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We derive the joint photon-number distribution for two-mode squeezed states with coherent
amplitudes. For certain ra, nges of the parameters, the joint distribution exhibits nonclassical
oscillations, which are the two-mode analog of the oscillations found in the single-mode case.
These nonclassical oscillations are absent from the marginal distributions for each mode. The
nonclassical features of the joint distribution may be explained using the interference —in —phase-
space concept in four-dimensional phase space.

I. INTRODUCTION

The photon-number probability distribution of a
single-mode squeezed state has been studied by several
authors. If the parameters of the squeezed state are
chosen appropriately, the photon-number distribution
can exhibit nonclassical oscillations, which are now well

understood in terms of "interference in phase space. "
In Sec. II we derive the joint photon-number probabil-
ity distribution for two-mode squeezed states and show
that for particular choices of parameters there are simi-
lar nonclassical oscillations in the joint distribution. In
Sec. III an analysis of the joint photon-number distribu-
tion reveals that these oscillations may be interpreted as
due to interference in four-dimensional phase space.

The oscillations in the joint photon-number distribu-
tion might be observed in experiments that generate
pulsed two-mode squeezed light. In previous experiments
of this sort, the pulses of two-mode squeezed light were

generated by an optical parametric amplifier, and the
two correlated modes (signal and idler) had orthogonal
polarizations. This last feature is not essential, how-

ever, and in other configurations the two modes might
be distinguished by frequency or by propagation direc-
tion. Having separated the two modes, as was done

by using a polarizing beamsplitter in the most recent
experiment, one could direct them onto separate pho-
tocounters and then build up the joint photon-number
distribution from the photocount statistics of a sequence
of pulses. Of course, the oscillations would be very dif-
ficult to observe in practice, because the subunity quan-
tum e%ciency of available photocounters reduces their
visibility, as has been demonstrated in the single-mode
case by Milburn and Walls. The prospects for observing

the oscillations in continuous-wave, as opposed to pulsed,
two-mode squeezed light are even worse, because effective
ineKciencies and multimode effects in direction detection
of continuous-wave squeezed light are likely to render the
oscillations invisible, even for photocounters with unity
quantum efriciency. These effects have been investigated
recently for the single-mode case by Zhu and Caves.

II. PHOTON-NUMBER DISTRIBUTION
FOR TWO-MODE SC}UEEZED STATES

Consider two modes of the electromagnetic field, which
have annihilation operators O, i and a~. An ideal two-
mode squeezed state is defined by

(2.1)

where l0) is the two-mode vacuum state. The two-mode
squeeze operator,

S(r, P):—exp r (a~ aze '~ —ar a2e '~) (2.2)

is characterized by a (real) squeeze parameter r and an
angle P that determines the phase of the squeezing. The
two-mode displacement operator,

D(nl n2) = Dl(nl)D2(n2)

is a product of displacement operators for each mode,

D, (n;)—:exp(n;aI —n,*a;), i = 1,2, (2.4)

where n; = (a, ) is the coherent amplitude of mode i.
Without loss of generality, we may set the squeezing
phase P = 0 in what follows.

The joint probability to find n& photons in mode 1 and
n2 photons in mode 2 is given by
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2P(ni, n2) = ({ni,n2~ni, n2)(„o) ( (2 5)

where ~ni, n2) = ~ni)i ~n2)2 is the direct product of
photon-number eigenstates ~ni)i and ~n2)2 for modes 1
and 2. The mean number of photons in the two-mode
squeezed state is

S'(p 0) = e
cosh r

—(a~aq+asaa) ln(cosh t ) aqa stnnh r (2.8)

(a,ai + a2a2) = (ni[ + (n2(2+ 2sinh r, (2.6)

where ~n;~ is the mean number of coherent photons in
mode i and 2sinh r is the mean number of photons re-
sulting from the squeezing.

To calculate the probability amplitude

When this form of S(r, 0) acts on the vacuum state,
the second and third exponentials may be replaced by
unity, leaving the amplitude (2.7) in the form

c(ni, n2) = {ni,n2~D, (ni)D2(n2)e '~"' "h"
~0) .

cosh r
c(ni, n2) = {ni,n2Ieti, ct2)(„o), (2.7) (2 9)

we proceed by an appropriate operator ordering of the
two-mode displacement and squeeze operators. The two-
mode squeeze operator may be written as6

Moving the displacement operators through the squeeze
operator and then normal ordering the displacement op-
erators, we find

C Dy, A2

—{a~P I+~~P~)/2 - t - t
{ni n2~e a~as tanh ref qa~ e"'as ~0}cosh r (2.10)

where we define

p& = o.&+ o,2tanhr, (2.11)

pg =—o.2+ ni tanhr .

