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Quantum theory of soliton propagation in an optical fiber using the Hartree approximation
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The quantum theory of pulse propagation in a nonlinear optical fiber is presented using the time-
dependent Hartree approximation. This formulation clarifies the connections between the quantum
theory of soliton propagation and single-mode theories that have been used to describe the effects of
self-phase modulation. An approximate solution is obtained for coherent-state soliton pulses that
gives excellent agreement with numerical calculations for the quadrature phase amplitudes of the
field. These amplitudes are found to undergo a series of collapses and revivals with propagation; the
first collapse is related to the appearance of interference fringes in the field Q function.

I. INTRODUCTION

It is well known that the combined effects of group ve-
locity dispersion (GVD) and self-phase modulation (SPM)
can lead to the formation of temporal optical solitons in
optical fibers. ' Classically the propagation of temporal
solitons can be described using the nonlinear Schrodinger
equation (NLSE). More recently the quantum NLSE has
been studied as a model for investigating quantum effects
in pulse propagation in nonlinear optical fibers. ' In
particular, optical fibers have been used to generate
squeezed states of light, "' and to perform quantum
nondemolition measurements. ' Tanas and Kielich'
and Kitagawa and Yamamoto' have shown that upon
propagating through a nonlinear medium a mono-
chromatic field can become self-squeezed due to SPM.
Milburn' and Milburn and Holmes' have investigated
quantum effects due to SPM using an anharmonic oscilla-
tor model, and Yurke and Stoler' have suggested that
this can be used to generate superpositions of macroscop-
ically distinguishable states. In addition, Kennedy and
Drummond' and Blow et a/. have developed exact
theories which describe the quantum-statistical proper-
ties of traveling waves including the effects of SPM.

Early work on solving the quantum NLSE as a model
for pulse propagation in nonlinear optical fibers relied on
linearizing the nonlinear operator equations obtained in
the Heisenberg picture, which limits the validity of the
results. More recently, based on earlier work by Kaup, '

Haus et al. have employed the inverse-scattering
method in their treatment of the quantization of optical
solitons, and Yurke and Potasek have solved the initial
value problem for the quantum NLSE using a formalism
developed by Gutkin. In a pair of recent papers Lai and
Haus have developed an approximate quantum theory of
solitons in optical fibers, based on the time-dependent
Hartree approximation, and an exact solution using
Bethe's ansatz. '

In this paper I investigate the quantum theory of soli-
ton propagation in a nonlinear optical fiber using the
time-dependent Hartree approximation. This formula-
tion clarifies the connections between the quantum theory
of soliton propagation and single-mode theories that have

been used to describe the effects of self-phase modula-
tion. ' ' ' The development of the theory follows that
of Lai and Haus. However, these authors concentrated
primarily on finding a quantum soliton solution of the
problem. ' Here I consider the case of a pulse whose in-
itial profile is the classical soliton solution, which corre-
sponds more closely to the classical version of the prob-
lem. ' An approximate solution is obtained for
coherent-state soliton pulses which gives excellent agree-
ment with numerical calculations for the quadrature
phase amplitudes of the field. These amplitudes are
found to undergo a series of collapses and revivals with
propagation, the first collapse being related to the appear-
ance of interference fringes in the field Q function. ' '

The remainder of this paper is organized as follows.
Section II describes the classical and quantum theories of
pulse propagation in a nonlinear optical fiber, and intro-
duces the time-dependent Hartree approximation. Nu-
merical results for a coherent-state soliton pulse are
presented in Sec. III 8 along with an approximate analyt-
ic solution of the problem in Sec. III C. Collapses and re-
vivals in the field amplitudes and their relation to the
field Q function are discussed in Secs. III D and E. Final-
ly, Sec. IV gives the summary and conclusions.

II. CLASSICAL AND QUANTUM
PROPAGATION THEORIES

In this section the quantum theory of propagation in a
nonlinear optical fiber is described. This discussion close-
ly follows that given by Lai and Haus, and is included
both for completeness and to clarify the notation used.
First, Sec. II A describes the underlying classical theory
and the quantum theory is taken up in Sec. II B. The
time-dependent Hartree approximation is then intro-
duced in Sec. II C.

