 2'). Simultaneously (at the
amplitude level) a stimulated Raman coherence p~f
driven on chromophore P with one of the conjugate fields
is coupled to a spontaneous Raman probe of the p&
coherence on chromophore a. At steady state these two
concerted exciplex superpositions give rise to the bichro-
mophore resonance at 6 ~=0.

When p& and p & belong to the same homogeneous en-
semble (a and P are chemically identical), their Bohr fre-
quencies are stochastically modulated identically (in the
fast-modulation limit). On the other hand, their natural

fg polarization is ir out of phase. This leads to an exact
cancellation of their homogeneous widths. The resulting
spectral line is also independent of the spectral density of
the broadband fields (that cause the coupling) because the
probing of pgf (pfg) by field, say 2', is ~ out of phase
from the action of field 2 in generating pfg (pgf ).

The radiation-bichromophore exciplex states represent-
ed by the operators in Eqs. (4.13) and (4.14) correspond to
the coupling channel shown in Fig. S(b) (the like correla-
tion). This superposition state gives rise to a resonance in
the steady state at a frequency given by the difference be-
tween the Raman mode frequencies on chromophore o.
and P, independently of the driving field frequencies. The
spectral width of this line is given by the sum of the
homogeneous widths of the two Raman modes [Eqs.
(3.10) and (3.46)]. (For identical modes this difference
beat vanishes. )

In some sense, the narrow bichromophore spectral
features (at b, ~=0) are phenomena similar to the extra
resonances discussed by Prior et al. This phenomenon,
termed PIER4 (pressure-induced extra resonance in
4WM), is associated with pure-dephasing-induced relief
of a destructive interference between different mixing
channels contributing to the susceptibility. Each of these
interfering amplitudes leads to the same intermediate off'-

diagonal state. Such cancellation within the third-order
resonance structure is seen, for example, in the excited-
state Raman contribution to the CSRS susceptibility.
Their amplitudes [represented in Figs. 4(b) and 4(c)]
reach the identical off-diagonal state (p „)at second or-
der in the field-matter interaction. The "extra" reso-
nance appears at the zero detuning of 6i only if pure de-
phasing, induced by coupling of the excitation to the ma-
terial bath, or to a fluctuating radiation field, contributes

to the line broadening of the p „coherence. (A dressing
of the chromophore states in a strong radiation field is
also seen to remove this cancellation to expose the extra
resonance. )

The new two-chromophore resonances examined in
this paper show, in theory, behavior similar to such extra
resonance phenomena. Here two kinds of exact cancella-
tion are encountered. In one, all reference to the frequen-
cies of the broadband fields 2 and 2' vanishes identically
at the bichromophore exciplex level because of their out-
of-phase role on the two chromophores. This is the basis
for the interference coupling. In the second, an exact
cancellation of homogeneous linewidths (for identical res-
onances) takes place. However, the latter cancellation
comes with zero amplitude when neither the incident
nondegenerate field nor the signal field convey dephasing
(that is, I,=I s =0). In that limit there is complete des-
tructive interference between the two identical bichromo-
phore exciplexes generated by 4 i and 4 z . By introduc-
ing pure dephasing via nonzero I

&
and/or I &, or by al-

lowing the two coupled chromophores not to belong to
the same homogeneous ensemble, the destructive interfer-
ence is removed to expose these new sub-Raman
linewidth resonant features. A sumcient increase of I i

and/or I ~ will ultimately break up the phase coherence
of the stimulated Raman polarization amplitude and the
spontaneous Raman polarization amplitude set up on
different chromophores. This is the underlying premise
for constructing the unlike exciplexes. The narrow reso-
nances are then completely removed and the detuning os-
cillations are strongly attenuated.

Next we consider the ~ dependence in the interfero-
grams as revealed by the exciplex description. Modula-
tions in the interferograms arise from the beating be-
tween the different radiation-bichromophore coherences,
each undergoing a phase shift of ~. The resulting fourth-
wave signal can be constructed from the base exciplex
projectors given in Eqs. (4.11)—(4.14).

The signal, involving a quadrature combination of the
four fields, can now be constructed by tracing over the
proper algebraic combination of four exciplex operators:

(4.15)

The algebra is contained in the definition of the exciplex

operator ~I'
J
= [f' J, ], where %',+ is one of the four exci-

plex projectors defined above.
The first term on the rhs of Eq. (4.15) involves only un-

like exciplex projectors. Its ~ dependence can be ex-
pressed in the

[ IP„(Q) &, IP., (Q, ~) &, IP,',(Q) ) IP .p(Q ~) &, Ig & ]

basis as
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( % 2(7 p)% i ('T~)%' ~ (r~)% ", (rp)+ H a ).