Expanding the exponentials in Eq. (2.10), we are able to write the matrix element on the right as

(2.12)

V'n ' 2'C"'S"'
min{nI, n2)

1 pyp2j!(ni —j)!(n2 —j)! tanh r
(2.13)

atat tanh rThe index j is the number of pairs of photons created by e ~I ~ "~""",whereas nz —j and n2 —j are the numbers of
~tphotons created singly by e"' ~ and e"' s. The sum in Eq. (2.13) may be manipulated into a form that involves a

generalized Laguerre polynomial 1(„)(z).We are thus able to put the amplitude (2.7) into its final form

~ —tanh r» !
( )

( ") P n, —p n, —p I (q p) Pi P2 ——(c, IJ, ,+n, p, )/2
Py P2 J (2.14)

where

P = 111111(ni) n2) ) (2.15)

q =—max(n„n, ) .

The elements of the joint distribution (2.5) along the main diagonal ni ——n2 ——n are given by

(2.16)

P(n, n) = I,„pe(x—[~n, ~
+ ~a2~ + (et, n2+ n", n2) tanh p])

(tanh r) (o) pl@2
cosh p

" tanh r (2.17)

P(n„n2) = P(n, n)b„, „6„,„
has only diagonal elements

(tanh p)2"
P(n, n) =

cosh r

(2.18)

(2.19)

%hen there are no coherent amplitudes —i.e. , o;~ ——o, 2
——

0—the joint distribution

I

a result obtained previously.
In Figs. 1—3 we plot diagonal and/or joint photon-

number distributions for three two-mode squeezed states.
In Fig. 1 the state is specified by ni ——n2 ——3.0 (both
real) and r = 1.5. Clearly evident in both the diag-
onal distribution [Fig. 1(a)] and the joint distribution
[Fig. 1(b)] are oscillations that are similar to the os-
cillations in the high-number tail of the photon-number
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Pi = tr2(lo'i o'~)I. , o) I,o)(ci'»ci2I) = d2p
2(p2 I~1 ~ ~2)(r, p) (r, 0) (~1) ~2 Ip2) 2 (2.20)

Here the trace over mode 2 is carried out as an integral
over the coherent states IPz)2 of mode 2. We now substi-
tute into Eq. (2.20) the two-mode squeezed state (2.1),
write the two-mode squeeze operator in the form (2.8),
carry out some tedious algebra involving coherent states pz = d'Pi Pi(Pi) IPi)»(P, I, (2.21)

and displacement operators, and finally write the reduced
density operator as an incoherent mixture of coherent
states IPi)i for mode 1,

where the P function for mode 1,

IPi —~i I'
Pi(Pi) =

2 exp
xsinh r sinh r

(2.22)

P(n, ,

0.015

0. 0

o. oo

is that of a displaced thermal state. The displaced ther-
mal state has a mean number of photons sinh r, half the
average number of squeezed photons, and it is displaced
by ni in its phase plane.

That the reduced state of mode 1 has a P function
means that it is a classical state; there should be no
nonclassical oscillations in its photon-number distribu-
tion Pi(ni). Perhaps the easiest way to get at Pi(ni)
is to calculate first the photon-number generating func-
tion,

Q&(~i) = ) (1 ~i) Pi(ni)

35- (b)

30- I A i lni I'
exp —

2 ~, (2.23)1+ Ai sinh r 1+Ai sinh rP
25-
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FIG. 3. Photon-number probabilities for a two-mode
squeezed state Ini, n2)( p) [Eq. (2.1)] with ni = 0, n2

~18 4.24, and r = 1.5. For this state there are on aver-
age 18 coherent photons (none in mode 1 and 18 in mode 2)
and 9.07 squeezed photons. (a) Three-dimensional plot of
the joint distribution P(ni, n2) [Eq. (2.5)]. There are oscil-
lations with much the same structure as in Fig. 1(b), except
that the peaks of the successive maxima are shifted toward
the n2 axis. (b) The parabola (3.25) and regions I, II, and
III [Eqs. (3.22)—(3.24)] for this state, which has Xp = 6. The
parabola. approximates the first maximum of P(ni, n2). The
dots mark the actual position of the first maximum, deter-
mined by moving out from the nz or n2 axis along a diagonal
until the first maximum is reached.