A. Classical theory

The classical problem to be addressed is the propaga-
tion of a quasimonochromatic pulse with mean frequency
co in a single-mode, polarization preserving optical fiber.
Then assuming that the field may be treated as polarized
orthogonal to the direction of propagation (transverse
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electric field), the electric field may be written in the form

E(r, t) =eI u(r)6(z, t)exp[i(kz —tot)]+c.c.],
where e is the unit polarization vector, r and z are the ra-
dial (transverse) and longitudinal coordinates, 6(z, t) is
the slowly varying electric field envelope, and u (r) is the
dimensionless transverse beam profile of the linear guided
wave of the single-mode optical fiber which obeys

2
2

1 d M+ — + — n (r, to) u(r)=k (co)u(r) . (2)
dy P dl' c

Here n (r, to) describes the linear refractive-index profile
of the optical fiber, and k (co) is the modulus of the wave
vector for the guided wave that can be written in terms of
the effective dielectric constant e(cv) as

is the effective volume of the pulse, I, is the characteristic
length over which a pulse of length ~ would double in
width due to GVD alone, and the electric geld per photon
is defined as

1/2

2e(co) V
(10)

With these definitions, and replacing t by t for simplicity
in notation, Eqs. (4) and (6) become

Here ~ =1.76~ is the full width at half maximum of the
pulse '

V =vga f 2trr drlu (r)l

2 2e (co)to
2

Eoc
(3) and

Using these definitions, and in the usual quasimono-
chromatic and paraxial approximations, the following
propagation equation is easily obtained for the electric
field envelope 8 including both GVD and the Kerr non-
linearity of the fiber:2~

V =AD f dx P (x, t)P(x, t),
where

2C= —I n2e L

(12)

1 8
l

Bz v Bt

k

t2 c
(4)

where v~ =(Bk/Bto) ' is the group velocity,
k2=8 k/Bco, n2 is the nonlinear Kerr coeS.cient of the
fiber, and I is a geometrical factor given by

f "2~r drlu(r)I"
0

(&)
2&1 dP' Q I'

Here it is assumed that u (0)= 1, and 6'(z, t) is therefore
the peak electric field in the fiber. In Eq. (4) the first term
on the right-hand side describes the e6'ects of GVD, and
the second term accounts for the Kerr nonlinearity.
Here it is assumed that propagation losses may be
neglected and that the fiber may be treated as a transpar-
ent nonlinear dielectric medium. It is then straightfor-
ward to show that the cycle-averaged energy of the opti-
cal field, which is a conserved quantity, is given by

a'a
t gPt r)0 g 8' ~4 Cgtgtgg

Bt Bx Bx
(14)

Then by introducing the momentum canonically conju-
gate to P, the corresponding Hamiltonian, which is a con-
served quantity, is found to be

is the nonlinear phase shift per photon over the charac-
teristic length I.. Note that in the propagation equation
(11) the variable t =z/L plays the role of the longitudinal
or propagation coordinate, whereas the variable x de-
scribes the temporal envelope of the pulse as viewed in a
reference frame moving at the group velocity v [see Eq.
(7)]. Also, even though ih' has been introduced in Eqs. (8),
(10), and (12), the theory is still classical at this stage.

It is easy to verify that the classical NLSE (11) can be
obtained from the following Lagrangian density by
evaluating the Euler-Lagrange equations of motion:

U = f "2rtr drl u (r) l' f dzl e(z, t) l' .
vgk 0

(6)
8=A f dx Cgtg PP-

Bx Bx

In this paper the specific case of anomalous dispersion
k, &0, and positive noninearity n2)0, will be con-
sidered, as this is known to give rise to temporal soliton
solutions. '

To proceed the following dimensionless variables are
introduced:

x =(z v t)/v r, —t'=lk2lz/2r =z/L,

B. Quantum theory

To obtain the quantum version of the classical field
theory described by Eq. (11), the Schrodinger picture
shall be used. Then to quantize the classical theory the
c-number fields P(x, t) and P (x, t) are replaced by the
time-independent field operators P(x) and P (x) which
obey the boson commutation relations

1/2 1/2
Av k Av k

2e(~v) V
'

2e(co) V
@e (8)

[P(x),P (x')]=5(x —x'),
[P(x),P(x')]=[/ (x),P (x')]=0.