=2t(P „(a;r)IPg,(a))+(P,p(a)IP,p(a;r))+(P „(0;r)IP„(P))+(P,p(P)IP,p(P;r))+c. c. ]

+ I (p t(a;r)lp„(a) ) (p „(a;r)lp „(a))+ (p „(/3)lp,„(g;r) ) (p,~(/3)lp, (/3;r) )+c.c. J

+I(p „(a;r)lp„(a))(p„(p)lp „(p;r))+(p, (a;r)lp t (a))(p, (p)lp t (/3;r))+c. c. J . (4.16)

In Eq. (4.15), we note that since the chromophores are
uncoupled (p„(Q)lp„(Q') ) = (p, (Q)lp, ~(Q') ) =6@&,
and (p„(Q)lp, ~(Q') ) =0 for all Q and Q' if only because
of the orthogonality in the space of fields 1 and S.
(p„(Q,r)lp„(Q))&0 and (p,p(Q, r)lp, (Q))%0 due to
the correlation between fields 2 and 2'. Detuning oscilla-
tions in r at the frequencies b ~i (STR) and b,P (SPR) are
represented by the quantity contained within the first set
of curly brackets on the rhs of Eq. (4.16). The analytic
results identifying these oscillatory transients are given in
Eqs. (3.23)—(3.26) for the spontaneous Raman polariza-
tion beat and in Eq. (3.27) for the stimulated Raman po-
larization beat. The second set of curly of brackets con-
tains terms that represent beating between the stimulated
Raman polarization and spontaneous Raman polariza-
tion branches on the same chromophore

I
+6~+6,P

=+A, ~, see Eq. (3.20)]. Finally, the terms contained in
the third set of curly brackets represent both the beating
between the stimulated Raman polarization branch and
the conjugate stimulated Raman polarization branch on
different chromophores (+6~+6,P =+bgP f~), as well
as the beating between the spontaneous Raman polariza-
tion and its self-conjugate branches (+b,P+ hP

+lhlfg fs ). Such Bohr frequency difference beats are
represented analytically in Eqs. (3.28) —(3.40). The second
signal component on the rhs of Eq. (4.15) involves only
projection of like exciplexes. This term reproduces only
the detuning oscillations contained in the first two sets of
curly brackets on the rhs of Eq. (4.16). It does not exhibit
Bohr frequency difference beats, in agreement with the
analytic results (Sec. III B} where Bohr frequency
difference beats IEqs. (3.19) and (3.41)] occur only when
the fields correlate spontaneous Raman polarization on
one chromophore with stimulated Raman polarization on
the other (that is, when unlike exciplexes are generated).

For electronically resonant mixing, new radiation-

matter oscillators appear in addition to the four ground-
state Raman oscillators set fourth in Eqs. (4.7)—(4.10).
Oscillators involving excited-electronic-state Raman
modes can be prepared, and others involving purely vib-
ronic modes can be made as well. One therefore antici-
pates a variety of radiation-bichromophoric exciplexes
generated by the 2,2' field correlation. These may consist
of a pair of Raman oscillators of the electronic ground
state (as above), two Raman oscillators in the excited
electronic state, or mixed excited-state —ground state Ra-
man exciplexes as well as vibronic-Raman exciplexes.
For example, the AB*+BA * scattering channel (Fig. 4)
produces the two-chromophore exciplexes involving an
excited-electronic-state mode, say on chromophore Q,
and a ground-state mode on chromophore Q'. The
excited-state two-field stimulated Raman polarization
and spontaneous Raman polarization off-diagonal projec-
tors corresponding, respectively, to the operator action of
V, V z and Vz Vs on chromophore Q, and can be writ-
ten as

= i(rg )=IVi'(Q) &&gl lg &«z (Q)I+Ip.',(Q';r)&&gl

(4.17)

and

:=,"(r~ ) = lg & &p,',(Q') I+ I V, (Q) & & gi Ig & & V s (Q) I
.

(4.18)
These are mixed Raman oscillator exciplexes. An
excited- (ground-) electronic-state stimulated Raman po-
larization step on chromophore Q (Q') is coupled to a
ground- (excited-} electronic-state spontaneous Raman
polarization step on chromophore Q' (Q). In Eqs. (4.17)
and (4.18), the excited-electronic-state stimulated Raman
polarization operator is given by

I ~;(Q) &&gl ~ Ig &( v, (Q)l

=(~ &+(t)lni —1&&n, lIIn„np'] )(In2' n2] los&&osl lmg &&gg

Igg &&gQ' ) (In, &&n, l&@l nI2nz. ] && In& n2 1]I&2 (r)los&&osllgg)&n&llgg &&gg I) (4.19)

and the corresponding excited-electronic-state spontaneous Raman polarization operator can be written as

I
V (Q;r) & &gl Ig & & V,+(Q)

I

=(ln, & &n, Iaz,—,(r+r)l jn„n, , + I] ) & In, „n, ] le los)(oslo lf~ & &m~1

lgz &&g& I) (ln& &&n& I IIn„n, ] && [n2, n2] I los && Isles (r) in& &&fgl Ig& &(g& I) . (4.20)



