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We investigate the problem of resonant reAection and transmission of an ultrashort light pulse
passing through a thin layer consisting of two-level atoms. The local-field correction that leads to
an inversion-dependent resonance frequency generates a new mechanism of nonlinear transparency.
When the excitation frequency is somewhat larger than the original resonant frequency, then the
transmission of the layer exhibits a transient bistable behavior on the time scale of superradiation,
which can be much shorter than the relaxation times. This type of bistability is essentially diA'erent

from the ordinary stationary intrinsic bistability investigated earlier by other authors.

I. INTRODUCTION

There is a continuing interest in resonant, nonlinear
optical properties of thin layers, ' and particularly in
their possible optical bistable behavior. ' In most
works, the stationary regime is the center of interest,
when the duration of the external excitation T is much
longer than the atomic relaxation times. In this context a
possible new mechanism of optical bistability has been
proposed and discussed in a series of papers. '"' " ' It is
based on the local-field correction to the electric field. As
it is known, ' ' the field acting on the atoms in a medium
is difterent from the averaged macroscopic field (the im-
portance of this effect in resonant interaction has been
recognized long ago' ), and this may give rise to an in-
trinsic optical bistability in stationary fields.

In the present work we focus our attention on the
problem of refIection and transmission of ultrashort
pulses: T && T2, Tz, where T2 and Tz are the homo-
geneous and inhomogeneous dephasing times, respective-
ly. In contrast to our previous works and other pa-
pers, ' ' ' we take into account the effect of the local-field
correction on this process. In connection with this, we
derive and use a quantitative estimation for the local field
which is different from that of Refs. 3, 4, and 11—14.

We will show that for a su%ciently thin layer the joint
effect of the microscopic and macroscopic fields predicts
a new mechanism of nonlinear transparency of the medi-
um. This nonlinearity generates an effect which is the
analog of the dispersive optical bistability in the station-
ary case, but it takes place on a much shorter time scale
and manifests itself when wz & T & T2, T2, where ~~ is
the superradiation time of the medium. The reAection
and transmission of such fast pulses bear a superradiant
character, ' and we show that the transmission of the

layer can be multiple valued in this case as well. We call
this effect transient bistability. Our approach is therefore
different from that of Refs. 3, 4, and 11—16, where bista-
bility was governed by the phase relaxation. We also
note that the effect of the local-field correction on anoth-
er type of coherent interaction of light and matter, name-
ly, on self-induced transparency has already been inves-
tigated. ' Some preliminary results of our work have been
published earlier in a short paper.

II. THE EQUATIONS OF THE MODEL

—t (kx —cut )+' (2a)

aild

t t„(x,t)= —,'E„(t)e '" "+c.c. , (2b)

respectively, with slowly varying amplitudes in time:
E„(t) and E„(t). We seek the averaged macroscopic field
and the polarization inside the medium in the following
form:

We shall consider the boundary-value problem for the
transmission of a light pulse through a plan parallel reso-
nant layer consisting of two-level atoms. ' Let the in-
coming field be a linearly polarized plane wave

6, (x, t)= ,'E, (t)e ' " ""+c.c.—

with amplitude E, (t) slowly varying during one optical
period 2~/cu. We restrict ourselves to the case of normal
incidence and assume that the transition dipole moments
of the atoms are all parallel with the direction of the ex-
citing field. The refIected and transmitted waves will be
then also linearly polarized plane waves:
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C(x, t ) = —,'E(t)e'"'+c. c. ,

P(x, t)= —,'P(t)e' '+c.c. (3b)

Here we suppose that the amplitudes E and P are also
slowly varying functions of the time, but we do not re-
quire them to have this property in the space variable.
The problem we investigate is one dimensional in space,
thus the macroscopic field obeys the in homogeneous
wave equation

a
Bx c Bt

4~ BP
c Bt

(4)

The macroscopic polarization at a point x can be calcu-
lated in the usual way, ' taking into account that the
atoms may have different resonant frequencies co2&..

+P f d~21$ (~21)(P12+P21)

P2i Pi2 ~

Here N is the number of atoms in unit volume, p is the
transition dipole moment of the atoms, and g is the line
shape of the inhomogeneous broadening.