III. INTERFERENCE IN
FOUR-DIMENSIONAL PHASE SPACE

One expects on the basis of the analyses in Refs. 3
and 5 that the oscillations in the joint photon-number
distribution may be interpreted in terms of interference
in phase space. We now show that this is indeed the case.
Moreover, the analysis predicts the form of the first curve
of maximum probability in the n~-n2 plane.

We begin by writing the photon-counting probabil-
ity amplitude (2.7) in terms of configuration space wave
functions,
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C t2]) A2 d+2 ~Ay (+ 1)UAg (+2) (&1 o &2 i~1 o ~2 )( p0) (3 1)

where

~, (& ) = (& I& ) = (n'l~ ) (3 2)

is the (real) eigenfunction for an oscillator number state with n, quanta. The coordinate wave function for a two-mode
squeezed state is given by

Z T T T(el eol~o, ~o)(, , o~
= exp ——pexo exp(ipox) exp ——(dx) Mdx)

2 2
(3.3)

where b is an irrelevant phase that we set to zero hence-
forth. The wave function (3.3) is written in vector nota-
tion, with

(3.4)

Ax =x —xG

and by specifying the matrix

& cosh 2r sinh 2r )
(, sinh 2r cosh 2r y

(3.7)

(3.8)

zg Re og (3.5)

The mean positions and momenta are also written in this
vector notation:

which is half the inverse of the coordinate covariance ma-
trix. For simplicity we take a~ and ap to be real hence-
forth; this implies that pg ——0.

We now change variables to diagonalize M:

Py 2
IITl Ay (3.6)

X = zg+z2,

X = 2 Zy —X2

(3.9)

(3.10)

The wave function is completed by defining In these new variables the overlap integral (3.1) becomes

OO

C A], A2
C)Q

dA V„,(e+ —o'A}V, (—e+ —o'X) exp( ——(x —eo)') exp (——(& —Xo) (3.11)

with

Xp = v 2(n1 + n2), (3.12)

is sufficiently small to approximate

e-(x—x, )'/2 (3.15)

1
XO = 0,'y —0!2 )

2
(3.13)

6 = 2e (3.14)

AVe now assume large enough squeezing (} &) 1) that e

as b(X —X()) in Eq. (3.11). A better approximation
for c(n1, n2) may be obtained by retaining higher-order
terms in e, as outlined in Ref. 4, but for our purposes the
6-function approximation is adequate. It enables us to
write

c(n1, n2) - ~2& deU, (e+ 'oXo)U .(
—e+ -'o&o) exp (

——(x —eo)') (3.16)

Aside from the Gaussian, the approximation (3.16) is an overlap between two number eigenfunctions of different

quantum numbers, one of which is displaced from the origin by —2Xo and the other of which is reflected through the
origin and then displaced by 2XD. Indeed, if we neglect the Gaussian, as we may in the large squeezing limit, we may

put Eq. (3.16) into the form of a number-state matrix element of a generic displacement operator D(n) = e

c(n1, n2) (—1)"'~2e (n1iD(XO/~2) in2)

= (—1)"'2e "gp!/q! (Xo/~2) "1t~ ~ (Xo/2)e (3.17)
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Except for the irrelevant phase factor (—1)"', this form
of c(ni, nz) is the large squeezing limit of the exact prob-
ability amplitude (2.14). It allows us to understand why
for Xp ——0 (as in Fig. 2) the photon-number probability
is concentrated on the main diagonal and has no oscilla-
tions.