3914 M. A. DUGAN AND A. C. ALBRECHT 43

The radiation-bichromophore exciplex represented in
Eqs. (4.17) and (4.18) form a resonances at steady state
with a detuning corn„+ co&g +~~ —~, and a width
r .—I.fg+I.++I-i Similarly, correlation between like
processes (both being a stimulated Raman polarization or
a spontaneous Raman polarization step, one in the elec-
tronic excited state) will give rise to the field-independent
resonance with a frequency co „—co

&
and width

The hybrid vibronic-Raman exciplexes appear when
two base oscillators are coupled (one on each chromo-
phore) which appear at different orders in the fully reso-
nant polarization. Thus consider a vibronic coherence on
a (p„~) [Fig. 4(c)] oscillating at co„s —coz (if appearing at
first order) or at —co„s —coz+~s+co, (if at fourth order),
that is coupled to a Raman oscillator on /3 (p&~, oscillat-
ing at A~i or at —h~s). Such exciplexes appear in the
AC*+CA * channel (Fig. 4). They offer hybrid detuning
resonant structure in steady state at ~„g cc)fg cop 0a /3

and co„+m& —co&=0, having corresponding linewidths

r.g
—rfg —rs and r„,+I fg+r1

Constructing the signal with the commutator algebra
used in Eqs. (4.15) and (4.16), but now with the different
electronically resonant exciplex operators, results in the
various oscillatory transients listed in Tables I—III and
obtained analytically through the theory in Sec. III.

Speaking more generally, a Rabi detuning oscillation,
associated with one of four mutually coherent broadband
fields and generated at any point in the evolution of the
fourth-order scattering amplitudes, can couple to another
Rabi detuning oscillator (possibly at a different order in
the field interventions) containing one of the two remain-
ing twin conjugate fields. In some sense, these two Rabi
oscillators, associated with separate chromophores, be-
come phase locked due to the cancellation (or destructive
interference) of the broadband fields. Under the assump-
tion of central limit statistics for the field Auctuations,
each one of these phase-locked two-chromophore super-
position states can be associated with a pair correlator
given in Eq. (3.5). Two such bichromophore coherences
contribute to each signal component due to the quadra-
ture level fourth-order correlation of the broadband fields
2 and 2', and therefore possess both a w-dependent and a
~-independent phase. The latter bichromophore coher-
ences arise from the self-correlators fz z (t) and f z

—'z+ (t)
and as a result, have a ~ dependence based on the intensi-

ty correlation of the fields. Thus these steady-state reso-
nances are observed in the signal spectrum for all ~ delays
less than the pulse width.

When vibronic levels are brought into near resonance
with the field fundamentals, steady-state vibronic coher-
ences, p'g oscillating at —b, gs i and p)„oscillating at

f g can become phase locked with Raman oscillators
generated at second-order stimulated Raman polarization
and fourth-order (spontaneous Raman polarization) on
chromophore Q'. This phase locking is now mediated
through interference with fields 1 and S. As a result, the
various damped detuning beats and material bilevel and
trilevel quantum beats listed in Tables I—III can be gen-
erated.

The sub-pulse-width signal transients induced in CSRS

and CARS are sensitive to any process that may disrupt
the phase coherence between the interfering material-
radiation superpositions. This decoupling can occur
upon introducing independent field statistics into the
nonlinear mixing by increasing the bandwidth of Ji (cubi)

or of JD (cps ), or by introducing inhomogeneous material
broadening. Thus a static distribution of Bohr frequen-
cies quenches the material-dependent transients, leaving
only the purely-light-damped (coherent peak) signal com-
ponents (see Appendix C).

CONCLUSIONS

The theoretical basis for new signals observed in
three-color 4WM interferometry and spectroscopy is de-
rived from a more general treatment of 4WM scattering
with correlated fields. In the particular application, two
of the incident fields are broadband twin fields of one
color, interferometrically separated by ~, and each as-
signed its own k vector. The third incident field, having
its own k vector and a second color, joins the twin fields
in a nonlinear sample. A signal field of a third color is
produced, having its k vector constrained by phase
matching. The spectral width of the nondegenerate in-
cident field is taken as an experimental parameter, as is
that of the signal field. Analytic expressions are obtained
for the signal intensity as a function of ~ and the viewing
frequency ~z. Fundamental to the generation of these
responses is the introduction of material correlation
through the action of mutually coherent fields in the time
development of the scattering amplitudes on separate
chromophores. As a result, two-chromophore coher-
ences arise from the phase locking of the Rabi detuning
oscillations of the radiation-matter superposition states
on each of the individual chromophores. Such two-
oscillator or exciplexlike coherences give rise to new reso-
nant features at steady state. It is shown that for a homo-
geneous ensemble of chromophores certain of these reso-
nances possess a width that depends only on the band-
widths of the nondegenerate field and the signal field in
the fast modulation limit of the matter-bath stochastic
processes.