The elements of the density matrix obey the equations

~P11, l 15
P @ (P12 P21)+ P22Bt T&

~pz2, i Ap~ (P12 P21 T P22Bt 1

~P &2 iA
~~12P12 p @ (p22 Pl 1 ) T P12at 2

where T, and T2 are the relaxation times for the inver-
sion and the polarization, respectively. In Eqs. (6) 8 is
the field acting on the given atom. As it is known' '
differs from the macroscopic field strength by a local-field
correction caused by the dipole-dipole interaction

8'=6'+ P .
3

(7)

In Ref. 4 a different form has been obtained for this
correction in the thin layer limit. In Appendix A we
show that even for this case, the original Lorentz result is
the correct one.

In agreement with (2) and (3) we write

p12(x, co21, t ) = —,
' R (x, co21, t )e ' '+ c.c. (8)

P=Xp f dco2, ~(co2, )R . (9)

Then from Eqs. (6) and (7) we get a system of equations
for the slowly varying functions R and JK

BR .~ 1 R+ LpE, W
(3t T fz

(loa)

(E'*R E'R*)— —(1+W) .
Bt 2' T,

( lob)

Here A=co2& —~ is the detuning of the frequency of the
incoming field from the atomic resonance.

Using the retarded solution of the wave equation (4),
and by the help of (5) and (8) the amplitude of the macro-
scopic field strength can be written in the form

Let us introduce the notations W =
p2z

—p» for the popu-
lation difference and E'=E+4~P/3 for the amplitude of
the effective field, where

L
E(x, t)=E, (x, t) — Xp f dx'e ' ~'"" ' f dco2, ~(co2, )R(x', co2, , t —

~x —x'~lc) .
c 0

In the following we shall consider the system of equa-
tions (10) and (11), which completely determine our prob-
lem. Clearly, the amplitudes of the reAected and
transmitted waves can be expressed by the amplitude E in
the following way:

where

co2i co, c02t —Q)2) + AL W

4m
(16)

E„(t)=E(O,t) E, (O, t), E„=E(L,—t) . (12)

P=pNR, E'=E+ P .
3

Inserting E' into (10) we obtain

(13)

aR 1
R +—ER',lp

T~
(14a)

(E*R ER ")— (1+W)—,
Bt 2A T,

(14b)

Even without solving Eqs. (10) and (11), it is possible to
draw some conclusions about the physical consequences
of the local-field correction. In the case of negligible in-
homogeneous broadening we have

These equations have been derived here semiclassically, a
more rigorous QED derivation can be found, e.g. , in Ref.
4. They are widely used in the theory of lasers, bistabili-
ty, "' ' superradiance, and many other nonlinear opti-
cal effects.

We see that initially, when the system starts from its
ground state W= —1, the local-field correction leads to a
renormalization of the resonant frequency by an amount
of —4~p X /A. Later on it will cause a dynamical
shift' ' in the resonant frequency, depending linearly on
the population difference W. The amount of this frequen-
cy change is S~p N/A, as W is ranging between —1 and
+ 1. We note that 4' N/3 is of the same order of mag-
nitude as the interaction energy of two equal dipoles of
strength p separated by a distance (4mN/3)
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As the local-field correction causes a dynamical shift of
the atomic resonant frequency, its effect on the interac-
tion will essentially depend on the relative positions of
the carrier frequency of the incoming wave ~ and the re-
normalized resonant atomic frequency &21 ~21 ~L' If
co co&„ then during the excitation the system will be
driven out of resonance even more and will get more
transparent. On the contrary, if m & co&&, then the excita-
tion will improve the resonance condition, and accord-
ingly the reQection will be enhanced. We will show below
that this process of pulling into resonance has a threshold
character.

In the remainder of this section we briefly summarize
the case of weak fields, i.e., the linear limit, when we may
set 8'= —l. In the stationary situation Eqs. (14a) and
(13) lead to a linear relationship between the field
strength and the polarization P=yE, while the index of
refraction is given by

2
' 1/2

n =( I+4vry)' = 1+ (17)
kL7 g 6 +l /T2

E=E, —2~ikLP . (20)

When deriving (20) from (11) we have approximated the
exponential in the integrand by unity, and we have
neglected the dependence of all the amplitudes on the
spatial variable x. Taking into account also the local-
field correction, the actual field strength acting on the
atoms has the form

E'=E; —2~ikLP+ P .4~
(21)

The second term in this equation thus can be obtained al-
ready from the macroscopic Maxwell equations, while
the local-field correction is a result of microscopic effects.
A unique derivation of both terms is given in Appendix
A.