(16)

The evolution of the field state vector lg(t)) is then
governed by the Schrodinger equation
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where

where the second quantized Hamiltonian operator is ob-
tained by replacing the c-number fields by field operators
in Eq. (15),

H, =A f dx —CP (x)P (x)P(x)P(x)
Bx Bx

C. Time-dependent Hartree approximation

In general, the state vector can be expanded in the bo-
son Fock space as

lp(t) &
= g ~„lp„(t)),

where the n-particle state vector is given by

ig„(t)) = —fdx, fdx„f„(x„,. . . , x„,t)

Xy'(x, ) .
(t t(x„)~0),

(20)

~0) being the vacuum state, and the n-particle wave func-
tion f„has the normalization

fdx, . fdx„!f„(x„.. . , x„,t)~'=1. (21)

The complex coefficients a„determine the photon statis-
tics of the pulse as p„=~a„~, where p„ is the probability
of there being n photons in the field. By substituting Eq.
(20) into (17) it can be shown that f„obeys an equation of
motion which is the Schrodinger equation for a one-
dimensional system of bosons with 6-function interac-
tion. ' An approximate Hartree wave function is now
introduced following Lai and Haus:

(22)

where N„has the normalization

f dx~e„(x, t)~'=I .

An equation of motion can be obtained for N„by using
the time-dependent Hartree variational method, which
yields

$2@
,
" —2C (n —»I +.I'+. (24)

This equation, which is the usual classical NLSE with C
replaced by C(n —1), provides a link between the classi-
cal and quantum theories, as shall be discussed later.

Using Eqs. (19) and (22) the Hartree approximation for
the state vector can be written as

(25)

(18)

and normal ordering of the field operators has been
adopted.

~g„(t))H= — f dx 4„(x,t)Q (x) ~0) .
n!

(26)

III. QUANTUM THEORY
OF SOLITON PROPAGATION

In this section the theory described in Sec. II is applied
to the propagation of a coherent-state pulse in a non-
linear optical fiber.

Basically, in the Hartree approximation all n particles
in the n-particle state given by Eq. (26) are assumed to
have the same field envelope @„(x,t). The n-particle
state (26) is then simply a generalization of the usual n

particle eigenstate for a single-mode field described by the
creation and annihilation operators a and a:

(27)
&n!

In the single-mode case the creation operator a~ creates
photons in a given field configuration which obeys
Maxwell's equations and the appropriate boundary con-
ditions, for example, a standing wave electromagnetic
mode in a box. ' By comparison, the operator
Jdx 4„(x,t)P (x) in Eq. (26) creates photons with elec-
tric field envelope 4„(x,t).

Yoon and Negle first introduced the time-dependent
Hartree approximation in their study of a one-
dimensional system of bosons with 6-function interaction.
These authors showed that, for a fixed particle number n,
this approximation is exact to leading order in n. In
this paper I consider a coherent-state pulse with large
mean photon number (n ) ))1, which means that only
large values of n = (n ) are relevant in Eq. (25), and the
time-dependent Hartree approximation is valid. The ap-
proximate state vector given by Eq. (25) shall therefore be
used in the remainder of this paper.

Finally, some remarks are in order regarding the
quantization procedure used here in which it is the classi-
cal field envelope 6' (or P) which is quantized. In this
way both the quasimonochromatic and paraxial approxi-
mations are made at the classical level before quantiza-
tion. This procedure leads to the creation operator

(x) which would apparently create photons at point x.
This notion is contrary to the general result of Newton
and %'igner that photons are not localizable particles
(they do not possess a position operator). However, a
recent work by Deutsch and Garrison, which starts
from the exact QED theory, shows explicitly that the
photon may be treated as localizable to within regions of
space large compared with a cubic wavelength of the
light. Therefore, if the electric field envelope varies slow-

ly in space and time compared to the mean wavelength
and frequency, respectively, which is precisely when the
quasimonochromatic and paraxial approximations are
valid, the photon may be treated as localizable with the
caveat that its position cannot be determined to within a
region smaller than a cubic wavelength. This restriction
prohibits the treatment of very short pulses, whose
effective volume V is less than a cubic wavelength, using
the theory developed here.
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A. Preliminaries

(28)

Throughout this paper I consider a coherent-state
pulse which is described by the Poisson distribution

1 /2

a„= exp( —(n ) /2),(n)"
n 'I

p(x) f g„(t) ) H
= —C'„(x, t )i/n!