The different oscillating transients seen in the interfero-
grams, such as radiation-matter detuning beats and
matter-matter quantum beats, as well as the zero-
frequency terms, decay at a rate given by one, or a com-
bination of, the material and/or the radiation linewidths.
It is shown how the relative strength of various signal
components is sensitive to the dephasing that is intro-
duced by going to a nonzero bandwidth of the nondegen-
erate field or the detector field (or both). When the spec-
tral width of both the signal filter and nondegenerate field
is made submaterial linewidth, the fourth-wave signal is
dominated by new Rabi detuning oscillations A~, 6'~,
and 6"~ involving a ground-electronic-state Raman
mode, an excited-electronic-state Raman mode, and a
vibronic mode, respectively. These signal transients,
though bichromophoric in origin, carry precise mode fre-
quency and dephasing rate information for a given pair of
states on a single chromophore. Under such excitation
conditions and in the absence of interchromophore
coherence transfer, the interference of a11 nearby super-



43 RADIATION-MATTER OSCILLATIONS AND. . . . I. 391S

posed modes, manifested in the interferograms as materi-
al quantum beats, or detuning beats involving Bohr fre-
quencies on separated chromophores, is suppressed.

In comparing long-pulsed incoherent excitation with
short-pulse coherent excitation in general 4WM measure-
ments, the issue of the relevant time scales for measuring
material response arises. The ~ dependence of the inter-
ferograms presented in this paper are based on phase-
sensitive amplitude correlation of the intervening fields.
Since the temporal resolution is limited to the coherence
time of the superposition field, both broadband in-
coherent fields and short-pulsed coherent fields of equal
bandwidth will probe the same short-time dynamics.
However, measurements using long-pulsed incoherent
(nonbandwidth limited) excitation fields are accumulative
in nature and result in a real-time averaging of the ma-
terial response over the long-pulse envelope. Spectral
diffusion processes and possibly additional scattering
pathways due to slow transfer among material states may
inhuence the line shape in a manner that is absent when
short pulses are used. The use of long-pulse incoherent
fields also allows a higher permutation symmetry of the
driving fields in the mixing, thus enabling correlation
among a greater number of scattering channels.

If static inhomogeneity of material Bohr frequencies
survives on the time scale of the long pulse, and if it
exceeds the homogeneous width, then the new Rabi de-
tuning oscillations are quenched, leaving only the
coherent peak of the radiation fields in the 4WM signal.

The analytic results presented in this paper describe
signal features in the coherent Raman 4WM spectros-
copies which are in excellent agreement with experimen-
tal results (paper II). However, consideration must be
given to the applicability of such Markovian models (for
material dynamics and field noise) in describing ultrafast
responses in condensed-phase systems. We hope to ex-
plore numerically, how non-Markovian behavior affects
the damping of the various new oscillatory transients and
the spectral widths of the new resonances seen in these
4WM experiments. With regard to the new spectral
features, does the rigorous cancellation of the material
homogeneous linewidths, associated with the 6~=0,
6'~=0, and 6"~=0 resonances, occur for general line-
broadening mechanisms? We already know that in the
Markov limit of homogeneous broadening, were the
width of one of these new resonances to exceed that con-
veyed by the signal filter and the nondegenerate field, one
would have a new way to characterize the degree of inho-
mogeneity.

The absence of any contribution from the twin broad-
band fields to the spectral width in much of the resonant
substructure, as well as to the damping parameter of
several signal transients, indicates their ability to destruc-
tively interfere. Their constructive interference gives rise
to many of the broadband resonances and fast transients.
Interference, constructive or destructive, is a measure of
the degree of coherence between the driving fields. In
need of further theoretical (and experimental) investiga-
tion, however, is how the shape of the coherence profile
influences the optical mixing process. For example, it
was seen how a change in the spectral densities of the

fields from Lorentzian to Gaussian removes the narrow
resonance at hz =0. Also, the interferometric oscilla-
tions at Az vanish. Many of the oscillatory signal
features listed in Tables I—III (e.g. , the vibrational-
vibronic trilevel quantum beats) do not contribute
significantly to the signal regardless of the Lorentzian
widths I

&
and I &. Perhaps different spectral densities

and signal filter functions can selectively enhance certain
signal components or introduce entirely new transient
and spectral features. Phase-amplitude pulse shaping is
the logical outcome of such considerations. Anoth-
er approach (not considered here) which has the potential
for unlocking new phase-sensitive optical phenomena in-
volves two-color heterodyne detection. In general, three-
or four-color 4WM involving correlated and/or uncorre-
lated input fields will generate a signal field phase
coherent with its predecessor fields. Gating of the signal
field with one or more of the input fields through, for ex-
ample, frequency mixing in a nonlinear crystal, will
directly probe optical responses originating with the
zero-point intervention contained in the general eight-
field correlator [Eq. (1.13)]. Such techniques have been
utilized in the detection of squeezed light.