To simplify notation, instead of the field amplitudes we
shall use the appropriate Rabi frequencies: e;=pE;/A,
e=pE/A, and e'=pE'/A. Then our system of equations
describing the interaction of the light pulse with the thin
layer takes the following form:

Here we have introduced the following notations:

1 1

T2 T2
(18)

1 R +i e'8',
T2

(22b)
where Do=coo —~ is the detuning of the resonant frequen-
cy from the center of the inhomogeneous line. The latter
was supposed to be a Lorentzian of linewidth 2/T2. 'Tg
is the superradiation time of the layer:

E =E + L (R) . (22c)

2' XkL
+R (19)

The laws of reAection and transmission of the medium
can be deduced in the usual way, ' or by the help of the
integral equation (11). If the incident pulse is ultrashort,
T « T2, then the considerations above need to be
refined. The spectral width of such a pulse, T ', is much
larger than the width of the absorption line T2 . In this
case the index of refraction must be considered as a func-
tion of the frequency components of the pulse. So, one
has to determine the r exsection and transmission
coeScients for each spectral component, and then for the
whole pulse. The other possibility is to remain in the
time domain and solve the coupled equations (10) and
(11). Going over to the nonlinear case below, we shall
follow this latter route.

III. NONI. INEAR TRANSMISSION AND BISTABILITY

Turning to the investigation of strong pulses already
causing a significant inversion, we restrict ourselves to
the case of a thin layer, for which the spatial dependence
of the field and the polarization can be neglected. As it is
known from linear optics, this case is determined by the
inequality ~n(co) kL

~
(&1. A more exact estimation will

be given in Appendix B. For a thin layer the system of
equations (10) and (11) takes an essentially simpler form.
In this case the integral equation for the field strength
reduces to a simple algebraic equation:

BR . , 1iA'+ 8 R +i@,8, 5'=6+6& 8
Bt +R

(23a)

BR' i=—e, (R —R*)—
Bt 2

(23b)

where the amplitude e, was taken to be real and
(R ) =R. As it follows from Eq. (23a), if the phase

Here again the angular brackets denote the average over
the inhomogeneous line.

If kL &(1, then from Eq. (19) it follows that b, r ))r~ '.
Therefore for a thin layer (L «A, ) the local-field contri-
bution b, r (R ) to the effective field e' is dominant over
the radiation field —i (R ) /rz, as far as the absolute
values are concerned. Nevertheless both terms are im-
portant, because of the m/2 phase shift between them.

The local correction generates a shift in the resonant
frequency, while the radiation field, as it will be shown
below, induces a collective radiative relaxation of the po-
larization and of the inversion with a time constant ~z.

Let us consider an ultrashort light pulse, the duration
of which is less than the relaxation times, but is longer
than the superradiation time: ~~ & Tp & T2 T& ~ In the
linear case this relationship between the time constants
has been the condition of strong reAection. What hap-
pens if we increase the intensity of the incoming pulse, so
that nonlinearity is supposed to play a role? For an ul-
trashort pulse the system of equations (22) can be written
in the form
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memory of the atomic system is conserved,
( T, , T2, T2 ~ ~ ), then the time scale of the radiation re-
laxation is rz /~ 8'~. This quantity as well as the shift of
the resonant frequency AL 8'depend on the inversion 8'.
Therefore the width of the resonance will be determined
by the quantity

~
II

~ /&it .

A. Resonant excitation, nonlinear transparency

Let the incoming field be detuned from the transition
frequency so that c0=cc)p, 4~+ N/316 ol DO=A 61 =0.
If the amplitude of the exciting wave is not too large,
e; (~z, and the detuning is not significant during the
process, 6' (~z ', then the pulse is strongly reflected from
the layer. ' If we increase the incoming amplitude and
accordingly the degree of the excitation, then the atomic
system will be driven out of resonance, and instead of
rejecting the layer will be transparent.

To estimate the detuning 6' at which the transparency
becomes significant, let us use the linear approximation:
Eq. (17) with T'2 ~ ~. The condition of getting compara-
ble refIection and transmission coeKcients for a thin layer
(~n~kL &&1) has the form ~n

~
kL =l. According to Eq.