X Jdx 4„(x,t)P (x)
n —1

fo) . (36)

with a similar definition for (P (x, t)). This quantity
may be evaluated by using the commutators in Eq. (16) to
verify the result

where ( n ) is the mean photon number

(n)= g np„. (29)
Combining Eqs. (28), (35), and (36) yields

&y(x, t)&=&&n& g p„~„„(x,t),
n=0

(37)

It is well known that the variance in photon number for
such a state is cr =&& n ). '

The propagation Eq. (24) is now written in the alterna-
tive form

oc„a'e„
at r)x' (n ) —1

where

(30)

I n2@ ((n ) —1)L

4(x, t) =N(„)(x,t) =%0(x)exp(it),

with

(32)

is the nonlinear phase shift produced by ( n ) photons
over the characteristic length I.. For the special case
n = (n ), and g=4, Eq. (30) has a (classical) soliton solu-
tion

and in a similar manner

(y'(x, t)) =~/(n) y p„e„*„(x,t) .
n=0

(38)

(39)

Here use has been made of the fact that n-particle state
vectors corresponding to difterent numbers of particles
are automatically orthogonal, and it has been assumed
that fdx 4&„* i(x, t)@„(x,t)=1 for all n values of in-
terest. This will be true for a coherent state in the limit
of large mean photon number (n ) since the relevant
range of n values is roughly ( n )+&(n ); the variation in
the factor ( n —1 ) /( ( n ) —1 ) appearing in Eq. (30) is then
(n) ', which vanishes as (n )~~. Then by intro-
ducing the quadrature phase operators defined by

X, (x) =P(x)+P t(x)

40(x) =2 ' sech(x), (33)
X2(x)= [P(x)—

P (x)]/i, (40)

which corresponds to a hyperbolic secant pulse with soli-
ton period to=m/4. ' Note that this solution obeys the
normalization condition (23). In the remainder of this
paper the value q=4 shall be used. In addition, it is as-
sumed that for all values of the photon number n in Eq.
(24) the initial condition for the electric field envelope is

(X,(x, t) ) =2v'( n ) g p„Re[&„+,(x, t) ]
n=0

(41)

the following expressions are obtained for the quantum
averaged quadrature phase amplitudes:

4„(x,O) =C&o(x), n =0, 1,2, . . . . (34) (Xz(x, t) ) =2& ( n ) g p„Im[&&„+,(x, t) ] .
n=0

B. Numerical solutions

Within the Hartree approximation, the quantum aver-
aged value of the electric field envelope is given by

(y(, t) ) =„(y(t)fy(x) Iq(t) &

=g ga„a* H(g (t) fP( )flax„(t)) , H (35)

The initial pulse therefore corresponds to a coherent state
with the classical soliton enuelope C&o(x). In contrast, Lai
and Haus considered the case in which @„(x,O) was
different for each photon number n, namely, d&„(x,t) was
chosen as the fundamental soliton solution of Eq. (24).
For the case considered here the initial field envelope is
the classical soliton solution of Eq. (30) only for n = ( n ).
Yurke and Potasek have solved the initial value problem
for the quantum NLSE using a formalism developed by
Gutkin, but it seems impractical to use this method for
fields with large mean photon numbers.