Comparative studies of nonlinear optical measure-
ments using broadband incoherent laser fields and
coherent short-pulse fields will prove to be complementa-
ry in probing condensed-phase dynamics. Use of long-
pulse incoherent fields will isolate those signals that are
phase sensitive to the driving fields. We have seen how
such signals can have contributions that arise from in-
teresting field-mediated interchromophore correlation,
which for the coherent Raman spectroscopies excited
with incoherent light is the only source for the ~ depen-
dence when the input fields are maintained in constant
temporal overlap. Therefore these measurements offer
the potential for observing new transients due to the in-
terference from different time-ordered scattering channels
that cannot function when only ultrashort coherent
pulses are used. Furthermore, excitation with ultrashort
pulses examines stochastic processes over short accumu-
lation times. Such pulses, when used in coherent Raman
spectroscopies, produce phase-sensitive field mediated in-
terchromophore correlation similar to that which occurs
in incoherent excitation. But in addition, signal tran-
sients appear that are based on a phase-insensitive inten-
sity correlation. Here the chromophore itself mediates
between fields which are not cotemporal and otherwise
noninterfering. Such material transients do not occur
when incoherent light is used whose temporal width
greatly exceeds the material relaxation rate constants.
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APPENDIX A

Stochastic interactions between the driven chromo-
phore states (the states of H~ ) and the thermalized exci-
tations of the material bath (the states of H~ ) are
represented by the function F~(t) [Eq. (1.42) for the qth
channel]. Chromophore resonances at the fundamentals,
or at the diff'erence frequencies, of the (optical) excitation
fields are considered. Possible resonances at sum fre-
quencies are neglected. The random modulation of vibra-
tional Bohr frequencies, resonant at second order of the
driving fields, is taken to be statistically independent of
the random modulation of the vibronic resonances gen-
erated at first and third orders. This amounts to the as-
sumption that vibronic pure dephasing is decoupled from
vibrational pure dephasing, regardless of whether the vi-
brational resonance is in the excited electronic state or in
the ground electronic state. For the special situation
having nearly degenerate electronic states, a vibronic res-
onance is possible at second order and the decoupling of
its pure dephasing from that of other vibronic resonances
is problematical. This special case is not treated here.

The uncoupling of stochastic modulations in the elec-
tronic space from that in the vibrational space permits a
factoring of F~(t) into an electronic (e) and a vibrational
(v) part:

(A 1)

a sum of statistically independent random variables,

5(o „=+ 5'' „. (A6)

Following the development in Refs. 25 —27 and making
use of the correlation function in Eq. (2.9), we can write
Eq. (A4) as

exp —f

deaf

dr'g w'„(rr')
0 0

= +'exp
2

(e ' ' —1+Ar2)
A;

(A7)

The ith independent stochastic process is characterized
by its amplitude 6; and its correlation time A,.

Electronic pure dephasing, described by the first factor
Eq. (Al), involves two exponential terms [Eq. (A2)]. The
two different vibronic Bohr frequency modulations are
assumed correlated by virtue of the fact that they belong
to the same pair of electronic potential surfaces. Correla-
tion between the random variables 5cof„and 5(o'„will be
given in terms of 6''„ the modulation of the excited-state
electronic surface relative to the ground electronic sur-
face. The electronic pure dephasing function can be writ-
ten as

FP(r„r2, r3)
where

r, +r, +r,
p'Ptr„re, r, )=(exp i f dr5ee)„tr)

2 3

r3
Xexp +i f dr5m„s(r)

0 Bg
and

(A2)

=exp —f d rf dr'wf„(1, 1 )
0 0

—f 'dr f''dr w„,(r, r )
0 0

r(+ r2+ r3
+ f deaf d 'rw( ,r'r)r2+ r3 0

(AS)

'2
Ft)(r, )=(exp i I dr See „(r)

0 Bg
(A3)

FP(r ) =exp —f dr f dr'w „(r,r')
0 0

where

„(.)), .
Q

(A4)

(A5)

In order to simulate a distribution of dynamical pro-
cesses, the frequency modulation 6' „can be written as

Here the labels m and n (f and g) refer to vibrational lev-
els of the excited (ground) electronic surface. Following
the usual approach, a Gaussian stochastic process with
zero mean is assumed. Since the stochastic interactions
are adiabatic, this assumption is equivalent to a second-
order cumulant truncation of F~(t) in terms of the 5''s.

Equation (A3) involves a single exponential average
and can be written as

Correlation of the stochastically modulated vibronic fre-
quencies across the two different time intervals 7, and ~3
is represented by the third double integral. The effects of
such "vertex" terms in various nonlinear mixing process-
es has been investigated in Ref. 29 under the more gen-
eral context of arbitrary field strengths. Here this corn-
ponent can be rewritten as

rl+r2+r3 3

J dr J dr'w, (r, r')

r)+72+r3 r2 r2+ r3f dr+ J' dr —f0 0 0

rl+ r2—f dr f 'dr'w, (r, r') .
0 0

(A9)

Using Eqs. (A5) —(A7) for multiple stochastic processes,
but now applied to the electronic problem, Eq. (AS) [with
(A9)] becomes

FP(r„r, r )= &' ~ exp

X exp +

2 —A' „rl(e f" ' —1+A'f„r, ) exp
6f„

Af„
6l 2

e
e ''(1 —e ' ')(1 —e '')

'2
—A'„

(e "' ' —1+'A'„sr3)

(A 10)
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(&f„)'
exp — . ~& exp