Returning now to Eq. (3.16), we follow Schleich5 in

developing a semi-classical approximation that employs
WKB number-state eigenfunctions and evaluates the in-

tegral (3.16) using the method of stationary phase. Our
goal is not quantitative accuracy, but rather qualitative
physical insight. In the classically allowed region the
WKB eigenfunction for a number state with n quanta
is given by

region III: Xp ( ~ri —r2(, (3.24)

i.e. , one circle lies inside the other.
The boundary between these regions is a parabola,

2
1 2 1

2X2+8 o 2 ~

0
(3.25)

which is symmetric about the main diagonal.
Eq. (3.25) we use sum and diA'erence photon numbers,

In

n:—-'(n, + n2), (3.26)

i.e. , the circles intersect, but neither lies inside the other;

rn —=n1 —n2 ~ (3.27)

1/2

U (c) = ( ccc(S„(c)——
) (3.18)

Here

(3.19)

is the momentum at z of a classical trajectory with n

quanta, where

r„—= /2n+ 1 (3.20)

is the trajectory's turning point, or its radius in phase

space, and

1'n

S„(z)= dz' p„(z')
& S

(3.21)

region I: r1 + r 2 & X0,

i.e. , the circles do not intersect;

(3.22)

regioii II: ~r i —r 2~ ( Xp «i + i'2, (3.23)

is the phase accumulated from z to r„.
Under a simultaneous sign change of o, 1 and o, 2, the

photon-counting probability amplitude (2.14) is multi-
plied by (—1)"'+"',thus leaving the joint photon-number
probability distribution unchanged. The same symmetry
of c(nr, n2) is manifested in the exact form (3.11) and iii

the approximate form (3.16) under a simultaneous sign
change of X0 and z0. Thus, without loss of generality,
we may assume, as we do henceforth, that Xo Q 0.

With this assumption the phase-space geometry appro-
priate for a WKB approximation to the integral (3.16)
is depicted in Fig. 4. Associated with the eigenfunc-
tion V„,(z + 2Xp) is a circle of radius
/2ni + 1 centered at —&Xp, similarly associated with
the eigenfunction U„,(—z + -Xp) is a circle of radius
r2 = r„, = /2n2+ 1 centered at &Xp. We must con-
sider three possibilities, which divide the n1-n2 plane into
three regions:

It is convenient (and consistent with the WKB approx-
imation) to neglect the —

2 on the right-hand side of
Eq. (3.25), and we do so throughout the following. The
parabola has a turning point at ni ——n2 ——sXp (n =
sXp, m = 0), and it contacts the ni and n2 axes at
points of tangency, specified by ~m~ = 2n = -Xp2 (i.e. ,

nr —
2 Xp and n2 ——0 or ni ——0 and n2 ——2Xp ). In

Figs. 1(c) and 3(b) we plot the parabola (3.25) and la-
bel the three regions for the states considered in those
figures. The state of Fig. 2 has X0 ——0, so the parabola
degenerates into a line along the main diagonal; region I
disappears, region II degenerates to the main diagonal,
and region III covers the rest of the n1-n2 plane.

In region I the integral (3.16) is small, because at least
one of the eigenfunctions is always outside the classically
allowed region. Thus we expect that the joint distribu-
tion P(ni, nq) is small in region I, and we further expect
that the first maximum of the joint distribution occurs
as the classically allowed regions begin to overlap, which
is at or just beyond the parabolic boundary between re-
gions I and II. This picture is confirmed qualitatively
by the joint distributions plotted in Figs. 1(b) and 3(a),
which have regions of small probability near the origin,
shaped like region I, and a first maximum that appears to
lie on a parabola. To test the picture a bit more quanti-
tatively, we plot in Figs. 1(c) and 3(b) the actual position
of the first maximum and find very good agreement with
the parabolic boundary between regions I and II.

In region III also the integral (3.16) is small, because
although the classically allowed regions overlap, there is
no point of stationary phase, so the integrand oscillates
rapidly. Thus we expect P(ni, n2) to be small in re-

gion III, a picture confirmed qualitatively by the joint
distributions plotted in Figs. 2(b) and 3(a). In addition,
the plot of first maxima in Fig. 3(b) illustrates strikingly
the transition from very low probabilities in region III
to higher probabilities in region II as one crosses the
parabolic boundary between the two regions.