Numerical solutions for (Xi z(x, t)) have been ob-
tained by solving the NLSE's in (30) subject to the initial
condition (34) for n values between ( n ) —4o and
(n ) +4o. using the beam propagation method, and per-
forming the summations in Eqs. (41) an (42). Figure 1(a)
shows the calculated evolution of (X, ) evaluated at
x =0 for ( n ) = 100 (all results are for rl =4). For the sol-
iton solution given in Eq. (32), the classically predicted
time evolution of Xi is cos(t) (for any value of x), which
oscillates with period 27r In contrast, Fig. 1(a) shows that
the quantum prediction for (X, ) undergoes a series of
collapses and revivals, or recurrences, with propagation
(the same phenomenon occurs for (Xz)). Such re-
currences were previously noted by Milburn' in the con-
text of an anharmonic oscillator model which corre-
sponds to SPM without GVD, and are reminiscent of the
collapses and revivals in the population inversion predict-
ed by the Jaynes-Cummings model. ' The revivals are
true quantum eA'ects as they rely on the granular nature
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I I I I

I

I I I I

[

I I I I

10— of the quantized field as contained in the discrete sums in
Eqs. (41) and (42). However, in contrast to the case of
pure SPM where the collapses and revivals are perfectly
periodic, ' the collapses and revivals in Fig. 1(a) change
wit time. The reasons for these similarities and
differences shall be taken up in Sec. III D.

The numerical method described here can also be used
to calculate a range of quantum avera ed quantities, suc
as the pulse shape and frequency spectrum, and also
other photon statistics such as squeezed states.

C. Approximate solution

10

I I

)

I I I I

I

I I I

In order to obtain results for the quadrature phase am-
plitudes in Eqs. (41) and (42) it is necessary to solve the
NLSE (30) subject to the initial condition (34) for each n.
This is a large computational job which can take a great

tion to the problem is constructed which gives excellent
agreement with the numerical results.

In order to construct the approximate solution it is first
necessary to review brieAy some previous work by Satsu-
ma and Yajima, Doran et al. , and Blow et al. ,

' on
t e initial value problem for the classical NLSE. Satsu-
ma and Yajima considered the initial value problem

(43)

with

u(x, 0)=A sech(x) . (44)

—10

10

10

I I I I

J

I I I ~
]

I I

For 3 =X, an integer, one obtains the bound-state mul-
tisoliton solutions, N =1 being the fundamental soliton
so ution which propagates with unchanging intensity
profile. For 3 not an integer the problem can still be
solved exactly using the inverse-scattering method, and
ong-time asymptotic solutions are given in Ref. 39. The

remarkable feature of solitons is that they have a uniform
value of phase over the whole pulse [see Eq. (32)], but for
AWK this is no longer strictly true. However, by using
the results of Satsuma and Yajima, and through extensive
computer simulations, Doran et al. and Blow et al. '

have found that for 3 not too different from 1, the phase
of the propagating wave is to a very good approximation
homogeneous and given by

(45)

400

FICi. 1. Quadrature phase amplitude (X, ) vs the dimension-

less longitudinal coordinate t for (n ) = 100 and t) =4.
plots the numerical solution is shown as the solid line, and in (b)

and (c) the approximate solution is shown as a dashed line.

Similar results are obtained for (X, ).

. ac
l

at

with the initial condition

(46)

Fururthermore, they show that this phase is directly related
to the dominant eigenvalue from the Zakharov-Shabat
direct-scattering problem. Here I make the further as-
sumption that A will be close enough to 1 so that any
variations in the pulse profile may be neglected. There-
fore, if the replacements tl2 +t, and u/3&2~—% are
made in Eqs. (43)—(44), we obtain the propagation equa-
tion
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4(x,0) =&bo(x) =2 ' sech(x),

which has the approximate solution

N(x, t) =C&0(x )exp [i8( t ) ] .

(47) first approximation. [Retaining the three terms shown in
Eq. (53) is enough to reproduce all the results shown in
Fig. 1, whereas the first two terms reproduce only the
first collapse precisely. ] Then, for example, Eq. (51) be-
comes

To construct an approximate solution for the quantum
problem it is necessary to realize that, for a given photon
number n and g=4, Eq. (46) is identical to Eq. (30) with

playing the role of (n —1)l((n ) —1},both propaga-
tion equations having the same initial condition [see Eqs.
(34) and (47)]. Therefore an approximate solution of Eqs.
(30) and (34) for n &) 1 is

(49)4„(x,t) =Co(x)exp[i&„(t)],

where the photon number dependent phase is given by
j. /2 2

0 (t)=4n

1

2
n —1

(n& —1

n —1 ) ( ( n ) —1)l4, (50)

0„(t)=0, n —1&((n ) —1)/4 .