Af,

(&'„s )'
73 ~

A',
(A 1 1)

The limiting behavior of any given stochastic process
can be explored for both the electronic and the vibration-
al pure dephasing. Each time interval between field inter-
vention points can be characterized by an accumulation
time ~„,. Such an accumulation time is determined by
the pulse width [the local intensity functions e& i. (r, ) in
Eq. (2.14)] or the effective ground-state recovery time of
some optically pumped channel, should it exceed the in-
terval between successive pulses. Thus the fast-
modulation limit for the ith stochastic process is obtained
if (A ) «r„, over the interval in which it is active. In
order for such stochasticity to be manifested in the mea-
sured dynamics, the condition 5'/A'((1 must be met.
Therefore if we take (A') ' «w„, and 5'/A' « 1 for the
ith stochastic process during all time intervals, correla-
tion across the ~& and ~3 time intervals is reduced to uni-
ty. The resulting contribution of this stochastic electron-
ic process [Eq. (A10)] to the integrand in Eq. (2.14) can
be approximated as

In general, z„,need not be the same for the three time in-
tervals, particularly if it is determined by pulse-to-pulse
accumulation of material dynamics. For example, if the
accumulation time during the ~z interval is such that
(A', )

' ((r„,(fast modulation), but for the r, and r3 in-
tervals (A') '))r„, (slow modulation), then the elec-
tronic pure dephasing process loses any contribution
from the cross frequency correlators that give rise to the
third exponential term in Eq. (12).

Equation (2.15) is obtained from Eq. (A10) if one as-
sumes identical self and cross correlators for the vibronic
frequency modulations [wf„(r, r') =w„'s(r, r' ) =w,'(r, r') ].
This condition is realized in the case of degenerate 4WM
where identical vibronic coherences (to within a phase
factor) are generated at first and third orders of the field-
matter interaction. For two-color 4WM, the assumption
leading to Eq. (2.15) suggests that vibronic pure dephas-
ing is determined by the modulation of the excited (adia-
batic) electronic surface relative to the ground state. In
general, however, correlation between different vibronic
frequency modulations must be distinguished, as suggest-
ed by Eq. (A10).

(5f„r, )
exp

2

(|i'„gr3)
exp

2
2

Xexp[ —(6', )r,r3] . (A12)

In the slow-modulation limit (A ) ))r„,is assumed,
and when 6'/A'&)1, the ith stochastic process retains a
contribution from the cross frequency correlators. Over
most of the integration time in Eq. (2.14), electronic pure
dephasing from the ith process can be approximated as

APPENDIX B

Certain equations that are only alluded to in the text
are given in more detail in this appendix.

The fifth and sixth signal components on the rhs of Eq.
(3.19) represent the purely-light-related transients which
define the short-time response in the interferograms. The
first of these terms, Ir~ (r), is the analog of Eq.2+2+1+S
(3.15) for Lorentzian spectral densities of the nondegen-
erate field J, (co', ) and signal field JD(cos). The unlike
chromophore component [G(a,P) in Eq. (3.15)] can be
written here as

G(a, P)=
~2+2+ &+S ~ ~

e

[(a, )'+(r, , )"[(a,)'+(r, „, , )']

Re[8 (b„I ), ]cos(b + r)+ Im[B (6, I ), ]sin(b i, ~r ~
)

[(a;)'+(rf, , )'][(sf,")'+(r)f'. . .)']

Re[B (b, , 1 )z]cos(AR r)+ Im[B (b., I )z]sin(b~ ~r~ )+ [(a",)'+(rf, ,)2][(aP)'+(rf. . .)']
Re[B(b„I )3]cos(bzr)+Im[B(b„I )3]sin(bz ~r~)+ [(a;)'+ (rf, , )'][(a~)'+(rf„„,)']
Re[B(b„l ) ]c4(ohsz )+rIm[B (b, , I )4]sin(hz ~r~ )+ [(a;)'+(rf , , )'][(a~)'+(r~f. . .)']
Re[B (b„l )~]cos(hz r)+Im[B (b„l )&]sin(Az ~r~ )+

[(6 ) +(rf ) ][(a~)'+(rf +p+s) ]

Re[B(D,I )6]cos(hi, r)+Im[B(b„l )6]sin(bz ~r~)+
[(a;)'+(rf. . .)'][(aP'+(rf. . .)']

from which G(p, a), G(a, a), and G(p, p) can be obtained. The weighting of the sines and cosines is given by the com-
plex functions, whose real and imaginary parts can be written as
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Rel B (~» ~)1] (~21 + ~1+S~2+2+1+S )(~s~l +~fg —2 S—~fg —2 —1) ~R ~2+1+S(~l~fg —2 —S ~s~fg —2 —1) (82)

I [B(b„I ), ]= I, (6 6, +I f —SI f —,)+(6 —I, SI 2, S)(b, , l f S ApI f ) (83)

respectively. Equations (82) and (83) can be abbreviated as B(b„l ), =B(hs, 5~1 I f 2 s, I ~fg 2, ) from which the
terms