(17) this is equivalent to the relation 6'r~ = l. In this
way, the transparency of the layer will be significant,
when the frequency shift induced by the field is compara-
ble or larger than the width of the resonance. As
b.'=(1+8 )bL =2p22bL, we obtain an estimate for the
corresponding population of the upper state:
pz2-—(b, 'rs ) 'kL « l. As it is known, for extended sys-
tems transparency is connected either with saturating
fields equalizing the ground- and excited-state popula-
tions (pz2—-—,'), or with the effect of self-induced tran-
sparency. In both cases the variation of the population
is large: 5p22 is the order of unity. In contrast to this, in
our case transparency appears already at a negligible in-
version p22=kL «1. (The enhancement of the resonant
nonlinear susceptibility caused by dipole-dipole interac-
tion has also been noted in Refs. 26 and 27.)

In order to obtain a more detailed picture of the
response of the resonant thin layer, we have calculated
numerically the time dependences of the transmission
coefficient 7 = ~e„/e, ~

and of the inversion W. The re-
sults are shown in Fig. 1. This figure demonstrates the
buildup of a stationary T and 8' after switching on the
external field with difFerent constant amplitudes. 8'e
must emphasize that stationarity is understood here, of
course, on a time scale longer than ~~, but shorter than
Tz. As it can be seen, the numerical results justify the
conclusion about the growth of the transparency caused
by increasing the incident amplitude. A weak incoming
wave will be totally reflected after a time ~~ needed for
the buildup of the polarization (curve 1 of Fig. 1). In-
creasing the amplitude, the layer becomes more and more
transparent (curves 2 —4). This transparency arises at a
negligible excitation of the atoms; the inversion remains
close to its initial value —1. The calculations also show
that the stationary transmission and inversion are
achieved not monotonically but exhibiting damped opti-
cal nutations.

The expression for the stationary value for the reAected
and transmitted waves, as well as for the transmission
coefficient T, can be found from the system of equations
(23). Setting the derivatives equal to zero, we get from
the first equation

iW„
i 6'+ 8'„jw~

(24)

The second equation is satisfied identically. The system,
however, has a constant of motion ~R

~

+8' =1, and
this allows one to get an expression for 8"„:

(1 —W„) (b, ') + (2&)

We note that this is a fourth-order equation in 8',„
while in the case of ordinary stationary intrinsic bistabili-
ty the corresponding equation is of the third order.

The amplitudes of the rejected and transmitted fields
can be written in the form

0

W

234
J ll I

I I
l

0 10

FIG. 1. Buildup of the stationary transmission coe%cient
V'=

~ e„/e;
~

and of the inversion 8' of a thin layer:
kL =0.066667, AL~& =2/3kI. =10; after switching on a reso-
nant (Ap=0) step pulse of constant amplitude: e; =op/~&.
Curve 1, E'p=0. 1' curve 2 6'p=0. 3 curve 3 E'p=0. 7; curve 4,
ep= 1.0.
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R„=— (26a)

l

+R
(26b)

Jl )(

0

respectively. This yields the following transmission
coefficient:

(&')'
(b, ') +(W„/r~ )

(27)

2
pzz

pzz+ (3kL /4)
(28)

The equation for pzz follows from (25), and in the limit

p~z && 1 it has the form

pzzI pzz+ (3kL /4) ]=(3kL /8 ) (e; r~ ) (29)

With the help of this result, one can estimate the ampli-
tude of the field inducing the transparency. Setting the
limit between low and high transmission at T= —,', i.e., at
pzz=3kl /2, for the threshold for high transparency we
get E, rz ~ (6kL )'

Before we turn to the detailed analysis of these results,
let us first comment on their range of validity. Though
they were deduced for the stationary regime e;=const
and t ~~, they also can be used to describe the
transmission of pulses obeying the inequality
Tz)) T~))~„, because in such cases the polarization
will follow the variation of the electric field adiabatically.

Let us turn now to the analysis of Eq. (27). It shows
that the transmission will be comparable with the
refiection ('T= —,'), when (b, ') =8'„/ ~, i.e., when the
frequency shift 6' induced by the field becomes equal to
the width of the resonant frequency I W„I/rz. Solving
this equation, and taking into account that
b, '=(1+W„)jb,L =2pzzb, I, and b, l rz =2/3kL ))1, we
find that W„=—1+I/(bl rz) or p22=1/(261 rz). In
this way, the onset of the transparency begins already at
small values of the inversion, which is in accordance with
our previous qualitative arguments.