Then by substituting Eqs. (49) and (50) in (41) and (42)
the following approximate expressions are obtained for
the quantum averaged quadrature phase amplitudes:

(X,(x, t) ) = il2( n ) sech(x )

X g p„cosI [1+2(n —(n ) )/(n ) ]t j .
n=0

t~=&n &sr . (55)

This prediction is in excellent agreement with the results
in Fig. 1 in which (n ) = 100 and the first and second re-
vivals are seen to occur around 100~ and 200~, respec-
tively. Recalling that the soliton period to is m/4, then if
zz and zo are the revival and soliton periods in dimen-
sional units

(54)

In this approximation the nonlinear phase shift is propor-
tional to the photon number n, which is the case for pure
SPM due to a Kerr nonlinearity. ' ' ' The solution
given Eq. (54) predicts collapses and revivals which are
perfectly periodic, with a revival period given by

(X,(x, t) ) = v (2n ) sech(x) g p„cos[0„+,(t)]
n=0

(51)
z~ =4(n &z, . (56)

An estimate of the first collapse time can be obtained
by replacing the discrete sum in Eq. (54) by a continuum
approximation

(X2(x, t) ) =v'2( n ) sech(x) g p„sin[0„+,(t) ] .
n=0

(52)
g p„—+ f "dn P(n),

n=0 0
(57)

Figures l(b) and l(c) show a comparison of the numeri-
cally generated results from Sec. II B (solid lines) and the
approximate solution (51) (dashed lines) for the evolution
of (Xi ) evaluated at x =0, and (n ) =100. Figure 1(b)
shows an enlargement of the first collapse shown in Fig.
1(a), and Fig. 1(c) shows the first revival and second col-
lapse. The approximate solution is seen to be in excellent
agreement with the full numerical results. This agree-
ment was found to deteriorate quickly for mean photon
numbers below ( n ) = 10.

D. Collapses and revivals

To obtain some insight into the structure of the col-
lapses and revivals in Fig. 1, it is instructive to simplify
the photon number dependent phase shift even further.
This is done by expanding Eq. (50) in terms of
( n —( n ) ) I( n ), which yields

8„+,(t) = 1+2 n —(n)
n

2
1 n —(n)+—
2 (n) + ~ ~ ~ (53)

In the limit of a coherent state with large mean photon
number ( n ) )& 1, for all n values of interest
(n —(n ) )l(n ) is of order o l(n ) = (n ) '~2 &&1, and
only the first two terms need be retained in Eq. (53) as a

where n is treated as a continuous variable in the integral,
and using the Gaussian approximation

P(n)= 1
exp[ —(n —(n ) } /2(n ) ] .

v'2'& n )
(5g)

Evaluation of the resulting integral yields the simple re-
sult

Although this simple model for the collapses and re-
vivals provides excellent estimates for the first collapse
time and revival period, it cannot explain the fact that
the collapses and revivals become broader with time in
Fig. 1(a). The reason for the lack of perfect periodicity in
Fig. 1 can be traced to the fact that the nonlinear phase
shift 8„ in Eq. (50) contains terms proportional to
(n —I )'~ as well as n —1 due to the combined effects of

(X,(x, t)) =il2(n ) sech(x)cos(t)exp( 2t It, ), —(59)

where the collapse time t, is given by

t, =(n)'"
Therefore, for (n ) =100, t, =10, which is in excellent
agreement with the numerical results in Fig. 1(b). In
terms of the dimensional collapse length z, and the soli-
ton period this yields

(61)
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zo(km) =77 X 10 (62)

and the critical peak power for the fundamental soliton
as

GVD and SPM. Weighted sums of trigonometric func-
tions such as those in Eqs. (51) and (52) also appear in the
Jaynes-Cummings model, which describes the interaction
between a single-mode field and a single two-level
atom, ' where the phase is proportional to t&n. This
model is known to display collapses and revivals in the
atomic inversion which appear at regular intervals, but
which also broaden with time. Therefore the lack of per-
fect periodicity in the collapses and revivals in Fig. 1 is
due to the fact that we are dealing with soliton propaga-
tion which combines GVD and SPM through the phase
shift (50), or the three terms shown in Eq. (53), and not
simply plane-wave propagation which can be described
using SPM alone. ' ' ' However, the solution given by
Eq. (59) for the first collapse is found to agree perfectly
with the results shown in Fig. 1 for times short compared
to the revival period t ((~(n &.