B(a,r)2=B(a;,a, , rf +2 s I f +2, ), B(b,, l )3=B(b, bl, I f 2 1 rf +,+,),
B (~»~)4 (~1~»1~»fg —2+1»~fg+2 —1)» B (~»~)5 B(~s»~S»~fg —2 —S» fg+2+S)

B(A, I )6=B(hs, bs, l fg+2 S, I fg 2+s)

are obtained.
The second purely-field-damped transient is not seen in the 5-function limit of Jl (co'1) and JD(cps). This signal com-

ponent is a zero-frequency transient and can be written as

(y [I,K, (a,a)+I SK2(a, a)+l, l SK~(a, a)]+y&[I,K, (13,P)+I SK2(P,P)+I,I SK3(P,P)]

+y yf3I I [K11(a,p)+Kl(p, a)]+I S[K2(a,/3)+K2(p, a)]+ I 11 [SK (3,ap)+K (3p, a)]] ) .

For the unlike chromophore cross terms, we have

1
2[(S, ) +(I, , ) ][(S,) +(r, , ) ]

(84)

k, (a, r),
[(a;)'+(I f „,)'][(S~)'+(r~f. . .)']

k, (~,r),+
[(a,")'+(rf „,)'][(af,')2+(rfp. . .)']

The function k1(5, I ), is given by

k, (b„1 )2

[(~s)'+(I f, —2+s)'][(~s)'+(I fg+2 —s)']
k, (a, r),+

[(a;)2+(rf „,)2][(ai,')2+(rff'„, , )2]
(85)

kl(~»~)1 kl(~S»~S»~fg —2+S»~fg —2 —S)

=[(a, )'+r, ,r, ,)(a;a, +rf I f ) 2X,I,(a;rf 1 f 6 )], (86)

where the remaining k, (h, l ), terms can be written as kl(b, , l )2=kl(bs, b~&, 1 f 2+s, l ~f +2 s),
k, (a, r)3 kl(ks As I f +2+s I fg 2 s), andki(b, I )4 kl(b's fs f +2+s I'kg+2 —s) InEq. (B4), K2(a, P) canbe
obtained from Kl (a,p) under the following parameter interchange:

K2 ( a,p ) = T( As ~ f».„f».~q ~b ~1 I s —I, )K, (a,13),

and K3(a,P) is given by

K3(a, f3) = 2

[(&S)'+(17g 2+S ) ][(+s) +(—I fg —2 —s)'][(&1)'+(Ifg —2+1)'][(&1)'+(Ifg 2 1)']
paP pnP

[(&f f ) +(I f f —,)'] —[(&f~ f, )'+(I'f f )']
gaP pa/3

+1m[k, (a, l )], , f' f,', +
f f ) ( f+f ——)] [— f f ) ( f+f—

fg —2+5 fg +2+8 fg —2+ I fg +2+ 1

The real and imaginary parts of k3(b„1 ) are written as

Re[k, (a, r)]=(a;—rf , ,rf , ,)(a;—I.f , ,rf , , ) —4s;x;(rf", , )'

and

I [k(~r)]=2[~r;, ,(~;—I f 2+iI f 2 1)+b I f 2(f»s —If 2 sl f 2 s)],

(87)

(88)

(89)

(810)
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respectively.
In Sec. IIIC, we presented electronically resonant CSRS signal transients oscillating at the detunings A~ and 6'~

from electronically ground- and excited-state Raman modes, respectively. The signal components given in Eqs. (3.49)
and (3.56) as F„~(a,g)+F „~(a,P) and F„' ~(a, /3)+F' ~(a, P), respectively, are defined here. The former com-

ponent can be written as

p QCX

F„~(a,/3)+F „~( aP) =L„' ~ „~(6,r)L„„(h,l )e
'

im[U, (x, r)] im[U, (x, r)]
X ~ Re[U, (b, , l )] +

U, (s, r) ' U, (s, r) '

Re[ U2(6, r)] Re[ U3(b„r)]—Im U, (b, , l ) +
/U, (s, r)/' /U, (a, r)/'

Im[U~(K, I )] Im[U6(h, l )] Im[U6(k, r)]
+Re U~(51) + +

/U, (s, r) f' [U,(a, r) f' (U, (a, r)/'

Re[U5(b„r)] Re[U6(b„l )]—1m[ U6(b„l )] + cos(b, r)
U, (x, r) ' U, (s, r) '

Re[ U2(b. , I ) ] Re[ U3(h, I )]+ Re[U, (b, r)] +
U, (s, r) ' U, (s, r) '

1m[ U (b„I )] Im[U (K, I )]
+Im[U, (h, r)] +

U, (s, r) ' U, (x, r)~'

Re[U~(b„r)] Re[U6(b„l )]
+Re[U~(b„r)] +

U~(h, r) U6(b„r)

+Im[U4(b, I )]
Im[U~(b. , r)] Im[U6(6, 1 )]

/U, (a, r)[' /U, (s, r)f' sin(A /r/) . . (811)