It is more comfortable to express the transmission
coefficient by the population of the excited states pzz. Us-
ing the smallness of this quantity, we obtain from Eq. (27)

FIG. 2. The scheme of nonresonant excitation to observe op-
tical bistability in the transmission of the resonant layer.

phase shift can compensate the initial detuning, and this
leads to a stronger reAection. As it will be shown below,
in this case it is possible to obtain a sudden transition be-
tween states of low and high transmissions depending ei-
ther on the initial detuning or on the external field ampli-
tude.

Suppose that the incoming wave has a constant ampli-
tude e', =so/r~ (eo is a dimensionless constant), and it is
tuned above resonance: Ao &0. Let us consider the tran-
sient stationary regime of the transmission: R =0, 8'=0.
In this case in Eqs. (24) and (27) b.'=b.o+(I+ W„)bL,
b.o=b, —EL (0. What are the conditions for Eq. (25) to
have only real roots? We will be interested only in that
range of the parameters for which the inversion remains
close to its initial value, W= —1. We recast Eq. (25) by
expressing the inversion through the population of the
uPPer state, Pzz=(1+ W)/2, and assume that Pzz((1.
Taking into account also that 6' =DO+ 2p~zhl we obtain

Pzzl. (~0 ~LP22) ( R ) ] i (30)

B. Nonresonant excitation, bistability
of reflection, and transmission

We have considered above a resonant excitation. The
frequency of the external field was equal to the renormal-
ized atomic transition frequency: co&, =co&& —Al. Now
let us turn to the nonresonant case ho&0. It is clear that
if the frequency of the external field cu falls into the range
below the atomic transition, then the incoming wave
drives the atoms further out of resonance, and therefore
weakens the reAection and amplifies the transmission.

Principally new effects arise in the opposite case, when
the frequency of the exciting pulse is above the atomic
resonance co&i (see Fig. 2). In this case the dynamical

3z +2boz+(I/r~ ) =0 . (31)

Equation (40) will have three different real roots if

This equation has either a single real root or three real
roots. In the first case the function pzz(e, . ) is single
valued. In the second case, however, to some e, there
corresponds three different populations of the upper lev-
el. This latter case indicates the possibility of a bistable
behavior of the system.

The condition of obtaining three real roots can be
found by determining the zeros of the derivative
de, /dpzz. Introducing the notation z =Ao+2pzzhL we
get
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FIG. 3. The dependence of the inversion and of the transmission coefficient on the dimensionless intensity of the excitation:
up=(e;z~ )'. The numbers denote the corresponding values of the detuning —Ap~R.

b, o & —&3/r~ . (32)

In this case the plot of the function p22(e; ) shows a wrin-
kle. The boundaries of the interval where this function is
three-valued can be determined by substituting the roots
of Eq. (31) into Eq. (30). The smallness of the roots of
Eq. (30) is ensured by demanding the inequality

«b, L. According to (32) this means that the shift

~ ho r~ can be of the order of unity.
Figure 3 shows some plots of the function 8;„(e'o,b, o)

illustrating the above analytical considerations. The
figures were drawn using the exact equation (25), which is
of fourth order, in contrast to the approximate Eq. (30),
which is only of third order. Therefore in a certain range
of the variables eo and Ao the function 8'„ is four-valued.
The instable values have been plotted with dotted lines.

The dependence of the transmission coefficient T on
the dimensionless intensity eo is shown in the upper half
of Fig. 3(a). It can be seen that beginning from some
value of b,o (in the figure at b,t= —2/rz), there is a hys-
teresis in the transmission.

The S-shaped form of the function 8'„means a mul-
tivalued (bistable) response of the system. As an illustra-
tion, in Fig. 4 we show the buildup of the stationary
transmission coefficient T and inversion 8'„ for a thin
layer (kL =0.06667, b,L rz =10), after switching on a
nonresonant field (b,or+ = —2.2) with a constant ampli-
tude co=@;~z. As it can be seen from Fig. 4, when eo
gets larger than a certain value (for the parameters we
have chosen if eo) 0.725) the character of the response
suddenly changes from an almost total transmission to a
strong reAection. The corresponding jump can be ob-
served also in the behavior of the inversion O'. We can
calculate numerically the dynamical frequency shift dur-
ing the process. In the range above the threshold (in our
case when eo )0.725) the initial detuning has been almost
perfectly compensated by the dynamical phase shift; for

0

—0.2—

I

10
l i I

t /x„20

FICx. 4. The sudden change of the kinetics of the transmis-
sion coefficient of the thin layer (kL =0.066667) for a non-
resonant excitation ( Apr~ = —2.2) of constant amplitude
E.=Ep/7 g . Curve I, up=0. 72; curve 2, up=0. 725; curve 3,
op =0.7275; curve 4, op=0. 73; curve 5, up =0.74.
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the stationary value of (b.' —50)rii we have obtained 2.3.
This means that in the stationary regime the atoms are in
resonance with the external field, which results in a
strong reAection. In between, the departure of the inver-
sion from its initial value remained relatively small.