Some estimates are useful in order to determine wheth-
er the collapses and revivals could be detected in current
experiments (although we do not discuss the measure-
ment technique, see, for example, Lai and Haus and
Blow et al. ). For example, Agarwal has shown how the
visibility index may be used as a measure of quantum
effects resulting from propagation through a nonlinear
medium. For concreteness, the parameter values from
the optical fiber experiment of Mollenauer et ah. shall be
used while leaving the pulse width ~ as a variable parame-
ter. This yields the soliton period as

results shown in Fig. (1). That is, within the experimen-
tally accessible range the photon number dependent
phase is well approximated by the first two terms in Eq.
(53). This approximation shall be employed in the
remainder of this paper.

lg, n &
= — Idx y(x)P (x) l0 & .&n! (68)

By substituting the approximate solution (49) and (50)
into the field state vector given by Eqs. (25) and (26) then
yields

E. Field Q function

In this section the quasiprobability density (QPD), or
Q-function, ' is calculated for an initial coherent state
with the classical soliton envelope 4o(x). The QPD is
the modulus squared of the projection of the field state
vector onto a coherent state, and is a useful means of
visualizing different states of an optical field. Lai and
Haus have shown that the QPD can be measured using a
beamsplitter with two homodyne detectors, and that the
quadrature phase amplitudes of the field can be inferred
from such measurements. Here the Q function is used
to visualize the quantum evolution of the initial soliton.

Consider the following coherent state:
oo

lg, a & =exp( —lal'2) g ly, n &,, &ni

where ly, n & is an n pavtic-le eigenstate with electric field
envelope y(x),

Po( W=(4/r)', (63)
lit(t) &„= g a„exp[in8„(t)]l+o, n &,

n=0
(69)

where ~ is in ps. From the critical power the critical
pulse energy can be calculated as Uo=Po~/2, and the
mean number of photons in the pulse is then found to be
(X= l. 55 pm)

( &

Uo 6 6X10
%co 'T

Substituting Eqs. (62) and (64) into (56) and (61) then
yields

z~ (km) = (4n &zo —-10 r

z, (km) =4zo(n &'~ /m =400~'~ km, (66)

with r in ps. Taking &=50 fs (r =100 fs) gives z, =10
km and z~ =10 km. It is therefore unrealistic to suggest
that even the first revival could be observed in present
day (or future) optical fiber experiments, but the collapse
length is well within the range of current experiments. (It
will, however, be necessary to include the effects of stimu-
lated Raman scattering for such short pulses. ' )

As remarked earlier, for times short compared to the
revival period, t ((~(n &, the solution given by Eq. (59)
for the first collapse is found to agree precisely with the

where 0„(t)= [1+2(n —(n & )/(n & ]t. This approximate
field state vector is identical in form to that which ap-
pears in the single-mode theory describing SPM
alone, ' ' and provides the connection between the
two theories. However, what makes the present formula-
tion specific to soliton propagation is the expression for
the photon number dependent phase, which combines
GVD and SPM, and the classical soliton profile 40(x) ap-
pearing in Eq. (69).

The QPD for the state vector given by Eq. (69) is
defined as

Q (,t)=l(a, pig(t)&

=exp[ —(lal'+(n &)]

[a*&(n &(y, @ )]"
X g exp[in 9„(t)]

n=0 7l \

(70)

where the factor (y, No) accounts for the projection of the
coherent-state field envelope y onto the soliton envelope
No. Therefore Qx(a, t) is the probability density at time t
for the field to be a coherent state of amplitude cx with
field envelope y(x). For this presentation it is assumed
that y= No, Q~ =Qo, so that (y, +o)= 1.