In the above equation, L„' ~ „~(5,1 ) is identical to L' ~(b, , l ) given in Eq. (3.52) and L ~ „~(b,, I ) is written

J 2 1

[(b,„f )'+(I „f )'][(&~f )'+(r~f )'][(&,)'+(r, )']

The complex functions U, (b„1 ) are given in terms of their real and imaginary parts as

«[U (~, r)]=Re[~(~,r)][~, ~(~„f s~ f s+r f+—sr f —s)+r (r f+s~—f —$' r f—s~ f —s)]
+1m[x(s, r)][a, ,(r„f 6 f I f 6 f, )

—r „,(A„f 5 f +I f I f )]

I [U, (s, r)]=1m[~(s,r)][a, ,(s„f 6 f +I f I f )+I (I f 6 f I f 5 f )]

e[ (b, , r)][5, ,(r„f 6 f I f 6 f ) I (5 f 6 f +I f I f s)]
U, (s, r)=(w/„'; f, ,s ~+r/'; f, , )+i(a/„'; f, ,r/f', f. . .—r/'; f, ,a ),

g+fg — fg fg rnf+fg+~ fg f—g ' ~~g+fg —~rfg+fg g fg+ fg fg-
U4(b I )=T(I f s I f s I f s r f+s)U~(b I ),
U5 ( ~ r ) ( ~mg —]~ rnf —fg —]rfg —fg —s —] ) + ~ ( ~ rgg —fg —] + rfg —fg —s —'[~mg —] )

(812)

(813)

(814)

(815)

(816)

(817)

(818)

and

U (A, r)=(lP, Af f —I'„ f,I'f f )

+~ (~fg fgrgg —fg —]+rfg+—fg~~g —])

(819)

(3.56) is similar to form to Eq. (811) and can be written in
terms of the following parameter change:
F'

g, (a, /3)+F'„~(a, P)=T(cog ~cog„,I ) ~I g„)
X [F„~,(a, /3)+F „,(a, f3)]

(820)
Finally, the F„',(a,P)+F' „~(a,P) component of Eq. for both Q =a and f3.
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APPENDIX C

The effects of inhomogeneous broadening of the ma-
terial resonances on the ~ dependence of fourth-wave sig-
nal is treated by distributing, at the amplitude level, the
material Bohr frequencies, or equivalently, their detun-
ings. Here we write the polarization correlation function
of Eq. (1.16), without the spatial factor, as

C(t', s';~)=((f dpi;g(5, )P "'(6, , t';v)
a'

d~~J, g ~~/, p "' ~~/„~',.~
P' R

g (h~q) = e
2~5~

(C&)

g (4P) =g(b, ~&), and 5~ (Q =a,P) is the inhomogeneous
width for the ensemble of chromophore type Q. Consid-
ering Lorentzian spectral densities for all intervening
fields, and assuming a broad inhomogeneous distribution
(5~&&I

g~ ), Eq. (3.19) is now written as

I ~(r) =I'r ~ (r)+I'r ~ (r)+I,'"~, (C3)

(b~q and b, f~h~i and b, g) for a Cxaussian distribution of
vibrational Bohr frequencies where

(C 1) where

The averages ( )&, are over degrees of freedom of the
material bath except for those that leave a static distribu-
tion of Bohr frequencies on the experimental time scales.
Consider the electronically nonresonant CSRS process

Ir (r) =I 2Iy 6'(a, a)+y&6'(P, P)2+2+ 1+S

+y y&[G'(a, P)+G'(/3, a)] j . (C4)

The cross term between unlike chromophores is given by

e

exp

6'(a, p) =
[(S,)'+(I, , )'][(a,)'+(r„, , „)']

cx
2 p~fg+2+1 - fg+2+SX 'exp

X I [(b,, )'+ r, ,l „.. .]cos(S„r)+2m,r„„,sin(aZ ~r~ ) I+V(r, r, )
.

,

where V'(I i~1 s) represents identical terms with I i re-
placed by I s and vice versa, from which G'(a, a),
G'(p, p), and 6'(p, a) can be obtained. The second term
on the rhs of Eq. (C3) is similar to the purely-light-
damped (I 2+2) signal component given in Eq. (B4), ex-
cept the material-dependent Lorentzian line shapes are
replaced with Gaussian line shapes, width 5~. The (con-
stant) background signal generated from the intensity
correlation of the field is represented by the third term in
Eq. (C3). Significantly, all contributions from the
material-dependent transients given in Eq. (3.19), includ-
ing the detuning oscillations, are absent.

In the electronically resonant case inhomogeneous
broadening of the material states also eliminates the de-
tuning oscillations and quantum beats associated with
electronically resonant CSRS discussed in Sec. III C.
Thus a static distribution of material Bohr frequencies
tends to disrupt the phase coherence between the super-
position states on different chromophores driven by con-
jugate broadband fields, and as a result, diminishes the
destructive (or constructive) interference; the net field-
induced coupling is weakened, and eventually destroyed
for a sufficiently broad static distribution of Bohr fre-
quencies.
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