The bistability in the transmission of the resonant layer
considered here bears a purely dispersive character, be-
cause we did not take into account the relaxation process-
es: 1/T, and 1/Tz were set equal to zero. Our approach
is therefore different from that of Refs. 3, 4, and 11—16,
where bistability was studied on the time scale of the
phase relaxation T2. In order to realize bistability in that
case one needs much stronger, saturating fields.

All that has been stated is valid for light pulses which
are longer than the time of stationary response ~z, but
shorter than the relaxation times T& and T2. Let us re-
mind the reader that there is another restriction we have
been using: the incident wave can be reAected only if
e, (z~ '. This is connected with the fact that the induced
polarization of the layer cannot generate a secondary
field with an amplitude larger than ~R . Therefore the
contrast in bistability will be high only if e, (zR .

IV. CONCLUSIONS

Describing the nonlinear optical properties of optically
thin resonant layers it is principally important to take
into account the dipole-dipole interaction of the atoms.
This interaction can be effectively taken into account in
the optical Bloch equations by replacing the macroscopic
mean-field 6' with the effective local-field 8'= 6" +4~P/3.
This correction may lead to several interesting physical
effects. We were dealing especially with the following
ones, which can be important with respect to possible fu-
ture applications: (i) the nonlinear transparency of a thin
resonant layer remaining near to its ground state, and (ii)
the transient bistability of the transmission. Both effects
are induced by the dynamical frequency shift with a
switching time shorter than the relaxation times. They
manifest themselves when certain relations between the
parameters of the atomic system and the incident field are
fulfilled. The duration of the excitation T must be larger
than the superradiation time of the layer ~z and at the
same time it is supposed to be shorter than the relaxation
times of the atomic system. In addition, the Rabi fre-
quency of the incident pulse must be less than ~z '. Thus
the conditions to observe the predicted effects are
&~ &T~ &T,*,T,' and ~, &~~'. We propose that the
effects predicted above might be realized experimentally
using excitonic lines of aromatic compounds (such as
naphtalene and anthracene), or in materials containing
unoccupied d or f orbitals as Cr203 or MnO~. The
lowest electronic excitations in these materials are exci-
tons of small radius. The presence of the excitonic lines
shows that the dipole-dipole interaction is larger than the
homogeneous and inhomogeneous broadenings, (which is
impossible in gases' ) and this makes us hopeful that the
required inequalities will be satisfied.
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APPENDIX A

Following Ref. 4, we calculate the effective field 6' at
the place of the ith atom generated by all the other di-
poles. We suppose that each dipole points into the x
direction and we neglect the inhomogeneous broadening.
We shall calculate the quantity e'=p. E'/A, where E' is
the slowly varying amplitude of the field A '.

We consider a plane cylindrical layer of thickness
L &(k and radius R0. The origin of coordinates we
choose in the center of the cylinder. Let us find the field
acting on an atom on the symmetry axis (z direction) by
the familiar procedure.

We cut out a spherical volume of a small but macro-
scopic radius 6 around the location of the ith atom. The
field of the dipoles generated by the atoms within the
sphere is zero' ' at the point r;. The field of the dipoles
outside the sphere can be calculated in the continuous ap-
proximation. Then

e'= —iI R,
I= g B; =Xj B(r, )dV~, "

j(=I) 6

(A 1)

(A2)

+[(I, .n;, )(I, n;, )]F2(kr,, )], (A3)

F (g)=ei

r

F2(g) =e

i 1

g3 g2

2

g2

(A4)

(A5)

Here P=2p k /3A', I, is the unit vector pointing into the
direction of p; (in our case I; =I =I ), r; =r; —r,
Il jJ rIJ /f IJ ~

In cylindrical coordinates (p, y, z )

p
I; n; = — cosy, , r;J=p, +(z, —z;)J 2 2 2

IJ

(A6)

'fhe p,. coordinate does not enter expression (A6), be-
cause the ith atom is supposed to be on the axis of the
layer, p; =0. It is appropriate here to point out an error
made in Ref. 4, where the factor p /r; in (A6) has been
omitted in the calculation. This inaccuracy, as it will be
shown below, leads to a substantial difference in the re-
sult for I .