Kitagawa and Yamamoto' employed the Q function
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complex-a plane and therefore leads to a finite field value
upon averaging over the QPD. The fe ormation of the
w or and the interference fringes could potentially be

fi
observed in current experiments

'
thsince ey on y require

ber lengths of the order of the collapse length

to show that upon propagation through a Kerr m d'a err me iuma
c romatic field can become self-squeezed. ' L '

Haus have have shown that self-squeezing of quantum solitons
can occur for propagation lengths less than a soliton
period. This means that for a mean ph t b

n &), self-squeezing occurs well before the first col-
lapse is complete. Figure 2 shows the evolution of the Q
unction according to Eq. (70) for ( n ) = 100, which is t e

ig. . ere Qo(a, t) is shown as a function of
the real and imaginary parts of a. The initial Q function
at t =0 is shown in Fi . 2
around Re(a)=+ n

n in ig. (a), and is a Gaussian centered

tial soliton
n =10. Upon propagation the

'

n becomes self-squeezed as shown in Fi . 2(b)
n — '

e ini-
g.

As the propagation distance is further in-

creased the self'-self'-squeezing effect increases leading to the
formation of a "whorl" as shown in Fig. 2(c) for t =3.' '
However, beyond this point the two ends of th h 1

'

ig. (c) start to overlap and give rise to interference
ringes; this is shown in Fig. 2(d) for a time equal to the

collapse time t =10. Indeed th fi 11
C e rst co apse of the

quadrature phase amplitude shown in Fi . 1 in in ig. is connected
i e ormation of these interference frin es. Th

when the ~~ fun~~ function becomes distributed over the full
complex-a plane as in Fig. 2(d) the fi ld

e g will tend to vanish. In contrast, in Fi . 2(b)
the & function

'
tion is concentrated mainly in the lower-half

IV. SUMMARY AND CONCLUSIONS

In this paper the quantum theory of soliton propaga-

ar ree approximation has been presented. An approxi-
mate solution was then devel d f h

ulses
ope or co erent-state

pu ses using the results of Doran et al. d Bl
e~ aI4' f ~ ~ ~

e a . an ow

NLSE.
or the initial value problem fo th 1or e c assical
This appr oximate so1utlon, which 1s given by

the field state vector in Eqs. (51) and (52), provides the
connection between the quantum th f 1'eory o so iton propa-
gation and previous single-mode theories based on SPM,
in which the photon number dependent hase is
tional to n —1.' ' ' In

en en p ase is propor-
n —. ' ' In contrast, soliton propagation is

characterized by the more corn lex homp ex p ase s' i"t given in
q. ( ) which contains terms proportional to both n —1

and n —1. The validity of the approximate solution
was verified b corn

'
e y comparison with numerical results for the

quadrature phase amplitudes of a coherent-state soliton
pulse. These amplitudes were fo d t dun o un ergo a series

Q UM THEORY OF SOLITON pROpAGATION IN AN ~ ~ ~

0-

0
I I It' ll I ~ I

gO

0 06

O.O O,O

ppo
11

p.O

FICx. 2. Caprid plot of the ~PD ~~ a t~~o(n, t) vs the real and imaginary arts of a for
ongttudinal coordinate' (a) t =0' (b) t = —'; ( )= 2; (c) t =3; and(d) t=t, =10.

o e irnensIonless
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of collapses and revivals with propagation, and the rela-
tion of the first collapse to the appearance of interference
fringes in the field Q function was discussed.

In principle, an exact solution for the quantum prob-
lem addressed here already exists using the quantum
inverse-scattering method, ' ' without resort to the time-
dependent Hartree approximation. This is so because
both the classical and quantum NLSE's are integrable
systems. ' It will therefore be of great interest to even-
tually compare the exact solutions with those obtained
here. However, the time-dependent Hartree approxima-
tion discussed here also allows for the treatment of nonin-
tegrable cases, such as the nonlinear coupled mode prob-

lems which occur in birefringent fibers and optical fiber
couplers. Such problems cannot in general be solved
using the inverse-scattering method and the approach
given here should be of great use.
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