We implement our semiclassical approximation in re-
gion II. Neglecting contributions from the classically
forbidden regions and plugging WKB eigenfunctions
[Eq. (3.18)j into the approximation (3.16), we find
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ri —xo/&
c ny) n2

X

e
—e{x—xp) /2

[p, (z+ 2Xo)p, (—z+ 2Xo)]"'
I

is equivalent to

p„,(z, +-,'X,) = p„,( z,—+-,'X,)

where we have combined the two cosine functions and
discarded a term that oscillates rapidly, and where we

define a phase,

(3.28)

(3.31)

@' „,(z) = S,(z+ —,'Xo) + S,(—z+ —,'Xo) (3 29) and has the solution

We now evaluate the integral (3.28) by the method of
stationary phase. The stationary phase condition,

2 2
P] P

2Xp xo (3.32)

cIC„, „,(z) (3.30)
Equations (3.31) and (3.32) have the simple geometri-
cal interpretation sketched in Fig. 4. Using the solu-
tion (3.32), we may rewrite Eq. (3.31) as

p„,(z, + -'Xo) = p„,(—z, + 1~Xo) = ~2 (n —m~/2Xo —sXo + 2) (3.33)

which vanishes on the parabolic boundary (3.25). Using the method of stationary phase, with

c)24„, „,(z)
Dz

Xp

p„, (z, + -', Xo)
' (3.34)

and then squaring, we find an approximate joint photon-number distribution in region II,

4E E

P(ng, n2) = exp — 2(m —Xozo) sin C„, „,+-
«op+, z. + —,'Xo Xo'

(3.35)

where the phase (3.29) at the stationary solution,

C, „,=—4„,„,(z, ) = S„,(z, +-,'Xo)+S„,(—z, ~sXo),
(3.36)

5 (x +X/2)
ni 1 0 5 (—x2 + X()/2)

p„(—x2 + X0/2)

is the cross-hatched area in Fig. 4.
What can we say about the approximate distribu-

tion (3.35)? It predicts oscillations, because of the phase
C„,„„and it thus permits us to understand the oscilla-
tions as due to interference in phase space. This inter-
pretation arises from allowing the circle for an eigenstate
with n quanta to become a band whose thickness is cho-
sen so that the area of the band is 2', the quantum in
phase space when h = 1. Then the integral (3.16) is
interpreted5 as coming from the area of overlap of the
two bands in the phase space of Fig. 4; the phase C„,„,
describes interference between the two areas of overlap-
an interference in phase space.

The approximate distribution (3.35) also predicts
Gaussian behavior in the difference m. The mean of
the Gaussian lies at rn = Xpxp, and its half-width is
&Xpe". This behavior is confirmed qualitatively by the

joint distributions in Figs. 1—3. In particular, it is con-
sistent with the concentration of the joint distribution in
Fig. 2(b) along the main diagonal, because Xo —0 for
the state of Fig. 2.

Despite these successes, the semiclassical approxima-
tion and its joint distribution (3.35) are poor approxi-
mations, not least because it is diKcult to estimate er-
rors and to delineate the region of validity, if any. Near
the parabolic boundary of region II the joint distribu-

—Xp/2

71 g,n2

FIG. 4. Phase-space geometry for the semiclassical ap-
proximation to the integral (3.16). Associated with the eigen-
function U„, (x+ 2 Xp) is a circle of radius rq = v/2nq + 1 cen-
tered at —-Xp, associated with the eigenfunction U„~(—x+
-Xp) is a circle of radius r2 ——+2n2 + 1 centered at —-X'p.
The momenta p„, (xq + 2Xp) and p„, (—x2+ 2Xp) are repre-
sented by the labeled vertical lengths. The phases S„,(xq +
z Xp) and S ~(—x2+ ~ Xp) are represented by the areas delin-
eated by thin horizontal and vertical lines, respectively. The
stationary-phase condition (3.31) is met at position x, . The
phase 4„, ~ [Eq. (3.36)] is the area of the cross-hatched re-
gion.
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tion (3.35) does very poorly, as is evidenced by its blow-

ing up there, the reason being the use of &KB eigen-
functions and the stationary-phase method near classi-
cal turning points. The WKB eigenfunctions and the
stationary-phase method do better deep inside region II,
far from the boundary, but that is precisely where the
b-function approximation that leads to Eq. (3.16) runs
into trouble, because the number-state eigenfunctions os-
cillate very rapidly. Indeed, the joint distribution (3.35)

does not decrease nearly fast enough as n increases, In
short, the joint distribution (3.35) is mainly a guide to
insight, rather than a tool for calculation.
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