After integrating (A2) over cp and using (A6) we get

where the integration is to be performed over the volume
of the cylindrical volume with the spherical hole V& in it.
The matrix 8, is given by the expression

B; =—3P[[(1; I ) —(I; n; )(I n; )]Fi(kr, )"
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Substituting p~
= r;j —(z —z; ) and using the relations

z,. +6 RO+ ' d. ' pdp]
(sz+( )2)) rz~J

J

X F, (kr;, )+F2(kr; )

k[F)(k)+F2(k) l
=—

—[F,(g) —F2(g)]= e
1

g2

(A8)

(A9)

(z; —z )+
2

-[F,(kr J ) —F2(kr; )]
P$J

one can perform the integration over )0 in (A7). We ob-
tain

z. —5r=', ~p f dz + f dz [4&(k[R +(z, —z ) ]',k(z —z, ))—N(klz —z;l, k(z —z, ))]
l

z,. +6
+—3irP f dz [N(k[R()+(z, —z~) ]',k(z —z;))—N(k5, k(zj —z, ))],

I

(A10)

where

(I&(g, r)) = — 1+—+ 1 —— (A 1 1)

The integrations of the functions N(k lz —z, l, k(z —z;)) and (I&(k5, k(z. —z, )) also can be performed in explicit form,
so that for I we obtain

3 Xr= —~p
k

—ik6 ~~ —ikL /2
—L/2

(i —k5)e '" +—e '" coskz, + dz, +(k(R()+(z, —z, ) ]',k(z, —z, )) (A12)

So far we have not used any approximation in the calculations, therefore the expression for I is exact in the framework
of the present model. Let us turn attention to the fact that I remains finite even in the limit 6~0:

r='~p
k

Si 4i —L/2+—e '" ~ coskz;+ dz (Ii(k[R()+(z, —z ) ]',k(z —z, ))
3k k ' —L/2

(A13)

From this equation in the limit of a thin layer kL « 1, k lz; l
(& 1 it follows that

r=i P + ' P + ' P '"dz e(k[R,'+(z, —z )']'",k(z —z, )) .
k k2 2k2 I /2

(A14)

(L2/4 z2)i/2
I =i ]+in

k
(A15)

For the sake of comparison we quote the correspond-
ing result of Ref. 4:

4rrP/3=4mpN/3. The second term in (A14) is the reac-
tion field —2~ikLP, while the third term can be shown to
be negligible in the limit Ro ~ oo.

APPKNMX 8

Here the terms proportional to kL have already been
omitted, because in Ref. 4 the ease kL ~0 has been con-
sidered. Therefore we have to compare (A15) with the
first term of (A14). This is the term which embodies the
difference between the effective and the macroscopic field.
We see that the important difference between our result
and (A15) is that the latter is divergent when 6, the radius
of the hollow sphere, goes to zero. This singularity is the
consequence of the inaccuracy pointed out above.

Remembering that /3=2p k /3', the first term in
(A14) can be written in the form 4irip /N/3A. The cor-
responding contribution to the effective field e' is
4~@ XR /3A. This expression is in full accordance with
the standard result for the local-field correction

As it has been noted in the beginning of Sec. III, in the
linear approximation the resonant layer can be regarded
to be thin if its thickness L is less than the wavelength of
the light within the medium divided by 2~, i.e., if
ln lkL &(1, where n is the complex index of refraction.
Here we will obtain a more general result being valid for
the nonlinear case as well.

In considering the limit of the thin layer, we have used
the algebraic expression (20) for the field, instead of the
integral equation (11). At first sight the condition that
L & k/2~ (and not L & A, /2rrn), seems to be sufficient to
validate this approximation. Replacing the phase factor
by unity in the integrand of Eq. (11) leads to a uniform
field strength in the medium, and via the material equa-
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tions (10) also to the uniformity of the inversion W and
the polarization R. In order to understand the situation,
let us estimate the omitted terms. It is clear that they are
of the order of 2rrpN(kL ) (R ), and they must be small
compared with the terms kept in the equation. Therefore
the condition we seek has the form

kL
( )

«1. (B1)

It is not difticult to prove that in the linear case, when
(R ) =(g/pX)E (y)) 1), the condition (Bl) is equivalent
to In IkL « l.
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